当前位置:文档之家› 抗菌复合材料简介

抗菌复合材料简介

抗菌复合材料

材料学院

1111900107

2014年5月13日

0、目录

?1、微生物的危害

?2、人们对抗菌复合材料的需求?3、抗菌复合材料的基本概念?4、抗菌材料的历史

?5、抗菌剂的种类及抗菌作用原理?6、抗菌材料

?7、小结

1、微生物的危害

?传染病的流行是微生物对人类最重要的影响之一。?世界卫生组织公布资料显示:传染病的发病率和病死率

在所有疾病中占据第一位。

制造和使用抗菌材料翼成为人们的迫切需要。

2、人们对抗菌复合材料的需求

随着生活水平的提高,人们的健康理念不断加强。抗菌产品恰逢其时,满足了人们这一卫生需求。抗菌制品上的细菌数量比普通产品减少了90%以上,甚至高于99%。

抗菌产品的抗菌功能来自于其材料的抗菌性能。开发抗菌材料,并合理生产和使用抗菌制品,可减少疾病的发生,保障人们健康。抗菌材料是近年新材料一个研究热点,许多研发成果满足了抗菌产品生产的急需。

抗菌复合材料家庭

医疗

生活用品

畜牧养殖业

3、抗菌复合材料的基本概念

?抗菌制品是一类新型功能产品,杜绝细菌微生物的存留和繁殖,保持清洁卫生状态。

?抗菌功能复合材料,是由抗菌剂和普通材料组成的复合材料。

+ =

4、抗菌材料的历史

(1)、远古人类就发现并利

用天然抗菌材料。埃及金字塔

中木乃伊包裹布使用的树胶便

是天然抗菌剂。

(2)、近代抗菌材料的运用当

属二次世界大战德军,用季铵

盐抗菌处理的军服减少了士兵

疾病和伤口感染的发生。

5、抗菌剂的种类及抗菌作用原理(1)、有机类

i) 常用有机类抗菌剂

包括多种合成的杀菌剂,

如季铵盐、酚醚类、苯酚类、

双胍类、异噻唑类、吡咯类、

有机金属类、咪唑类、吡啶类、

噻唑类等。

特点:有机抗菌剂杀菌力

强、即效性好,来源丰富,但

存在毒性安全性较差、长期使

用可能有产生微生物耐药性的

风险。

ii )天然有机抗菌剂

几丁质

(壳聚糖)

辣根(烯丙基硫氰酸)优点:安全性高

缺点:耐热性较差,应用范围较窄,一般不能使用在高温加工的产品上

iii)高分子类

高分子类有机抗菌剂有聚苯乙烯已内酰脲、聚吡啶、聚噻唑等,种类较少,应用不多。

iv)有机抗菌剂的主要应用方式——表面结合和内添加

有机抗菌剂较多用于表面处理,主要是因为大部分有机抗菌剂的耐热性不好,热稳定性不够。在纺织和涂料中应用较普及。

内添加型的有机抗菌剂一般要求能耐受200℃的温度,这样可以在塑料共混中使用。

?iv)有机抗菌剂的耐热性和安全性

?(2)、无机类

无机抗菌剂一般含有银、锌、铜等金属离子成分负载在某些无机载体,如沸石、磷酸盐、羟基磷灰石、可溶性玻璃等类型的结构中或表面层间,具有缓释抗菌金属离子的作用,所以有优异的抗菌长效性。材料基体载体离子交换

M n+

缓释

微生物

含银、铜、锌的无机抗菌剂

有机类抗菌剂无机类抗菌剂

耐热性较差。一般在100-300℃熔化、

分解或升华。

耐热性好,使用加工温度可达600℃

以上。

抗菌性抗菌即效性好,但长期使用可

能有产生微生物耐药性的风险。

抗菌长效性好,不会使微生物产生

耐药性。

安全性一般毒性较大,存在一定的安

全隐患。

安全性好,一些释放的金属离子对

人体有益。

无机抗菌剂与有机类、天然类抗菌剂相比,具有安全性高、长效性好等优点,尤其是其优异的耐热性(使用加工温度>600℃),使其成为在塑料、化纤、以及陶瓷等材料中使用的首选抗菌剂。

杀菌机理

金属离子带有正电荷,当微量金属离子接触到微生物细胞膜时,与带负电荷的细胞膜发生库仑吸引,使两者牢固结合,金属离子穿透细胞膜进入细菌内与细菌体内蛋白质上的巯基、氨基等发生反应。

细胞合成酶的活性中心由含巯基、氨基、羟基等功能基团组成,与金属离子结合后该蛋白质活性中心的结构被破坏,造成微生物死亡或丧失分裂增殖能力。例如,银离子与蛋白质巯基的结合破坏了微生物的电子传输系统、呼吸系统和物质传输系统。抑菌活性:Ag+>Hg2+ >Cu2+>Cd2+>Cr3+>Ni2+>Pb2+>Co4+>Zn2+>Fe3+。

光催化效应

有些微量的金属元素,能起到催化活性中心的作用,如银、钛、锌。该活性中心能吸收环境的能量,如紫外光,激活空气或水中的氧,产生羟自由基(·OH )和活性氧离子(O 2-)。它们能氧化或使细菌细胞中的蛋白质、不饱和脂肪酸、糖苷等发生反应,破坏其正常结构,从而使其死亡或丧失增殖能力。

6、抗菌材料

(1)、抗菌塑料

抗菌塑料具有抑菌和杀菌性能,最常见的是普通塑料中共混抗菌剂而制成,塑料的其它性质基本保持不变。塑料制品与生活和工作环境密切相关,量大面广。抗菌塑料的发展非常迅速。

制备抗菌塑料的方法有:共混造粒成抗菌塑料,添加抗菌母粒制成抗菌塑料和抗菌制品。

(2)、抗菌陶瓷

抗菌陶瓷是一种环保型功能材料。它是在陶瓷釉料中添加无

机抗菌剂制备而成,或是在陶瓷

表面涂覆抗菌剂再烧结而成。

抗菌陶瓷制品保持了原有陶瓷制品的使用功能和装饰效果,

同时又增加了抑菌、除臭等功能。

可在在医院、餐厅、高级住宅等

地使用抗菌陶瓷制品。日本最大

两家建筑用瓷和卫生瓷公司伊奈

和东陶的抗菌陶瓷制品有良好的

市场表现。

(4)、抗菌涂料

抗菌防霉涂料是针对性地解决涂料干膜受环境微生物

的侵蚀长霉、发黄、品质下降

的问题。施用抗菌涂料可减少

病菌的二次污染和交叉传播,

特别适合于医院、商城、车站

等场所。

木塑复合材料

***公司 年产1万吨木塑复合材料技改项目资金申请报告

编制时间:2011年11月 第一章项目单位基本情况及财务状况 1.1项目单位基本情况 ***公司是***人民政府2007年重点招商引资的一家以发展红椿木种植及林产品精加工的涉林企业。企业于2009年入住***工业园区,注册资金1000 万元。主要从事林地流转,发展红椿木种植基地和林产品精加工。公司于2009年被增补授予“***林业产业化龙头企业”称号。 企业现在拥有木材加工厂两座,一座是位于***的木材粗加工厂,一座是位于***木材精加工厂。厂区占地面积总计21938.4平方米。至2010年底公司已投入资金2000余万元,建设宿舍楼及钢结构厂房9446.71平方米,引进先进的木材精加工设备35台套。 企业现阶段主要产品是出口包装箱的围板,连接板及托盘,通过采取销售联盟合作方式产品远销欧美市场,公司已与***木业包装、江苏***木业、江苏***木业签订10年的产业基地、技术、销售三联盟合作协议。通过不断的技术革新,公司已形成年加工2万方的木材加工能力。公司2010年完成销售2561万元。 企业现有职工136人;其中工程技术人员19人。公司领导班子共7人,其中总经理1人,副总经理3人,经理助理1人,工会主席1人,监事会人员1人,公司管理层平均年龄35岁,全部具有大专及以上学历。 企业通过现代社会先进的管理模式与经验,企业管理正步入科学化、人性化。企业有严谨的人、财、物、生产、技术、经营、管理制度,产品生产成本核算可以量化、细化到每一道细小环节,为独成本核算提供科学、切实可行的依据。 ***公司拟在现在现有厂区设备基础上,进行年产1万吨木塑复合材料项目技改,截止2011年11月,已初步完成地坪整理及钢结构厂房建造,项目进度完成40%。 1.2项目单位财务状况 ***公司经过不断的连续投入与飞速发展,截止2010年底公司总资产已达到3946万元。各类财务数据详见下表:

石墨烯基纳米复合材料的合成与抗菌性能研究

目录 缩略语 (1) 中文摘要 (2) Abstract (5) 前言 (9) 第一章氧化石墨烯的制备与抗菌活性评价 (15) 1.实验材料 (15) 1.1实验试剂及耗材 (15) 1.2仪器设备 (16) 1.3菌株 (17) 2.实验方法 (17) 2.1 GO的制备 (17) 2.2 GO的纯化 (17) 2.3 GO的表征及制样方法 (19) 2.4试剂配制 (19) 2.5细菌培养 (19) 2.6 GO抗菌实验 (19) 2.7细菌TEM表征方法 (20) 3.实验结果 (20) 3.1 GO的表征结果 (20) 3.2 GO抗菌实验结果 (23) 4. 小结 (26) 第二章氧化石墨烯-聚乙二醇-银纳米复合材料的合成与功能评价 (27) 1.实验材料 (27) 1.1实验试剂及耗材 (27) 1.2仪器设备 (28) 1.3菌株 (30) 1.4细胞 (30) 2.实验方法 (30) 2.1 GO-PEG-Ag纳米复合材料合成原理 (30) 2.2 GO-PEG的合成与纯化 (30) 2.3 GO-PEG-Ag及GO-Ag的合成与纯化 (31) 2.4 纳米材料制样及表征方法 (31) 2.5试剂配制 (32) 2.6细菌培养 (32) 2.7纳米材料最低抑菌浓度(MIC)测试 (32) 2.8琼脂扩散实验 (33) 2.9即时杀菌实验 (33) 2.10长效杀菌实验 (33) 2.11时间动力学杀菌实验 (34) 2.12细菌TEM表征 (34) 2.13细菌荧光共聚焦显微镜表征 (34) 2.14细菌蛋白泄露检测 (34) 2.15细胞内活性氧(ROS)水平检测 (34)

复合材料界面与设计

先进聚合物复合材料界面设计与表征进展 姓名:卢刚班级:材研1005 学号:104972100244 摘要:本文简述了界面的形成与作用机理,着重介绍了聚合物基复合材料界面改进的几种方法。 关键词:聚合物;复合材料;界面 Abstract:This paper briefly describes the formation of the interface and the mechanism of action,mainly introduces some methods about the UI improvement of the polymer-based composites. 1引言 聚合物基复合材料是由纤维和基体结合为一个整体,使复合材料具备了原组成材料所没有的性能,并且由于界面的存在,纤维和基体所发挥的作用,是各自独立而又相互存在的。 界面是复合材料组成的重要组成成分,它的结构与性能,以及粘合强度等因素,直接关系到复合材料的性能。所以,复合材料界面问题的研究有着十分重要的意义。 现代科学的发展为复合材料界面的分析表征提供了强有力的手段。扫描电镜、红外光谱、紫外光谱、光电子能谱、动态力学分析、原子粒显微镜等,在复合材料界面分析表征中得到充分利用,为揭示界面的本质、丰富界面的理论做出了重要贡献。 2界面的形成与作用机理 2.1界面的形成 复合材料体系对界面要求各不相同,它们的成形加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为两个阶段:第一阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程。在复合材料的制备过程中,要求组份间能牢固的结合,并有足够的强度。要实现这一点,必须要使材料在界面上形成能量最低结合,通常都存在一个液态对固体的相互浸润。所谓浸润,即把不同的液滴放到不同的液态表面上,有时液滴会立即铺展开来,遮盖固体的表面,这一现象称为“浸润”。

木塑复合材料概述汇总

木塑复合材料 摘要:木塑复合材料具有比单独的木质材料和塑料产品更优异的品质,是实木的理想替代品,它的出现可以减少废弃木料和塑料对环境的污染,也适应现代材料复合化发展的规律。本文介绍了木塑复合材料的定义、特点、加工工艺、分类和应用以及未来发展的趋势,并对木塑复合材料的优缺点进行了分析,充分肯定了发展木塑复合材料的必要性和可行性。 关键词:木塑;性能;加工工艺;分类;应用;发展趋势 随着森林资源的减少,木材供应量逐渐下降,已不能满足人们的生产生活需要。同时,塑料制品废旧物的处理也日益成为一个急待解决的环境问题。一种新型材料——木塑复合材料成为木材的理想代用品。木塑复合材料系使用木粉或植物纤维超高份额填充热塑性塑料树脂或热塑性塑料再生料,添加部分相关改性剂,经挤出成型为板材、型材、管材而成。此类产品可替代相应木制品,人们由此可节约大量的森林资源,处理掉大量的废旧塑料及木材加工中产生的废弃木粉,故可大大有利于保护并改善生态环境,是符合2l世纪发展方向的环保型化工新材料。 1 木塑复合材料定义及特点 1.1 木塑复合材料的定义 木塑复合材料是以锯末、木屑、竹屑、稻壳、麦秸、谷糠、大豆皮、花生壳、甘蔗渣、棉秸杆等初级生物质材料为主原料,利用高分子界面化学原理和塑料填充改性的特点,配混一定比例的塑料基料,经特殊工艺处理后加工成型的一种可逆性循环利用、涵盖面广、产品种类多、形态结构多样的基础性材料,目前国内外对此称谓不一,也有将其称之为:塑木、环保木、科技木、再生木、聚合木、聚保木、塑美木或保利木,英文名称:Wood-Plastic Composites,缩写为WPC。一般说来,以生物质材料为基添加一定比例的塑料原料制成的材料,或以塑料原料为基添加一定比例的生物质材料制成的材料,均可称为木塑复合材料。 1.2 木塑复合材料的特点: (1)原料资源化,其生物质材料部分基本分为废弃物利用,来源广泛,价值低廉;塑料组分要求不高,新、旧料或混合料均可,充分体现了资源的综合利用和有效利用; (2)产品可塑化,木塑产品为人工整体合成制品,可根据使用要求随机调整产品工艺和配方,从而生产出不同性能和形状的材料,其型材利用率接近100%; (3)应用环保化,木塑材料的木/塑基料及其常用助剂均环保安全,无毒无害,其生产加工过程中也不会产生副作用,故对人体和环境均不构成任何危害; (4)成本经济化,即木塑制品实现了低价值材料向高附加值产品的转移,不仅维护费用极低,而且产品寿命数倍于普通天然木材,综合比较具有明显的经济优势; (5)回收再生化,即木塑材料的报废产品及回收废品均可100%的再生利用,且不会影响产品使用性能,能够真正实现“减量化、再生化、资源化”的循环经济模式。

复合材料结构分析总结

复合材料结构分析总结 说明:整理自Simwe论坛,复合材料版块,原创fea_stud,大家要感谢他呀 目录 1# 复合材料结构分析总结(一)——概述篇 5# 复合材料结构分析总结(二)——建模篇 10# 复合材料结构分析总结(三)——分析篇 13# 复合材料结构分析总结(四)——优化篇 做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。 (一)概述篇 复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys中都有相应的处理方法。笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran 提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分内容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL 语言),下面就重点写Ansys的内容。 在ANSYS程序中,可以通过各项异性单元(Solid 64)来模拟,另外还专门提供了一类层合单元(Layer Elements)来模拟层合结构(Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191)的复合材料。 采用ANSYS程序对复合材料结构进行处理的主要问题如下: (1)选择单元类型 针对不同的结构和输出结果的要求,选用不同的单元类型。 Shell 99 ——线性结构壳单元,用于较小或中等厚度复合材料板或壳结构,一般长度方向和厚度方向的比值大于10; Shell 91 ——非线性结构壳单元,这种单元支持材料的塑性和大应变行为; Shell 181——有限应变壳单元,这种单元支持几乎所有的包括大应变在内的材料 的非线性行为; Solid 46 ——三维实体结构单元,用于厚度较大的复合材料层合壳或实体结构;

最新版木塑复合材料(WPC)可行性研究报告

木塑复合材料(WP)C 项 目 建 议 书 二0 一一年九月

二、项日提出的背景和发展概况 三、项目研究的依据 四、项日建设的必要性和意义 五、项目建设的有利条件 六、产品市场预测和项目建设规模 七、工程技术方案 八、环境保护与劳动安全 九、项目进度安排 十、投资估算和资金筹措 H^一、经济效益和社会效益分析十二、财务与敏感性分析 十三、结论及建议

第一章项目概况 一、项目名称:木塑复合材料(WPC )项目 二、承办单位:** 木业有限公司 三、项目负责人:** 四、项目性质:新建 五、建设地址:** 六、建设规模: 项目占地8000 平方米。新建厂房4200 平方米,办公楼1600 平方米,宿舍900 平方米,仓库1800 平方米,购进先进设备。建设年产1.5 万吨木塑复合材料生产线。 七、项目总投资与资金筹措: 项目总投资人民币3600 万元,固定资产投资2800 万元,流动资金800 万元。资金为企业自筹。 项目分二期实施,计划第一期(2011 年12 月-2012 年 5 月)投资800 万元,在** 经济区内规划整理土地15 亩,进行基础设施的建设。第二期(2012 年6 月-2013 年5 月)投资1800 万元完善基础设施建设和购进设备进行试生产。 八、项目经济效益分析: 该项目顺利投产后预计年销售额5000 万元,生产成本投入2840 万元。销售税金及附加560 万元。年实现利润2040 万元。项目投资回收期为 2.45 年,投资利润率为40.8% 。 九、合作方式:独资或合资 第二章项目提出的背景和发展概况 一、项目建设背景和意义 随着人们环保意识的加强,要求保护森林资源,减少利用新木材的呼声日趋高涨,回收利用成本低的废旧木材和塑料成为工业界和科学界普遍关注的问题,促进和推动了对木塑复合材料WPC (Wood Plastic Composite)的研究和开发工作,并取得了实质性进展,其应用也呈加速发展态势。 众所周知,废木材和农业纤维以前都只能焚烧处理,产生的

细菌纤维素-纳米银复合材料的制备及其抗菌性能研究

细菌纤维素/纳米银复合材料的制备及其抗菌性能研究 摘要:细菌纤维素(bacterial cellulose, bc)是一种由微生物合成的高纯度纤维素,超细纤维网络结构使其具有高比表面积、高持水能力以及良好的生物相容性和生物可降解性,被认为是一种潜在的“理想”医用敷料材料。然而,细菌纤维素本身不具有抗菌性能,难以应对细菌感染的伤口。纳米银是一种广谱抗菌剂。因此本文以细菌纤维素为模板,采用环境友好的化学还原剂抗坏血酸为还原剂,原位制备细菌纤维素/纳米银复合材料。同时分别采用抑菌圈法和最小抑菌浓度法对复合物的抗菌效果进行评价。 关键词:细菌纤维素纳米银抗菌创伤敷料 一、引言 细菌纤维素是一种由微生物合成的高纯度纤维素,其微纤维直径只有40-60nm,是自然界中天然存在的精细纳米材料。超细纤维网络结构使其具有高比表面积、高持水能力以及良好的生物相容性和生物可降解性,被称作“大自然赋予人类的天然生物医用材料”[1]。大量研究和临床试验表明,细菌纤维素基创伤敷料对于烧伤烫伤以及慢性溃疡疾病具有良好的治愈效果,是一种极具潜力的“理想”创伤敷料材料[2]。 然而,细菌纤维素本身不具有抗菌性能,难以应对细菌感染的伤口。金属银及其化合物是目前最常用的无机抗菌剂,尤其适用于治疗烧伤烫伤以及慢性溃疡创伤[3]。因此,以细菌纤维素为载体负载纳米银粒子将有望获得具有高效保湿抗菌功能的“理想”医用创伤敷料。孙

东平等以细菌纤维素为载体,甲醛为还原剂采用液相化学还原法合成载银细菌纤维素复合材料,所得银纳米粒子平均粒径在45nm左右,对大肠杆菌、酵母菌和白色念珠菌等都有理想的抗菌效果[4]。marques等分别以细菌纤维素和普通植物纤维为基体,采用nabh4原位还原agno3的方法在纤维素膜上合成纳米银单质,结果表明细菌纤维素纤维的银负载量可达到植物纤维的50倍以上,并且对ag+具有更持久的控释作用,是一种良好的纳米银合成基质[5]。上述研究大多采用nabh4、甲醛等化学试剂为还原剂,这些试剂通常具有较高的人体毒性,反应结束后很难解决试剂在纤维膜内的残留问题,尤其不适合应用于生物医用材料产品的制备。据此,我们提出,以细菌纤维素为模板,摒弃有毒化学还原试剂,采用环境友好的抗坏血酸为还原剂,原位制备细菌纤维素/纳米银复合材料。 二、材料与方法 (一)实验材料 木醋杆菌(acetobacter xylinum):本实验室保藏。agno3、抗坏血酸购买于国药集团化学试剂有限公司。其它试剂若无特殊说明,均为市场可售。 (二)细菌纤维素膜的制备和纯化 以木醋杆菌为菌种,将活化后的菌种接种至种子培养液中,在30℃和160rpm的摇床中培养24h。按6%的接种量接种于发酵培养基中,30℃恒温培养箱中静置培养8 d,得细菌纤维素膜。培养基组成为麦芽糖25g/l,蛋白胨3g/l,酵母浸膏5g/l,ph值为5.0,121℃灭菌

抗菌剂与EVA抗菌复合材料的研究进展

随着中国塑料工业的发展,塑料制品的使用范围非常广泛,如电缆护套、管材、医疗器械、玩具、薄膜等领域。但因为塑料制品表面容易积累和滋生细菌、霉菌等病源微生物,给使用者带来健康隐患。为了保障人们健康和生活品质,将抗菌剂混合到高分子基材中制备抗菌复合材料,减少塑料制品使用者交叉感染,降低疾病的传播,成为高分子材料改性的重要研究方向[1]。乙烯-醋酸乙烯酯共聚物(EVA)作为一种重要的高分子材料,因为它有良好的光学、力学性能及化学稳定性、较好的生物相容性[2],EVA也可以作为缓控释制剂的包衣材料使用[3],所以对EVA进行抗菌改性存在重要意义。 1 抗菌剂 抗菌剂主要分为无机抗菌剂、有机抗菌剂和天然抗菌剂。不同抗菌剂的作用机理也不一样。无机抗菌剂包括多种元素、氧化物及部分多种化合物。市场上常用的无机抗菌剂主要以银、铜、锌等离子和以纳米二氧化钛为主的一些纳米材料等[4]。金属离子通过离子交换等形式与不同材料的载体结合使用,由于铜离子有颜色,限制它的使用,锌离子抗菌能力低,与它们相比,银离子具有抗菌光谱性、杀菌效率高等特点。目前,金属离子类抗菌机理的研究主要存在2种机理假说,分别是接触反应假说和催化反应假说。以Ag+为例,接触反应假说表明,当其接触带有负电荷微生物表面,凭借库仑力的强作用,Ag+可以穿透细菌细胞壁,并在细胞中强烈吸引细菌肌体的疏基,使蛋白质凝固,进一步破坏细胞合成酶的活性,细菌因为细胞丧失分裂增殖能力而死亡,此时Ag+可以死菌体中游离出来,继续作用于其他细菌。催化反应假说是在光作用下,Ag+可以激活水和空气中的氧气,产生羟基自由基(·OH)和活性氧离子(O2-),上述粒子与微生物发生有机反应,破坏细胞增殖能力,达到灭菌效果。纳米二氧化钛经光照作用,同样可以释放羟基自由基(·OH)和活性氧离子(O2-),使细胞发生酯类分解和蛋白质变异,达到杀菌抑菌效果。[5-8]有机抗菌剂:有机抗菌剂的研发和应用比无机抗菌剂时间早,生产技术也较成熟,主要有季铵盐类、双胍类、醇类、醛类、有机胺类等。有机抗菌剂作用机理一般分为3类:1)对微生物的细胞壁和细胞膜进行破坏,如醇类可以与细菌细胞膜发生酯类发生化学反应,使蛋白质变性失活;2)对微生物体内蛋白质和其他活性中心进行破坏,如双乙酸钠可以破坏蛋白酶的生成系统,从而抑制霉菌的滋生和蔓延。3)抑制微生物的DNA和RNA,破坏蛋白质酶合成。如醛类可以与外层细胞膜发生强相互作用,破坏DNA和RNA,进一步破坏酶的合成[4]。天然抗菌剂是人类使用最早,其来源主要是动植物体的提取物,如蟹、虾 抗菌剂与EVA抗菌复合材料的研究进展 顾浦中,葛 醒,刘淑君 (南京医科大学康达学院,江苏 连云港 222000) 摘 要:综述了EVA抗菌复合材料的研究进展,抗菌剂主要包括无机抗菌剂、有机抗菌剂、天然抗菌剂,并指出抗菌剂的发展方向。 关键词:EVA;抗菌剂;研究进展 中图分类号:TB332 文献标识码:A 文章编号:1004-275X(2017)011-001-03 _________________________ 收稿日期:2017-09-27 基金项目:南京医科大学康达学院2016年度科研发展基金(项目编号:KD2016KYJJYB007)。 作者简介:顾浦中,南京医科大学康达学院。

热塑性木塑复合材料

热塑性木塑复合材料 木塑复合材料( WoodPlast ic Composite, WPC)是指采用木纤维或植物纤维填充、增强的改性热塑性材料。与木材相比, WPC 能够连续挤出, 能够获得任意横截面; 尺寸稳定性和精确性良好, 几乎不产生废料; WPC 可以采用与木材一样的方法进行加工, 因此其户外维修的费用非常低; 为了更美观, 可以给WPC 上漆, 这一点比绝大部分塑料都要容易; 另外WPC 的户外耐久比软木要好, 使用时间预期为25~ 30 年。 热塑性塑料基体主要为PE、PP、PS 等聚烯烃和聚氯乙烯, 包括新料、回收料以及二者的混合料; 木纤维有废木粉、刨花、锯木; 其他植物纤维有粉碎处理过的稻秆、花生壳、椰子壳、甘蔗、亚麻、泽麻、黄麻、大麻等。废木可以从倒塌或坏死的树木获得, 也可以从传统木材加工过程中回收。木纤维和植物纤维对成型设备磨损小, 尺寸稳定性良好,电绝缘性优, 无毒, 可反复加工, 能生物降解。可见, 进行WPC 制备、加工的研究有巨大的环保意义和经济效益, 其应用有广阔的前景。 虽然木塑复合材料力学性能比木材要好,但目前TWPC大都作为非结构材料。对施工和建筑应用来说,能否在各种环境下保持所需力学性能非常重要。有人对在海水环境中腐蚀2年的TRIMAX木塑材料(HDPE类)做性能测试,没有发现翘曲等变形或开裂,尺寸变化也在生产厂商标明的允许范围内,材料的模量和强度只有很小的变化。疲劳测试中,由于木成分会升温,而塑料对温度敏感,所以木塑材料的疲劳性能难以测试。木塑材料的螺钉联结强度随温度的降低而增加。 木材是极性亲水性物质, 大多热塑性聚合物为非极性憎水性物质, 因此必须采取各种措施来提高木- 塑界面相容性。前目采用的方法主要有: 对木材进行乙酰化或硬脂酸化处理、聚甲基丙烯酸甲酯处理、马来酸酐处理等。另外由于绝大多数木材是以粉末或短纤维态与热塑性塑料复合的, 它们不易混合而易生成毛团状, 同时极性纤维与非极性塑料难以相容胶合, 造成复合体力学性能低劣。因此, 木塑复合材料在生产中的最大问题除了相容性之外还有分散性问题。相容剂可以改善木纤维在聚烯烃树脂中的分散性, 而偶联剂可以改善木纤维与树脂之间的粘结, 因而可以提高木纤维塑料复合材料的拉伸强度、弯曲强度和冲击强度; 降低木纤维塑料复合材料的吸水率; 提高热塑性木纤维复合材料在湿态条件下的力学性能的保 留率以及热变形温度。用于WPC 的偶联剂有硅烷偶联剂、钛酸酯偶联剂等。 通常认为乙酰化处理原理是纤维组分的羟基与乙酸酐的酰基反应。由于木纤维中排列紧密, 有强交联键的结晶区的羟基完全不可接触到, 因此参与反应的羟基只是纤维组分( 木质素、半纤维和无定形纤维) 的小部分。乙酰化作用能降低木材在水中的膨胀, 大大减少天然纤维的吸水, 提高界面剪切强度, 增加纤维表面自由能。纤维含量80~ 90w t%时, 乙酰化可提高尺寸稳定性。硬脂酸作为胶粘剂可对纤维表面改性。利用羧基COOH 与纤维的羟基发生酯化反应, 从而减少与水键合的羟基数量。此外, 硬脂酸的长烃链是憎水基团, 能为纤维提供特别保护。 用硅烷偶联剂对木纤维处理后, 再接枝甲基丙烯酸甲酯单体, 同时使MMA 适当聚合, 也是一种木纤维改性的方法。通常认为, 将MMA 单体在常温真空浸渍木纤维要比在非真空条件下的浸渍效果好。但若采用甲醇作为MMA 的膨胀溶解剂, 能极大提高接枝率、拉伸强度、弯曲强度和压缩强度, 并可以获得与真空条件相似效果。 马来酸酐处理后制得的WPC 硬度大大提高, 并且可以限制样品膨胀, 阻止水及蒸汽的吸收, 这方面对硬木的效果最为明显。

细菌纤维素-纳米银复合材料的制备及其抗菌性能研究

细菌纤维素/纳M银复合材料地制备及其抗菌性能研究摘要:细菌纤维素

伤敷料.孙东平等以细菌纤维素为载体, 甲醛为还原剂采用液相化 学还原法合成载银细菌纤维素复合材料,所得银纳M粒子平均粒径在45nm左右,对大肠杆菌、酵母菌和白色念珠菌等都有理想地抗菌效果[4].marques 等分别以细菌纤维素和普通植物纤维为基体, 采用nabh4原位还原agno3地方法在纤维素膜上合成纳M银单质,结果表明细菌纤维素纤维地银负载量可达到植物纤维地50 倍以上, 并且对ag+具有更持久地控释作用,是一种良好地纳M银合成基质[5].上述研究大多采用nabh4、甲醛等化学试剂为还原剂,这些试剂通常具有较高地人体毒性, 反应结束后很难解决试剂在纤维膜内地残留问题, 尤其不适合应用于生物医用材料产品地制备. 据此, 我们提出, 以细菌纤维素为模板, 摒弃有毒化学还原试剂, 采用环境友好地抗坏血酸为还原剂,原位制备细菌纤维素/纳M银复合材料. 二、材料与方法 <一)实验材料 木醋杆菌vacetobacter xylinum ):本实验室保藏.agno3、抗坏血酸购买于国药集团化学试剂有限公司. 其它试剂若无特殊说明, 均为市场可售. <二)细菌纤维素膜地制备和纯化 以木醋杆菌为菌种, 将活化后地菌种接种至种子培养液中, 在 30C和160rpm地摇床中培养24h.按6%地接种量接种于发酵培养基中,30 C恒温培养箱中静置培养8 d,得细菌纤维素膜.培养基组成为麦芽糖25g/l,蛋白胨3g/l,酵母浸膏5g/l,ph值为5.0,121 C

基于ANSYS的大型复合材料风力机叶片结构分析

国 防 科 技 大 学 学 报 第32卷第2期 JOURNA L OF NA TIONA L UNIVERSITY OF DEFE NSE TECHNO LOGY V ol.32N o.22010文章编号:1001-2486(2010)02-0046-05 基于ANSYS的大型复合材料风力机叶片结构分析Ξ 周鹏展1,2,3,肖加余1,曾竟成1,王 进2,杨 军2 (1.国防科技大学航天与材料工程学院,湖南长沙 410073; 2.株洲时代新材料科技股份有限公司,湖南株洲 412007; 3.长沙理工大学能源与动力工程学院,湖南长沙 410076) 摘 要:基于ANSY S软件,对某款应用于G L3A风场的1500kW大型复合材料风力机叶片进行了结构分析。分析结果表明:该叶片的振型以一阶挥舞和一阶摆振为主,其频率分别为0186H z和1159H z;在极限挥舞 载荷作用下,该叶片有限元模型计算得到的叶尖挠度为81445m,而该叶片全尺寸静力试验得到的极限挥舞载 荷作用下的叶尖挠度为8112m,计算值与试验值的误差只有318%;另外,该叶片的最大计算拉应力和压应力 分别为228MPa和201MPa,而该叶片玻纤Π环氧复合材料实测拉伸强度和实测压缩失稳强度分别为720MPa和 380MPa,其计算最大应力只有对应实测极限强度的3117%和5219%。 关键词:复合材料;风力机叶片;结构分析;极限挥舞载荷 中图分类号:TK8 文献标识码:A Structural Analysis of Large2scale Composite Wind Turbine B lade B ased on ANSYS ZH OU Peng2zhan1,2,3,XI AO Jia2yu1,ZE NGJing2cheng1,W ANGJin2,Y ANGJun2 (1.C ollege of Aerospace and M aterial Engineering,National Univ.of Defense T echnology,Changsha410073,China; 2.Zhuzhou T imes New M aterial T echnology C o.Ltd.,Zhuzhou412007,China; 3.C ollege of Energy and P ower Engineering,Changsha Univ.of Science&T echnology,Changsha410076,China) Abstract:Based on the ANSY S s oftware,the structural analysis of a kind of1500kW large2scale com posite wind turbine blade which applied in G L3A wind farm was carried out.The analysis results show that the vibration m odes of this blade are mainly presented as first flapwise m ode and first edgewise m ode,the frequencies of the vibration are respectively0.86H z and1.59H z.At the action of ultimate flapwise loads,the FE M analysis results show that the blade tip deformation is8.445m,while the blade tip deformation of the full scale blade under static test is8.12m,s o the deviation between the calculated and tested value of the blade tip deformation is only 3.8%.M oreover,the calculated maximum tensile stress and the com pressive stress are228MPa and201MPa,while the tested tensile strength and com pressive buckling strength of the glass2fiberΠepoxy com posite are720MPa and380MPa,respectively.C onsequently,the percentages of the calculated maximum stress and the tested ultimate strength are respectively31.7%and52.9%. K ey w ords:com posite;wind turbine blade;structural analysis;ultimate flapwise load 风力机叶片是风力发电机组的关键部件之一,随着世界风力发电机组向大功率方向发展,风力机叶片的长度越来越长,目前世界最长的复合材料风力机叶片是丹麦LM公司生产的,其长度已达6115m,单片重约18t,从而对叶片结构的强度、刚度、重量等的设计提出了更高的要求[1-3]。复合材料具有比强度高、比刚度高、重量轻、可设计性强、承力性能好等特点[4-5],因而在大型风力机叶片中获得了广泛应用。风力机叶片的结构分析作为风力机叶片结构设计的技术基础之一,开始在大功率风力机叶片结构的校核与优化设计中发挥着日益重要的作用。 由于大型复合材料风力机叶片的外形结构和铺层结构都非常复杂,其外形由不同翼型构建而成,属Ξ收稿日期:2009-09-22 基金项目:国家863计划资助项目(2007AA03Z563);中国博士后科学基金资助项目(20070420832);湖南省科技资助项目(2008RS4033) 作者简介:周鹏展(1973—),男,博士后。

Ansys复合材料结构分析操作指导书

Ansys10.0 复合材料结构分析操作指导书

第一章概述 复合材料是两种或两种以上物理或化学性质不同的材料复合在一起而形成的一种多相固体材料,具有很高的比刚度和比强度(刚度和强度与密度的比值),因而应用相当广泛,其应用即涉及航空、航天等高科技领域,也包括游艇、风电叶片等诸多民用领域。由于复合材料结构复杂,材料性质特殊,对其结构进行分析需要借助数值模拟的方法,众多数值模拟软件中Ansys是个不错的选择。 Ansys软件由美国ANSYS公司开发,是目前世界上唯一一款通过ISO9001质量体系认证的分析设计软件,有着近40年的发展历史,经过多次升级和收购其它CAE(Computer Aided Engineering )软件,目前已经发展成集结构力学、流体力学、电磁学、声学和热学分析于一体的大型通用有限元分析软件,是一款不可多得的工程分析软件。Ansys在做复合材料结构分析方面也有不俗的表现,此书将介绍如何使用该款软件进行复合材料结构分析。在开始之前有以下几点需要说明,希望大家能对有限元法有大体的认识,以及Ansys软件有哪些改进,最后给出一些学习Ansys软件的建议。 1、有限元分析方法应用简介 有限元法(Finite Element Method,简称FEM)是建立在严格数学分析理论上的一种数值分析方法。该方法的基本思想是离散化模型,将求解目标离散成有限个单元(Element),并在每个单元上指定有限个节点(Node),单元通过节点相 连构成整个有限元模型,用该模型代替实际结构进行结构分析。在对结构离散后,要求解的基本未知量就转变为各个节点位移(Ansys中称之为DOF(Degree Of Freedom),试想一下,节点的位移包括沿x,y,z轴的平动和转动,也就是节点的自由度),节点位移通过求解一系列代数方程组得到,在求得节点位移后,利用节点位移和应力、应变之间的关系矩阵就可以求出各个节点上的应力、应变,应用线性插值便可以获得单元内任意位置的位移、应力、应变等信息。 2、Ansys软件的发展近况 Ansys软件目前已发展到Ansys V12版本,从V10开始Ansys加入了一个新的工作环境Workbench,原先的Ansys被称为Ansys (classic),虽然操作界面不同,但两者的求解器是一样的。Ansys (classic)的前处理功能相对较弱(主要是建模方面),因而往往需要借助第三方软件,如CAD软件。也许是迫于另一个有限元分析软件ABQUS的竞争压力,Ansys推出了新的Workbench工作环境,Workbench在建模、划分网格、求解和后处理上都作了改进,尤其在建模和划分

抗菌材料机理及性能研究

抗菌材料机理及性能研究 摘要目前中国处于高速发展期,在基础建设领域需要大量的建筑材料,而建筑材料在新的应用中又要求其具备一定的抗菌性能,而相较于传统的有机抗菌材料新型的复合抗菌材料具备更加优越的抗菌性和环境友好性。本文就复合抗菌材料进行了抗菌机理分析,并对其应用情况做出了探讨。 关键词建筑材料;复合材料;抗菌性 前言 复合材料是当前我国广泛应用的一种材料,通过添加抗菌材料可以制备具有优良性能的复合材料,而当前的建筑行业中,由于建筑工程使用的年限较长,对部分建筑结构使用抗菌材料可以有效延长建筑工程的使用寿命,而相对于有机抗菌材料而言,复合材料具有更好的环保效果,因此受到了建筑行业的广泛青睐。 1 抗菌材料主要机理分析 复合材料能够产生抗菌效果的主要原因是由于这些复合材料中的功能添加物可以对其使用环境中的一些微生物以及其生物链形成一种消极的影响力。这一抗菌效果主要表现为将微生物生存时间缩短,减少微生物食物,使微生物的繁殖能力降低,抗菌材料的这一特性能够明显减少微生物的数量。复合材料抗菌功能发生的机理主要可以从三个方面实现:其一就是干扰细胞壁的合成过程,由于通常细菌的细胞壁有一种非常重要的组成成分就是肽聚糖,在无机非金属材料对细菌细胞壁结构形成干扰时,其主要影响过程就是通过对多糖链以及四肽交联结构之间发生连接作用的影响而使细菌细胞壁无法实现完整而导致细菌死亡;其二就是对细菌细胞膜造成损伤,由于细菌微生物进行生命活动时起到保护作用的主要结构就是细胞壁,而无机非金属材料对细胞壁进行破坏后就会导致细菌快速死亡;其三就是控制细菌中蛋白质合成的主要过程,由于细胞中进行功能表达的主要物质就是蛋白质,而如果阻断了蛋白质合成的过程就会使细菌细胞无法正常活动,从而导致细菌死亡[1]。 2 复合抗菌材料主要分类及相关应用 抗菌材料就是降低环境中细菌污染的概率,抑制建筑结构中细菌的生长与生存。当前在建筑材料中能够实现抗菌环保功能的有两种材料:其一就是无机材料,这一材料类型能够抗高温影响,且抗菌效果好,功能也相对稳定,在建筑行业应用的前景非常好;其二就是有机材料,这种材料对于环境具有一定的影响,且可能危害使用者健康,在建筑市场中应用的潜力不如无机材料大[2]。当前具有抗菌环保性能的无机材料类型如下: 2.1 金属复合抗菌材料

-复合材料结构分析与成形原理

树脂基复合材料缠绕成型工艺的研究与应用 姓名:刘伟萍 (西北工业大学机电学院, 陕西西安710072) 摘要:随着我国航空事业的发展,先进材料方面的需求越来越急迫,复合材料各方面的 优秀性能使得它在飞机上的应用越来越广泛。现阶段我国在复合材料方面虽然取得了一 定进展,但在成型工艺方面与欧美等国家还存在一定差距。复合材料的成型工艺方法很 多,本文主要介绍了树脂复合材料缠绕成型工艺的特点、工艺流程、及现阶段还存在的 一些问题和相应的解决办法。 关键字:树脂基复合材料缠绕成型工艺流程 The Research and Application of Winding And Forming Process of Polymer Composites Abstract:With the development of Chinese aviation industry,the demand in the spects of advanced materials become more urgent.Because of the excellent properties of composites,it is applied more and more widely in the aircraft.Nowadays,China has made some progress in terms of composite materials ,But in terms of composites forming process,there is still a gap between China and westen developed countries like America and UN.There is A lot of methods in c omposites and winding forming process,this paper describes the characteristics、forming process of polimer composites,it also introduces some problems and corresponding solutions. Keyword:Polymer Composites Winding And Forming Process technological process 1 绪论 1.1复合材料的应用与研究 复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料具有质量轻、比强度、比模量高,较好的延展性、抗腐蚀、隔热、隔音、耐高温、性能可设计性等特点,因此被大量用于航空航天等军事领域和民用领域,是制造飞机、火箭、航天飞行器等的理想材料。 在航空工业中,复合材料的应用越来越广泛,而且成为衡量飞机性能的重要参数。复合材料成型技术在应用过程中不断积累应用经验,提高技术水平, 完善

木塑复合材料综述

木塑复合材料发展与研究 朱东锋 (浙江工商大学环境学院,浙江杭州310012) 摘要:本文着重阐述了木塑复合材料的发展历史及与研究现状,通过结构特性和影响因素的分析,最后对我国未来发展的趋势,提出了一些针对性的建议。 关键词:木塑复合材料;因素;发展趋势;建议 Abstract: This paper focuses on the development history and the status of wood-plastic composite through analysis of the structural characteristics and. Influencing factors, the last of China’s future developments trends, made a number of specific recommendations Keywords: Wood-plastic composite materials; Factors; Developments trends; Recommendations 1 前言 1.1 木塑复合材料的背景 木塑复合材料(Wood plastic composites,简称WPC)是采用木质纤维或植物纤维填充、增强,经热压复合、熔融挤出等不同加工方式制成的改性热塑性材料。近年来,木塑复合材料引起了科技界和工业界的极大关注,是当今世界上许多国家逐步研究推广应用的新型材料。其原因是:现代生活中人们对塑料的依赖性越来越强,从简单的生活器具到昂贵的家用电器,从办公日用品到尖端的科学仪器,无处不昭示着塑料的存在。然而,人们在享受便利生活、感叹科技发达的同时,又被挥之不去的白色污染所困扰。 为此,目前世界各国都投入人力、物力,开发各种废旧塑料回收利用的技术,致力于降低塑料回收利用的成本和开发其合适的应用领域。此外,目前全球森林资源日渐枯竭,人们已经认识到森林在保护环境,维持生态平衡中的重要作用,限伐、禁伐森林的法令不断颁布,对于木材的利用提出高的要求。一方面尽量减少木材的采伐量,推进寻找木材的替代品,另一方面要提高木材的利用率。传统木材的使用中有25%~30%属于“废料”,如何将这些边角料加以利用,提高木材工业利用效率。WPC产品恰好为废旧塑料的循环利用提供了良好的出路、它的代木作用又对节省木材资源起到了不容忽视的作用[1]。

纳米复合材料

纳米复合材料 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国防、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分,近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。我们制备的纳米蒙脱土/PA6复合材料中,纳米蒙脱土的层间距为1.96nm,处于国内同类材料的领先水平(中国科学院为1.5~1.7nm),蒙脱土复合到尼龙基体中后完全剥离成为厚度1~1.5nm的纳米微粒,其复合材料的耐温性能、阻隔性能、抗吸水性能均非常优秀,此材料已经实现了产业化;正在开发的纳米TiO2/聚丙烯复合材料具有优良的抗菌效果,纳米TiO2粉体在聚丙烯中分散达到60nm以下,此项技术正在申报发明专利。由于纳米聚合物复合材料的成型工艺不同于普通的聚合物,本方向还积极开展新的成型方法研究,以促进纳米复合材料产业化的进行。碳纳米管是上个世纪九十年代初发现的一种新型的碳团簇类纤维材料,具有许多特别优秀的性能。我们在碳纳米管取得的研究成果主要包括:1)大规模生产多壁碳纳米管的技术,生产出的碳纳米管的质量处于世界先进水平,生产成本也很低,为碳纳米管的工业应用创造了条件。2)开发了制造碳纳米管为电极材料的双电层大容量电容器的技术。3)开发了制造具有软基底定向碳纳米管膜的技术。钨铜复合材料具有良好的导电导热性、低的热膨胀系数而被广泛地用作电接触材料、电子封装和热沉材料。采用纳米粉末制备的纳米钨铜复合材料具有非常优越的物理力学性能,我们采用国际前沿的金属复合盐溶液雾化干燥还原技术成功制备了纳米钨铜复合粉体和纳米氮化钨-铜复合粉体,目前正在加紧其产业化应用研究。 功能复合材料 功能复合材料是指除机械性能以外而提供其他物理性能的复合材料。如:导电、超导、半导、磁性、压电、阻尼、吸波、透波、磨擦、屏蔽、阻燃、防热、吸声、隔热等凸显某一功能。统称为功能复合材料。功能复合材料主要由功能体和增强体及基体组成。功能体可由一种或以上功能材料组成。多元功能体的复合材料可以具有多种功能。同时,还有可能由于复合效应而产生新的功能。多功能复合材料是功能复合材料的发展方向。 塑木复合材料 塑木是以锯末、木屑、竹屑、稻壳、麦秸、大豆皮、花生壳、甘蔗渣、棉秸秆等低值生物质纤维为主原料,与塑料合成的一种复合材料。它

相关主题
文本预览
相关文档 最新文档