当前位置:文档之家› Boost变换器工作原理与设计-新版.pdf

Boost变换器工作原理与设计-新版.pdf

电力电子课程设计Boost变换器

电力电子技术课程设计 班级 学号

目录 一.课程设计题目 (2) 二.课程设计容 (2) 三.所设计电路的工作原理(包括电路原理图、理论波形) 2四.电路的设计过程 (3) 五.各参数的计算 (3) 六.仿真模型的建立,仿真参数的设置 (3) 七.进行仿真实验,列举仿真结果 (4) 八.对仿真结果的分析 (6) 九.结论 (7) 十.课程设计参考书 (7)

一.课程设计题目 Boost 变换器研究 二.课程设计容 1. 主电路方案确定 2. 绘制电路原理图、分析理论波形 3. 器件额定参数的计算 4. 建立仿真模型并进行仿真实验 6. 电路性能分析 输出波形、器件上波形、参数的变化、谐波分析、故障分析等 三.所设计电路的工作原理(包括电路原理图、理论波形) 分析升压斩波电路的工作原理时,首先假设电路中电感L 值很大,电容C 值也很大。当可控开关V 处于通态时,电源E 向电感L 充电,充电电流基本恒定为I1,同时电容C 上的电压向负载R 供电。因C 值很大,基本保持输出电压u ?为恒值,记为U O 。设V 处于通态的时间为on t ,此阶段电感L 上积累的能量为on t EI 1。当V 处于断态时E 和L 共同向电容C 充电并向负载R 提供能量。设V 处于断态的时间为off t , 则在此期间电感L 释放的能量为 ()off t I E U 10-。当电路工作于稳态时, 一个周期T 中电感L 积蓄的能量与释放的能量相等,即 ()off on t I E U t EI 101-= 化简得 E t T t t t U off off off on = +=

Boost变换器的设计与计算机仿真x

《电力电子系统综合训练》任务书(第6组) 2014年秋季学期

摘要 BOOST 电路又称为升压斩波电路,它在各类电力电子电路中的应用十分广泛,它将低压直流电变为高压直流电,为负载提供了稳定的直流电压。升压斩波电路的PI 和PID调节器的性能对输出的电压影响很大。由于这种斩波电路工作于开关模式下,是一个强非线形系统。采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOOST 电路的工作特性。 【关键词】:Boost电路;直流电压; matlab仿真;

目录 摘要 (1) 1概论 (1) 1.1电力电子器件 (1) 1.1.1电力电子器件概述 (1) 1.1.2 直流-直流变换器(DC/DC)的应用 (2) 1.2 MATLAB软件概述 (3) 1.2.1 MATLAB介绍 (3) 1.2.2 SIMULINK仿真基础 (5) 1.2.3 MATLAB的GUI程序设计 (7) 2升压式直流斩波电路 (9) 2.1电路的结构与工作原理 (9) 2.1.1电路结构 (9) 2.1.2 工作原理 (9) 2.1.3基本数量关系 (10) 2.2升压斩波电路的典型应用 (10) 3模型仿真 (14) 3.1建立升压斩波电路模型 (14) 3.2模型参数设置 (14) 总结 (20) 致谢 (21) 参考文献 (22)

1概论 1.1电力电子器件 1.1.1电力电子器件概述 1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。 20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(IGBT)和电力场效应晶体管(Power-IGBT)为代表的全控型器件迅速发展,被称作第二代电力电子器件。80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向。 电力电子器件专指电力半导体器件,在实际应用中,一般是由控制电路、驱动电路、和以电力电子器件为核心的主电路组成一个系统。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路的中电力电子器件的导通与关断,来完成整个系统的功能。 电力电子器件因为处理的电功率较大,为了减小本身的损耗,提高效率,电力电子器件一般都工作在开关状态,导通时阻抗很小,接近于短路,管压降接近于0,而电流由外电路决定,阻断时阻抗很大,接近于断路,电流几乎为0,而管子两端的电压由外电路参数决定,就想普通晶体管的饱和与截止一样。尽管工作在开关状态,但是电力电子器件自身功率损耗通常远大于信息电子器件,因而,为了保证不至于因损耗散发的热量导致器件温度过高而损坏,不仅在器件封装上比较讲究散热设计,而且在其工作时一般还需要安装散热器。这是因为电力电子器件在导通或者阻断状态下,并不是理想的短路或者断路。导通时器件上有一定的通态压降,阻断时器件上有微小的断态漏电流流过。尽管其数值都很小,但分别与数值较大的通态电流与断态电压相互作用,就形成了电力电子器件的通态损耗和断态损耗。 本文主要利用IGBT型开关器件对升压降压进行控制,电力IGBT是用栅极电压来控制漏极电流的,因此它的一个显著特点就是驱动简单,需要的驱动功率小,第二个显著特点就是开关速度快,工作评频率高,另外,电力IGBT的热稳定性优于GTR。

Boost变换器原理

由IGBT 组成的升压变换器的建模及应用仿真 摘要:根据电力电子技术的原理,升压式变换器的输出电压0U 高于输入电源电压i U ,控制开关与负载并联连接,与负载并联的滤波电容必须足够大,以保证输出电压恒定,储能电感也要很大,以保证向负载提供足够的能量。在设计中,采用绝缘栅双极型晶体管IGBT 作为开关管,它既具有输入阻抗高,速度快,热稳定性好,驱动电路简单,又具有通态电压低,耐压高,流通大电流等优点。 关键词:升压变换器 IGBT Matlab 建模 一、设计内容 1. 设计原理 图1 升压变换器电路图 图1是升压变换器的电路图,其中i U 为输入直流电源,S 为开关管(在本设计中使用IGBT 作为开关管),在外部脉冲信号的激励下工作于开关状态。 当开关管S 导通,输入电流流经电感L 和开关管S ,开关管两端的电压降为零,电感两端产生电压降,电感电流开始线性增长,电感开始储存能量,此时二级管VD 处于关断状态。 当开关管S 截止,由于电感电流的连续性,电感L 的线圈产生的磁场将改变线圈两端的极性,以保持电感电流不变,因此电感电压在这一时段出现负电压,此电压是由线圈的磁能转化而成的,它与电源i U 串联,以高于i U 的电压向电路的后级供电,使电路产生了升压作用。此时,电感向后级释放能量,电感电流不断减小,电感电流通过二极管VD 到达输出端后,一部分为输出提供能量,一部分为电容充电。

这是升压变换器的一个工作周期,此后变换器重复上述过程工作至稳态过程。 2. 输出电压与输入电压的关系 若开关管导通时间on t ,关断时间off t ,开关工作周期off on t t +=T 。定义占空比 为: ,升压比为: 。理论上电感储能与释放能量相等,所以当电感电流连续时,输出电压: 3. 参数设置 (1)电源电压设置为直流24V ; (2)储能电感设置为3.6E-4 H ; (3)RC 负载设置:R 为24Ω;C 为5.4E-5 F ; (4)脉冲信号发生器设置:Pulse type 、Time(t)、Amplitude 、Phase delay(secs)均采用默认设置,Period(secs)设置为25e-6,Pulse Width(﹪ of Period)设置为20。 (5)二极管,IGBT ,电压、电流测量量均采用默认值。 4. 仿真目的 (1)观察占空比变化对输出电压的影响。 更改脉冲发生器中的周期参数,在占空比为20%,40%,60%,80%时,观察波形,估计输出电压的值。 (2)观察开关频率变化对输出电压纹波的影响。 占空比恢复为40%,将脉冲发生器输出驱动信号的频率改为原来的一半(20KHz )和二倍(80KHz ),观测并估计两种条件下电压纹波的大小。 (3)观察滤波参数变化对输出电压纹波的影响。 将脉冲发生器输出驱动信号的频率恢复为40KHz ,将滤波电容值改为原来的一半和二倍,观测并估计两种条件下电压纹波的大小。 (4)观察负载阻值变化对输出电压纹波的影响。 将滤波电容值恢复为5.4E-5 F ,将负载阻值改为原来的一半和二倍,观测两种条件下电压纹波的变化并估计其大小。 结合仿真结果说明开关频率、滤波参数以及负载大小的变化对输出电压纹波的影响,并用输出电压纹波的公式验证仿真结果。 T t D on =D M -=11i off U t T U =-=i U D 110

基于UC3854的BOOST电路PFC变换器的设计

基于UC3854的BOOST 电路PFC 变换器的设计 1. 设计指标 输入电压:200VAC ~250VAC 输入频率:50Hz 输出直流电压:400V 输出功率:500W 功率因数:>98% 输入电流THD :<5% 2. 开关频率 综合考虑效率和变换器体积,选取开关频率为100KHz 。 原理图 3. 电感 电感值大小决定了输入端高频纹波电流总量,可以根据计算出的电流纹波总量ΔI 来选择电感值。 电感值的确定从输入正弦电流的峰值开始,而最大的峰值电流出现在最小电网电压的峰值处: ()(m in ) lin e p k in P I V = 由上式可知,此时的最大峰值电流为3.54A 。 通常选择电感中的峰-峰值纹波电流为最大峰值电流的20%左右,故有ΔI=707mA 。

电感值根据最低输入电压时半个正弦波顶部的峰点的电流来选择,此 时 200282.8,100in S V V f K H z === 根据此处电压和开关频率的占空比来选择: o in o V V D V -= in s V D L f I ?= ?? 由上式可得L =1.17mH ,取L =1.2mH 。 4. 输出电容 涉及输出电容的选择因数有开关频率纹波电流、2次纹波电流、直流输出电压、输出纹波电压和维持时间等。在本例中,电容的选择主要考虑维持时间。维持时间是在电源关闭以后,输出电压任然能保持在规定范围内的时间长度,去典型值为15~50ms 。可根据以下公式确定(能量守恒): 2 2 0(m in ) 2o o P t C V V ???= - 式中,取Δt=64ms ,V o (min )=300V 。,可得C o =914uF ,可以选取915uF 的电解电容。 5. 电感电流检测 采用在变换器到地之间使用一检测电阻。一般选择压降为1V 左右的检测电阻,此处选择0.25Ω的电阻作为R S ,在最坏的情况下(峰值电流达到原值1.25倍),4.4A 的峰值电流将会产生最大1.1V 的压降。 6. 峰值电流限制 UC3854的峰值限制功能,在电感电流的瞬时值电流超过最大值,即2管脚低于低电平时被激活,将开关断开。电流限制值有基准电压初一电流检测电阻的分压来设置: 12R S P K P K R E F V R R V = 式中,R PK1和R PK2是分压电阻;V REF 值为7.5V ;V RS 是检测电阻R S 上的电压值。通过R PK2的电流大约为1mA ,由上可知峰值电流限制在4.4A ,R PK1取10k Ω,R PK2取1.5k Ω。 7. 前馈电压信号 V FF 是输入到平方器电路的电压,UC3854平方器电路通常在1.4V~4.5V 的范围内工作。 UC3854内有一个钳位电路,即使输入超过该值,都将前馈电压的有效值限制在4.5 前馈输入电压分压器有3个电阻R FF1、R FF2、R FF3,及两个电容C FF1、C FF2。因此它能进行两级滤波并提供分压输出。分压器和电容形成一个二阶低通滤波器,所以其直流输出是和正弦半波的平均值成正比。 前馈电压V FF 分压器有两个直流条件需要满足。在高输入电网电压下,前馈电压应不高于4.5V ,当达到或超过此值时,前馈电压被钳制而失去前馈功能。在低输入电网电压时,应设置分压器使前馈电压等于1.414V ,如果不到1.414V 内部限流器将使乘法器输出保持恒定。 选取分压电阻R FF1为900k Ω,R FF2为92.14k Ω,R FF3为7.86k Ω。当输入电压为AC250V 的时候,直流电压平均值为225V ,此时V FF 为1.77V ;当输入电压为AC200V 的时候,直流电压平均值为160V ,此时V FF 为1.41V 。 8. 乘法器的设置 乘法器、除法器是功率因素校正器的核心。乘法器的输出调节电流环用以控制输入电流功率因素提高。因此此乘法器的输出是个表达输入电流的信号。

buckboost变换器

本科毕业设计(论文) 摘要 在很多需要DC-DC变换的系统,往往需要研制一种宽电压输入范围的DC/DC 变换器电源。在充分考虑不同DC/DC变换器拓扑特点的基础上,本文选用了Buck-Boost作为系统的主电路拓扑。 本文介绍了Buck-Boost电路的工作原理,建立了理想Buck-Boost模型,对整个电路进行了主电路参数设计,并在此基础上进行了电压电流闭环参数设计的研究,实现了控制理论中零极点补偿法在电力电子中的应用,。接着,本文在protel 中进行了原理图和PCB图的设计,在设计的硬件电路上进行了测试实验。 为了使系统能够在宽电压输入范围内稳定正常工作,本文实现了提出的闭环参数设计方法,指出了该方法的优点,并通过实验验证了该方法的正确性。 关键词:Buck-Boost;DC/DC变换器

本科毕业设计(论文) 毕业论文(设计)原创性声明 本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名:日期: 毕业论文(设计)授权使用说明 本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。学校可以公布论文(设计)的全部或部分内容。保密的论文(设计)在解密后适用本规定。 作者签名:指导教师签名: 日期:日期:

boost变换器设计报告

直流稳压电源设计报告 摘要 本作品采用了boost拓扑,利用电感、场效应管和二极管完成了升压的功能,利用Tl494,和IR2110进行反馈控制。并加上前期的整流滤波电路,实现可以用从市电开始转换。本作品基本实现了题目的功能,实现了30V到36V,2A的输出。 一、方案比较论证 1.主拓扑方案的论证 方案一:采用反激式变换器。反激式变换器适合小功率的输 出,输入电压大范围波动时,仍可以有较稳定的输出,并且 可以实现带隔离的DC/DC变换,但其中的反激式变压器设计 比较复杂,且整体效率较低。 方案二:采用boost变换器,boost是一种斩波升压变换器, 该拓扑效率高,电路结构简单,参数设计也比较容易。 方案三:采用SPICE变换器,开关环路的对称性使其可以达 到较高效率,电感的适当耦合也可以尽量减小纹波。但该方 案成本较高,对电容电感值要求较高,检测和控制电路较为 复杂。 为节约成本,并从简单考虑,本作品选用方案二。 2.控制反馈方案的选择 方案一:系统由Boost模块实现升压任务,各模块所需PWM 信号的由单片机提供,单片机AD采集实时输出量,经运算

后通过改变占空比调整模块工作状态。该方案电路最简单, 各种控制灵活,缺点有单片机运算量过大,开关信号占空比 受单片机限制,浮点运算的时延影响电路跟随,另外单片机 容易受到功率管开关干扰而失灵。 方案二:使用振荡器、比较器产生PWM波,由负反馈电路 实现输出控制,单片机负责状态切换和测量显示,该方案原 理易于理解,但自己装调的PWM电路在开关时容易出现振 铃毛刺,直接影响了系统效率,并且要完善反馈控制对回馈 信号要求较高。 方案三:借用现有成熟PWM控制器,该类集成电路输出波 形好,工作稳定,都具备至少一个反馈控制引脚,按照厂商 提供的典型电路就可装调出应用电路。但这类电路一般针对 专用场合设计,借用时需要较多设计计算,特别是该类芯片 的反馈有极高的控制灵敏度,在单片机参与时需要较多改动。 本作品采用方案三。 二、理论分析和计算 1.电路设计与分析 (1)提高效率的方法

Boost变换器设计公式

电流连续时Boost变换器设计公式Guojiyan,2013-3-9

目录 一.电流连续时Boost变换器设计公式 (3) 1.原理图及曲线、波形 (3) 1.1原理图 (3) 1.2磁滞曲线和电流波形 (3) 2.变换器的效率 (4) 3.输入输出电压关系 (4) 4.输出电容选择 (5) 5.储能电感选择 (5) 5.1 电感量选择 (5) 5.2 电感峰值电流计算 (5) 5.3 电感平均电流计算 (6) 6.功率开关管的选择 (6) 6.1功率开关管耐压选择 (6) 6.2功率开关管损耗选择 (6) 6.3功率开关管峰值电流选择 (6) 7.二极管的选择 (6) 7.1二极管耐压选择 (6) 7.2二极管功率选择 (6) 7.3二极管峰值电流选择 (6)

一.电流连续时Boost变换器设计公式 1.原理图及曲线、波形 1.1原理图 图1 Boost电路原理 1.2磁滞曲线和电流波形 电感铁心磁滞曲线如下:

2.当1V 管导通时,功率开关管饱和压降为1V ,在截止期间,二极管1VD 压降为1V ,输入电流即电感电流在on t 期间流过开关管,在of f t 期间流过1VD ,这样内部损耗为:1?L I ,故效率为:1 '?+== L o o o o i o I I V I V P P η (1) 由于off o L t T I I = (2), 解释:在一个周期内输出电荷等于开关关断时电感电流输出电荷 所以上式可改为:1 '+= + == in in off o o i o V V t T V V P P η (3) 这只是考虑变换器功率开关管直流损耗的情况,当考虑功率开关管在开关转换期间电压电流重叠的交流开关损耗,以及二极管反向恢复损耗时,可近似认为交流损耗与直流损耗相当,交流损耗也是1?L I ,这样效率近视为: 22 2 += ?+= ?+= in in off o o L o o o o V V t T V V I I V I V η (4) 此外还要考虑电感损耗和电容损耗。 3.输入输出电压关系 在电感电流连续时,由图4可知,开关导通时电感电流的增量等于开关关断时电感电流减量,即1 1)(L t V V L t V I off i o on in -= = ? (5)

Boost变换器原理

由IGBT 组成的升压变换器的建模及应用仿真 摘要:根据电力电子技术的原理,升压式变换器的输出电压0U 高于输入电源电压i U ,控制开关与负载并联连接,与负载并联的滤波电容必须足够大,以保证输出电压恒定,储能电感也要很大,以保证向负载提供足够的能量。在设计中,采用绝缘栅双极型晶体管IGBT 作为开关管,它既具有输入阻抗高,速度快,热稳定性好,驱动电路简单,又具有通态电压低,耐压高,流通大电流等优点。 关键词:升压变换器 IGBT Matlab 建模 一、设计内容 1. 设计原理 图1 升压变换器电路图 图1是升压变换器的电路图,其中i U 为输入直流电源,S 为开关管(在本设计中使用IGBT 作为开关管),在外部脉冲信号的激励下工作于开关状态。 当开关管S 导通,输入电流流经电感L 和开关管S ,开关管两端的电压降为零,电感两端产生电压降,电感电流开始线性增长,电感开始储存能量,此时二级管VD 处于关断状态。 当开关管S 截止,由于电感电流的连续性,电感L 的线圈产生的磁场将改变线圈两端的极性,以保持电感电流不变,因此电感电压在这一时段出现负电压,此电压是由线圈的磁能转化而成的,它与电源i U 串联,以高于i U 的电压向电路的后级供电,使电路产生了升压作用。此时,电感向后级释放能量,电感电流不断减小,电感电流通过二极管VD 到达输出端后,一部分为输出提供能量,一部分为电容充电。

这是升压变换器的一个工作周期,此后变换器重复上述过程工作至稳态过程。 2. 输出电压与输入电压的关系 若开关管导通时间on t ,关断时间off t ,开关工作周期off on t t +=T 。定义占空比 为: ,升压比为: 。理论上电感储能与释放能量相等,所以当电感电流连续时,输出电压: 3. 参数设置 (1)电源电压设置为直流24V ; (2)储能电感设置为3.6E-4 H ; (3)RC 负载设置:R 为24Ω;C 为5.4E-5 F ; (4)脉冲信号发生器设置:Pulse type 、Time(t)、Amplitude 、Phase delay(secs)均采用默认设置,Period(secs)设置为25e-6,Pulse Width(﹪ of Period)设置为20。 (5)二极管,IGBT ,电压、电流测量量均采用默认值。 4. 仿真目的 (1)观察占空比变化对输出电压的影响。 更改脉冲发生器中的周期参数,在占空比为20%,40%,60%,80%时,观察波形,估计输出电压的值。 (2)观察开关频率变化对输出电压纹波的影响。 占空比恢复为40%,将脉冲发生器输出驱动信号的频率改为原来的一半(20KHz )和二倍(80KHz ),观测并估计两种条件下电压纹波的大小。 (3)观察滤波参数变化对输出电压纹波的影响。 将脉冲发生器输出驱动信号的频率恢复为40KHz ,将滤波电容值改为原来的一半和二倍,观测并估计两种条件下电压纹波的大小。 (4)观察负载阻值变化对输出电压纹波的影响。 将滤波电容值恢复为5.4E-5 F ,将负载阻值改为原来的一半和二倍,观测两种条件下电压纹波的变化并估计其大小。 结合仿真结果说明开关频率、滤波参数以及负载大小的变化对输出电压纹波的影 T t D on =D M -=11i off U t T U =-=i U D 110

Buck-Boost变换器要点

目录 摘要........................................................................ I 1 Buck/Boost变换器分析.. (1) 1.1 基本电路构成 (1) 1.2 基本工作原理 (1) 1.3 工作波形 (2) 2 Buck/Boost变换器基本关系 (3) 3 主要参数计算与选择 (5) 3.1输入电压 (5) 3.2负载电阻 (5) 3.3占空比α (5) 3.4电感L (5) 3.5输出滤波电容C计算 (6) 4 理论输入、输出电压表达式关系 (7) 5 仿真电路与仿真结果分析 (8) 5.1 buck/boost仿真电路图 (8) 5.2线性稳压电源仿真 (8) 5.3稳压电源波形图 (9) 5.4升压时输出电压与电流波形 (10) 5.5降压时输出电压与电流波形 (11) 总结 (13) 参考文献 (14)

摘要 随着世界的需求与电力电子的发展,高频开关电源凭借其低功耗等优点,得到了在计算机、通信和航天等领域的广泛应用。其中功率变换电路对组成开关电源起重要作用。功率变换电路是开关电源的核心部分,针对整流以后不同的直流电压功率变换电路有很多种拓扑结构,比如:Buck变换器拓扑、Boost变换器拓扑、Buck/Boost变换器拓扑、正激(反激)变换器拓扑......Buck/Boost变换器作为其中重要的一种,在开关电源的设计中当然也得到了很好的应用。本课程设计即是基于Simulink对Buck/Boost变换器进行设计与仿真,并且将仿真得到的输入输出电压关系式与理论推导进行比较,从而验证其可行性。 关键字:电力电子开关电源Simulink Buck/Boost变换器

BOOST变换器设计

1 总体设计思路 1.1设计目的 升压斩波电路是最基本的斩波电路之一,利用升压斩波电路可以实现对直流的升压变化。所以,升压斩波电路也可以认为是直流升压变压器,升压斩波电路的应用主要是以Boost变换器实现的。升压斩波电路的典型应用有:一、直流电动机传动,二、单相功率因数校正(Power Factor Correction PFC)电路,三、交直流电源。直流升压斩波电路的应用非常广泛,原理相对比较简单,易于实现,但是,设计一个性能较好变压范围大的Boost变换器并非易事,本设计的目的也就在于寻求一种性能较高的斩波变换方式和驱动与保护装置。 1.2实现方案 本设计主要分为五个部分:一、直流稳压电源(整流电路)设计,二、Boost 变换器主电路设计,三、控制电路设计,四、驱动电路设计,五、保护电路设计。直流稳压电源的设计相对比较简单,应用基本的整流知识,该部分并非本设计的重点,本设计的重点在于主电路的设计,主电路一般由电感、电容、电力二极管、和全控型器件IGBT组成,主电路的负载通常为直流电动机,控制电路主要是实现对IGBT的控制,从而实现直流变压。主电路是通过PWM方式来控制IGBT的通断,使用脉冲调制器SG3525来产生PWM的控制信号。设计主电路的输出电压为75V,本设计采用闭环负反馈控制系统,将输出电压反馈给控制端,由输出电压与载波信号比较产生PWM信号,达到负反馈稳定控制的目的。 图1-1 总电路原理框图

2直流稳压电源设计 2.1电源设计基本原理 在电子电路及设备中一般都需要稳定的直流电源供电。这次设计的直流电源为单相小功率电源,它将频率为50Hz、有效值为220V的单向交流电压转换为幅值稳压、输出电流为几十安以下的直流电压。其基本框图如下: 图2-1直流稳压电源基本框图 图 2-2 波形变换 2.1.1变压环节 由于直流电压源输入电压为220V电网电压,一般情况下,所需直流电压的数值远小于电网电压,因此需通过电源变压器降压后,再对小幅交流电压进行处理。变压器的电压比及副边电压有效值取决于电路设计和实际需要。 2.1.2整流环节 变压器变压器副边电压通过整流电路从交流电压转换为直流电压,即将正弦波电压转换为单一方向的脉动电压,半波整流电路和全波整流电路的输出波形如上图所画。可以看出,他们均含有较大的交流分量,会影响负载电路的正常工作;例如,交流分量将混入输入信号被放大电路放电,甚至在放大电路的输出端所混入的电源交流分量大于有用信号;因而不能直接作为电子电路的供电电源。应当指出,图中整流电路输出端所画波形是未接滤波电路时的波形,接入滤波电路后波形将有所变化。

Boost变换器设计

Boost 变换器设计 图1 BOOST 电路模型 第一部分:主电路元件参数的理论计算 根据设计要求:已知Ud=24V ±10%,U0=36V ,i0=0~1A ,使电路工作在 CCM 模式,电感电流和电容电压纹波小于直流分量20%,做出如下选择:选取输入直流电压Ud=24V,输出电压U0=36V ,输出电流0.25A ,开关周期Ts=0.0001s ,开关频率为10KHz,令电感电流纹波△iL 取直流分量的15%,令电容电压纹波△uC 取直流分量的15%。 (一)、线性元件R 、L 、C 的选择。 在MATLAB 内求解如下: Ud=24 %直流输入取Ud=24V U0=36 %输出U0=36V D2=Ud/U0 %U0=Ud/D2 D1=1-D2 %(D1+D2=1),U0=Ud/D2 i0=0.25 %输出电流取0.25A R=U0/i0 %负载电阻R I=Ud/((D2)^2*R) %电感电流直流成分I deta_iL=0.15*I %电感电流纹波△iL 取直流分量的15% Ts=0.0001 %开关周期取Ts=0.00001s L=Ud*D1*Ts/(2*deta_iL) %△iL=Ud*D1*Ts/(2*L ) deta_uC=0.15*U0 %电容电压纹波△uC 取直流分量的15% C=U0*D1*Ts/(2*R*deta_uC) %△uC=U0*D1*Ts/(2*R*C ) 结果如下: Ud =24 U0 =36 D2 =0.6667 D1 =0.3333 U () o u t +- + -

i0 = 0.2500 R =144 I =0.3750 deta_iL =0.0562 Ts =1.0000e-04 L = 0.0071 deta_uC =5.4000 C =7.7160e-07 即负载电阻R=144Ω,占空比D1=0.3333,电感L=0.0071 H,电容C=7.7160^(-7) F 且电感直流分量I=0.3750A,△iL=0.0562A,即变换器将工作在CCM模式。 (二)、非线性元件T 、D的选择。 如图2和图3所示,开关器件是由非线性元件T、D来实现的。 图2 采用理想开关模型图3 采用实际器件 当开关处于位置“1”时,电路如如图4所示 图4 开关置于位置“1” 此时,对于实际电路的器件T处于导通状态,器件D处于截止状态,

Boost电力电子课程设计

一个 Boost变换器的设计 课程名称:电力电子课程设计 设计题目:一个 Boost变换器的设计专业:自动化 班级:自动化1 学号: 姓名: 指导教师: 1.题目

一个Boost变换器的设计 2.任务 设计一个Boost变换器,已知V1=24V±10%,V2=36V,I0=0~1A。要求如下: 1)选取电路中的各元件参数,包括Q1、D1、L1和C1,写出参数选取原则和计算公式; 2)编写仿真文件,给出仿真结果:(1)电路各节点电压、支路流图仿真结果;(2)V2与I O的相图(即V2为X坐标;I O为Y坐标);(3)对V2与I O进行纹波分析;(4)改变R1,观察V2与I O的相图变化。 3)课程设计说明书用A4纸打印,同时上交电子版(含仿真文件); 4)课程设计需独立完成,报告内容及仿真参数不得相同。 3.说明 仿真软件采用PSIM,免费试用程序及其说明书见附件。

一、Boost电路的分析 1、工作原理 升压斩波电路的原理图如图1所示。由可控开关Q1、储能电感L1、二极管D1、滤波电容C1、负载电阻R1等组成。 图 1 Boost电路原理图 当开关管Q1受控制电路的脉冲信号触发而导通时,输入直流电压V1全部加于储能电感L1的两端,感应电势的极性为上正下负,二极管D1反向偏置截止,储能电感L1将电能变换成磁能储存起来。电流从电源的正端经Q1及L1流回电源的负端。经过t on时间以后,开关管Q1受控而截止时,储能电感L1自感电势的极性变为上负下正,二极管D1正向偏置而导通,储能电感L1所存储的磁能通过D1向负载 R1释放,并同时向滤波电容C1充电。经过时间T off后,控制脉冲又使Q1导通,D1截止,L1储能,已充电的C1向负载R1放电,从而保证了向负载的供电。 图2 Boost变换器电路工作过程 2、电路参数的选择: 已知:V1=24V±10%, V2=36V, I0=0~1A。

Buck-Boost变换器的设计与仿真

1 概述 直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。其中,直接直流变流电路又叫斩波电路,它包括降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)、升降压斩波电路(Buck/Boost)、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路共六种基本斩波电路。Buck/Boost升降压斩波电路同时具有Buck斩波电路和Boost斩波电路的特点,能对直流电直接进行降压或者升压变换,应用广泛。本文将对Buck/Boost升降压斩波电路进行详细的分析。

R VD R VD R VD 2 主电路拓扑和控制方式 2.1 Buck/Boost 主电路的构成 Buck/Boost 变换器的主电路与Buck 或Boost 变换器所用元器件相同,也由开关管、二极管、电感、电容等构成,如图1所示。与Buck 和Boost 不同的是电感L 在中间,不在输出端也不在输入端,且输出电压极性与输入电压极性相反。开关管也采用PWM 控制方式。Buck/Boost 变换器也由电感电流连续和断续两种工作方式,但在实际应用中,往往要求电流不断续,即电流连续,当电路中电感值足够大时,就能使得电路工作在电流连续的状态下。因此为了分析方便,现假设电感足够大,则在一个周期内电流连续。 图2-1 Buck/Boost 主电路结构图 电流连续时有两个开关模态,即V 导通时的模态1,等效电路见图2(a );V 关断时的模态2,等效电路见图2(b )。 (a )V 导通 (b )V 关断,VD 续流 图2-2 Buck/Boost 不同模态等效电路

基于 Boost 型变换器的 DCDC 可调电源设计

基于Boost 型变换器的DC/DC 可调电源设计 摘要:文章构建了基于Boost 型变换器的DC/DC 变换器,系统以专用芯片UC3842 作为控制核心,辅以Atmega128 单片机稳定输出电压。利用UC3842 自身的电压电流环反馈,加上输出电压均值环设计成输出电压稳定可调的DC/DC 变换电路。本系统还采用了模拟PWM 技术、在线保护技术、人机交互技术。实际测试表明该系统各项指标均达到或超过设计要求。 随着电力电子技术的发展,电源装置大量出现在生产生活的各个领域,其电压电流的稳定性、电压调整率、负荷调整率、变换器的效率等因素将直接影响到用电及通信设备的正常运行,严重时还将影响到设备的安全性。因此,如何改善上述各项指标,成为电源装置设计时需要考虑的重要因素。本文介绍一种行之有效的开关稳压电源的系统设计方案。 1 方案论证 1. 1 DC-DC 变换器方案选取 隔离变压器输出工频电压有效值为18 ± 3 V,经桥式整流滤波后输出直流电压约为18 ~ 26 V。要求开关电源的输出电压范围在30 ~ 36 V 之间稳定可调,单端反激式和Boost 直接变换式都可以满足要求。但是,考虑到单端反激式开关电源结构中的脉冲变压器在短时间内难以制作调整好,并且其制作工艺和选材对系统的效率影响很大,因此本设计制作选用Boost电路作为功率变换器主电路,如图1 所示。

图1 功率变换器主电路 1. 2 控制方案选取 可用于Boost 变换器的控制方案较多,典型的有采用单片机直接控制或者用模拟控制电路控制等。 Boost 变换器是一个具有低阻尼的二阶系统,采用单片机的电压单环控制的结构由于系统的不稳定性和数字算法的延迟,使得控制环的低频增益不能太大,影响输出电压的控制精度;用运算放大器等构成模拟控制电路,可以采用电压电流双环控制结构,有效地克服变换器的低阻尼特性并使输出电压的控制精度提高,但包括PWM 调制器、脉冲放大驱动电路等在内的模拟控制电路结构复杂、可靠性不高。 鉴于单端反激式开关电源与Boost 变换器具有相同的工作原理,其专用集成控制芯片UC3842 可以移植到Boost 变换器的控制上来,所以本设计制作的控制部分采用集成控制芯片UC3842,以简化控制电路设计并提高系统的可靠性,UC3842 控制电路图如图2 所示。

Boost和Buck-Boost变换器的设计与计算机仿真.

电力电子系统的计算机仿真 ——总结报告 题Boost 和Buck-Boost 变换器的设计与计算机仿

一、综合训练设计内容及技术要求 1. MATLAB部分 (1)熟悉Matlab 使用环境。 (2)初步掌握Matlab 的基本应用,包括数据结构,数值运算,程序设计及绘图等。 (3)熟悉Simulink 系统仿真环境,包括Simulink 工作环境,基本操作,仿真模型,仿真模型的子系统,重要模块库等。 (4)初步掌握Simpowersystems 模型库及其应用。 (5)能够使用Simpowersystems 模型库进行电力电子电路的仿真分析。2.设计部分 (1)设计一个升压变压器,输入电压为3-6V,输出电压15V,负载电阻为10 欧姆,要求电压连续。根据上述要求完成主电路设计。 (2)设计一个Buck-Boost 变换器,输入20V 的直流电源,输出范围为10~40V, 要求电感电流连续。根据上述要求完成主电路设计,开关器件选用 MOSFIT,开关频率20KHz,负载为10 欧姆。 (3)完成上述升压变化器的计算机仿真,观察输出电压电流波形、系统输入电流波形、电压电流波形的谐波情况、不同仿真条件时输入输出的变化情况、和理论分析的结果进行比较。 4. 选作:使用PSIM仿真软件完成上述仿真。 二、综合训练总结报告必须提交的成果 (1)综合训练总结报告(不少于20 页,约一万字左右)需包括: 1)前言。2)目录。3)主电路工作原理说明。4)主电路设计详细过程与图纸。5)仿真模型的建立、各模块参数的设置。6)仿真结果的分析。7)总结。8)参考文献。9)体会。 (2)综合训练总结报告要求用A4 页面打印,小四宋体,单倍行距,采用word 默认的边距,仿真模型、模块参数设置、仿真结果等都要在总结报告中进行详细说明。

相关主题
文本预览
相关文档 最新文档