当前位置:文档之家› 电磁场考试试题及问题详解

电磁场考试试题及问题详解

电磁场考试试题及问题详解
电磁场考试试题及问题详解

电磁波考题整理

一、填空题

1. 某一矢量场,其旋度处处为零,则这个矢量场可以表示成某一标量函数的(梯度)形式。

2. 电流连续性方程的积分形式为(???

s dS

j=-

dt

dq)

3. 两个同性电荷之间的作用力是(相互排斥的)。

4. 单位面积上的电荷多少称为(面电荷密度)。

5. 静电场中,导体表面的电场强度的边界条件是:(D1n-D2n=ρs)

6. 矢量磁位A和磁感应强度B之间的关系式:(B=▽x A)

7. .E(Z,t)=e x E m sin(wt-kz-)+ e y E m cos(wt-kz+),判断上述均匀平面电磁波的极化方式为:(圆极化)(应该是90%确定)

8. 相速是指均匀平面电磁波在理想介质中的传播速度。

9.根据电磁波在波导中的传播特点,波导具有(HP)滤波器的特点。(HP,LP,BP三选一)

10.根据电与磁的对偶关系,我们可以由电偶极子在远区场的辐射场得到(磁偶极子)在远区产生的辐射场

11. 电位移矢量D=ε0E+P在真空中P的值为(0)

12. 平板电容器的介质电容率ε越大,电容量越大。

13.恒定电容不会随时间(变化而变化)

14.恒定电场中沿电源电场强度方向的闭合曲线积分在数值上等于电源的(电动势)

15. 电源外媒质中电场强度的旋度为0。

16.在给定参考点的情况下,库伦规范保证了矢量磁位的(散度为零)

17.在各向同性媚质中,磁场的辅助方程为(D=εE, B=μH, J=σE)

18. 平面电磁波在空间任一点的电场强度和磁场强度都是距离和时间的函数。

19. 时变电磁场的频率越高,集肤效应越明显。

20. 反映电磁场中能量守恒与转换规律的定理是坡印廷定理。

二、名词解释

1. 矢量:既存在大小又有方向特性的量

2. 反射系数:分界面上反射波电场强度与入射波电场强度之比

3. TEM波:电场强度矢量和磁场强度矢量均与传播方向垂直的均匀平面电磁波

4. 无散场:散度为零的电磁场,即·=0。

5. 电位参考点:一般选取一个固定点,规定其电位为零,称这一固定点为参考点。当取点为参考点时,P点处的电位为=;当电荷分布在有限的区域时,选取无穷远处为参考点较为方便,此时=。

6. 线电流:由分布在一条细线上的电荷定向移动而产生的电流。

7.磁偶极子:磁偶极子是类比电偶极子而建立的物理模型。具有等值异号的两个点磁荷构成的系统称为磁偶极子场。磁偶极子受到力矩的作用会发生转动,只有当力矩为零时,磁偶极子才会处于平衡状态。利用这个道理,可以进行磁场的测量。但由于没有发现单独存在的磁单极子,故我们将一个载有电流的圆形回路作为磁偶极子的模型。

8. 电磁波的波长:空间相位变化所经过的距离称为波长,以表示。按此定义有,所以。

9. 极化强度描述介质极化后形成的每单位体积内的电偶极矩。

10. 坡印廷定理电磁场的能量转化和守恒定律称为坡印廷定理:每秒体积中电磁能量的增加量等于从包围体积的闭合面进入体积功率。

11. 线性均匀且各向同性电介质若煤质参数与场强大小无关,称为线性煤质。若煤质参数与场强方向无关,称为各向同性煤质。若煤质参数与位置无关,责称均匀煤质。若煤质参数与场强频率无关,称为各向同性煤质。

12.安培环路定理在真空中磁感应强度沿任意回路的环量等于真空磁导率乘以与该回路相交链的电

流的代数和。 13. 布儒斯特角(P208)

对于非磁性媒质,均匀平面电磁波平行极化斜入射,在某一入射角时没有反射,即发生全投射,这个(入射)角即为布儒斯特角(即θi =θB )。 14. 临界角(P208)

对于非磁性媒质,入射波自介电常数大的媒质向介电常数小的媒质入射时,当入射角大于或等于某一角度时,发生全反射现象,这一角即临界角,记为θc 。 15. 相位匹配条件(P200)

入射波传播矢量、反射波传播矢量和透射波传播矢量沿介质分界面的切向分量相等(即 k ix =k rx =k tx , k iy =k ry =k ty ),这一结论称为相位匹配条件。

三、简答题

1.从电场和磁场的能量体密度公式出发,比较一般情况下有ωm >ωe 的结果。 静电场的能量密度ωe ,ωe =(1/2)E ·D 磁场能量密度ωm ,ωm=(1/2)B ·H

理想状况下,等量的电能转换成电场能量和磁场能量时,电场的能量密度等于磁场能量密度,但在 实际中,转换成电场能时会有热损耗,所以一般情况下有ωm>ωe 。

2.从平面电磁波角度分析,透入深度(集肤深度)δ与电磁波频率f 及磁导率μ,电导率σ的关系 δ=(1/πf μσ)1/2 (m)

导电性能越好(电导率越大),工作频率越高,则集肤深度越小。 3.如何由电位求电场强度,试写出直角坐标系下的表达式(27页)

已知电场强度E=—▽φ,在直角坐标系下▽=x e x ??+

y e y ??+z e z

??,所以电场强度E=

ex

x ???+y e y ???+z e z

???

4.传导电流,位移电流,运流电流是如何定义的,各有什么特点( 52页 130页)

传导电流是,在导体中的自由电子或半导体中的自由电荷在电场力作用下形成的定向运动形成的电流 特点:适用于导体或半导体中,服从欧姆定律,焦耳定律

运送电流是,在真空或气体中,带电粒子在电场力作用下定向运动形成的电流 特点:适用于真空或气体中,不服从欧姆定律,焦耳定律

位移电流是,电位移矢量随时间的变化率。(这个定义没找着,在网上查的) 特点:并不代表电荷的运动,且产生磁效应方面和一般意义下的电流等效。 5.电场强度相同时,电介质中的电能体密度为什么比真空中的大 .因能量密度2e E 2

1

W ε=而0ε>ε电,所以在

E 相同时0e e W W >电

6. 均匀平面电磁波的特点

答案:均匀平面电磁波是指等相位面为无限大平面,且等相位面上各点的场强大小相等,方向相同的电磁波,即沿某方向传播的平面电磁波的场量除随时间变化外,只与波传播方向的坐标有关,而与其它坐标无关。

7. 麦克斯韦的位移电流假设的重要意义(不确定 课本123页) 1、位移电流与传导电流相互联结,构成闭合电流(全电流)Is=Ic+I D 2、使稳恒磁场的安培环路定理对非稳恒磁场也成立。

3、得出位移电流对电磁波的存在是基要的,并将电学、磁学和光学联结成一个统一理论。 这个可能不全,希望大家及时补充。

8. 一块金属在均匀磁场中匀速移动,金属中是否会有涡流,为什么?

不会产生涡流,因为产生涡流的条件是在金属块中产生感应电流,即穿过金属块的磁通量发生变 化。

9.在研究突变电磁场中,引入哪些函数,写出他们与场矢量之间的关系。

10. 简述电磁波的波长和相位常数的基本定义(参考百度百科:电磁波相位常数)

电磁波的传播方向垂直于电场与磁场构成的平面

电磁波的相位常数:当电磁波沿均匀介质传播时,每单位长度电磁波的相位移

(个人观点仅供参考)

相位常数:当电压或电流波沿均匀线传播是,每单位长度的电压波或电流的相位移

11. 描述均匀平面电磁波在损耗媒质中的传播特性(可参考以下两张图片)

12.据电荷守恒原理推导时变场中的电流连续性方程(仅供参考)

13. 为什么在静电场分析时,考虑电介质的作用?

当一块电介质受外电场的作用而极化后,就等效为真空中一系列电偶极子。极化介质产生的附加电场,实质上就是这些电偶极子产生的电场。(P31)

四、单选题

1.E在SI单位制中的量纲()

A、库/m2

B、V

C、V/m D库/m

这是国际单位制导出表:

答案:C

2.矢量磁位A的旋度,等于( )

A. H

B. B

C. J

D. E

答案:B

3.磁介质在外部磁场作用下,在介质内部出现( )

A. 自由电流

B. 极化电流

C. 运流电流

D. 磁偶极子

答案:D

4.恒定电流电场的J(电流密度)与电场强度E的一般关系式是( )

A.E=γJ

B.J=γE

C.J=γ(E+E局外)

D. J=γ(E-E局外)

答案:B

5.平行板电容器极板间电介质有漏电时,则在其介质与空间分界面处( )

A.E连续

B. D连续

C. J的法线分量连续

D. J连续

答案:C

恒定电流场的边界条件为:电流密度J在通过界面时其法线分量连续,电场强度E的切向分量连续。

6.同轴电感导体间的电容C,当其电介质增大时,则电容C()

A减小B增大C不变D按e的指数变化

答案B

7.已知

=(3x-3y)+(x-z)+(2y-2x),若以知,则电荷密度ρ为()

A.3ε0

B. 3/ε0

C.3

D.0

ρ= ▽?D,

▽?D=(3x-3y)对x偏导+(x-z)对y偏导+(2y-2x)对z偏导=3

答案:C

8.运流电流是由下列()

A 真空中自由电荷

B 电介质中极化电荷移动

C 导体中的自由电荷移动

D 磁化电流移动

答案:A

9. 由S的定义,可知S的方向()

A与E相同B与E垂直C与H垂直D与E和H均垂直且符合右手螺

答案D

10.电场能量体密度()

A.ED

B.1/2ED

C.BH D1/2EH

答案:B

11.时变磁场中,有一运动的导体回路速度为V。这在下述情况下导体回路中既有发动机电动势,又有变压器电动势,()电动势最大。

A.速度方向V与B、E平行

B.V与E、B呈任意角度

C.V与E、B垂直最大

D.不能确定

时变电磁场中的电动势包括发动机电动势和变压器电动势,产生条件分别为导体回路运动切割磁感线和磁通量的变化。(切割磁感线)

答案:C

12.磁介质中的磁场强度由()产生。

A 自由电流

B 束缚电流

C 磁化电流

D 运流电流

答案:C

13. 时变场中如已知动态位A(矢量磁位)和ψ(动态磁位),则由与B和E的关系式可知( D )。

A B只由A确定,与ψ无关

B B和E均与A、ψ有关

C E只与ψ有关,B只与A有关

D E与A和ψ有关,B只与A有关

14.静电场中试验电荷受到的作用力与试验电荷量成()关系

A正比 B 反比C平方D平方根

答案A

15.导体在静电平衡下,其内部电场强度()

A常数B为0 C不为0 D不确定答案B

16.极化强度与电场强度成正比的电介质,称为()电介质

A均匀B各向同性C线性D可极化答案C

17.均匀导电媒质的电导率,不随()变化

A电流密度B空间位置C时间D温度

答案B

18.时变电磁场中,感应电动势与材料电导率成()

A.正比

B.反比

C.平方

D.无关

19.磁场能量存在于()区域

A.磁场

B.电流源

C.电磁场耦合

D.电场答案A

20.真空中均匀平面波的波阻抗为( )

A.237Ω

B.337Ω

C.277Ω

D.377Ω

答案D

21.下列哪个导波装置可以传输TEM波()

A空心波导B圆波导C矩形波导D同轴线

同轴线传输电磁波的主模式是TEM,也可以传输TE波和TM波。答案:D

22.电偶极子天线,辐射远区场,磁场与距离的关系()

A 与距离成反比

B 与距离成正比

C 与距离的平方成反比

D 与距离的平方成正比 答案:A

五、大题

例 5 - 9设区域Ⅰ(z <0)的媒质参数εr1=1, μr1=1, σ1=0;区域Ⅱ(z >0)的媒质参数εr2=5, μr2=20, σ

2=0。区域Ⅰ中的电场强度为

)

/)](51015cos(20)51015cos(60[881m V z t z t e E x +?+-?=区域Ⅱ中的电场强度为

)/)(51015cos(8

2m V z t A e E x -??=

试求:

(1) 常数A ;

(2) 磁场强度H 1和H 2;

(3) 证明在z =0处H 1和H 2满足边界条件。 解:(1) 在无耗媒质的分界面z =0处, 有

)

1015cos()

1015cos(80)]

1015cos(20)1015cos(60[828881t A e E t e t t e E x x x ??=??=??+??=

由于E 1和E 2恰好为切向电场, m V A /80=

(2) 根据麦克斯韦方程

t H E ??-=??11

)]

5

10

15

sin(

100

)

5

10

15

sin(

300

[

1

1

1

8

8

1

1

1

1

1

1

z

t

z

t

e

t

E

e

E

t

H

y

y

+

?

?

-

-

?

?

-

=

?

?

-

=

?

?

-

=

?

?

μ

μ

μ

所以

)

/

)](

5

10

15

cos(

0531

.0

)

5

10

15

cos(

1592

.0[8

8

1

m

A

z

t

z

t

e

H

y

+

?

?

-

-

?

?

=

同理,可得

)

/

)](

50

10

15

cos(

1061

.

[8

2

m

A

z

t

e

H

y

-

?

?

=

(3) 将z=0代入(2)中得

)]

10

15

cos(

106

.

0[

)]

10

15

cos(

106

.

0[

8

2

8

1

t

e

H

t

e

H

y

y

?

?

=

?

?

=

例5 - 14已知无源(ρ=0, J=0)的自由空间中,时变电磁场的电场强度复矢量

式中k、E0为常数。求:

(1) 磁场强度复矢量;

(2) 坡印廷矢量的瞬时值;

(3) 平均坡印廷矢量。

解:(1)

例6-10频率为f=300MHz的线极化均匀平面电磁波,其电场强度振幅值为2V/m,从空气垂直入射到εr=4、μr=1的理想介质平面上,求:

(1) 反射系数、透射系数、驻波比;

(2) 入射波、反射波和透射波的电场和磁场;

(3) 入射功率、反射功率和透射功率。

解:设入射波为x方向的线极化波,沿z方向传播,如图6-13。

例 6-8电磁波在真空中传播,其电场强度矢量的复数表达式为

)/(10)(204m V e je e E z j y x π---=

试求:

(1) 工作频率f;

(2) 磁场强度矢量的复数表达式;

(3) 坡印廷矢量的瞬时值和时间平均值;

(4) 此电磁波是何种极化,旋向如何。

例6-1 已知无界理想媒质(ε=9ε0, μ=μ0,σ=0)中正弦均匀平面电磁波的频率f =108 Hz , 电场强度

()m V

e

e e e E j

jkz y jkz x /333

π+--+=

试求:

(1) 均匀平面电磁波的相速度v p 、波长λ、相移常数k 和波阻抗η;

(2) 电场强度和磁场强度的瞬时值表达式;

(3) 与电磁波传播方向垂直的单位面积上通过的平均功率。

电磁场理论基础

电磁场理论基础 磁现象和电现象本质上是紧密联系在一起的,自然界一切电磁现象都起源于物质具有电荷属性,电现象起源于电荷,磁现象起源于电荷的运动。变化的磁场能够激发电场,变化的电场也能够激发磁场。所以,要学习电磁流体力学必须熟悉电磁场理论。 1. 电场基本理论 (1) 电荷守恒定律 在任何物理过程中,各个物体的电荷可以改变,但参于这一物理过程的所有物体电荷的代数总和是守恒的,也就是说:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分。例如中性物体互相摩擦而带电时,两物体带电量的代数和仍然是零。这就是电荷守恒定律。电 荷守恒定律表明:孤立系统中由于某个原因产生(或湮 没)某种符号的电荷,那么必有等量异号的电荷伴随产生(或湮没),孤立系统总电荷量增加(或减小),必有 等量电荷进入(或离开)该系统。 (2) 库仑定律 12212 02112?4r δπε+=r q q f (N) 库伦经过实验发现,真空中两个静止点电荷(q 1, q 2)之 间的作用力与他们所带电荷的电量成正比,与他们之间 的距离r 平方成反比,作用的方向沿他们之间的连线, 同性电荷为斥力,异性电荷为引力。ε0为真空介电常数,一般取其近似值ε0= 8.85?10-12C ?N -1?m -2。ε0的值随试验检测手段的进步不断精确,目前精确到小数点后9位(估计值为11位)。库仑反比定律也由越来越精确的实验得到验证。目前δ<10-16。库仑反比定律的适用范围(10-15m(原子核大小的数量级)~103m)。 (3) 电场强度 00)()(q r F r E =(V ·m -1) 真空中电荷与电荷之间相互以电场相互发生作用。 Charles Augustin de Coulomb 1736-1806 France Carl Friedrich Gauss 1777 -1885 Germany

工程电磁场课后题目答案

2-5有两相距为d 的无限大平行平面电荷,电荷面密度分别为σ和σ-。求由这两 个无限大平面分割出的三个空间区域的电场强度。 解: 10 00 22E σ σσεεε??= --= ??? 20 0300 22022E E σσεεσσεε??=- --= ???= -= 2-7有一半径为a 的均匀带电无限长圆柱体,其单位长度上带电量为τ,求空间的 电场强度。 解:做一同轴单位长度高斯面,半径为r (1)当r ≦a 时,2 2 2 012112E r r a r E a τ πππετπε??=? ??= (2)当r>a 时,0 022E r E r τπετπε?= = 2-15有一分区均匀电介质电场,区域1(0z <)中的相对介电常数12r ε=,区域2(0z >)中的相对介电常数25r ε=。已知1234x y z =-+E e e e ,求1D ,2E 和2D 。 解:电场切向连续,电位移矢量法向连续 () () 11 222 1111 2 22122202020210220 20,10,505020,10,201050502010201050x y z r r x r y r z r r x r y r z r x y z r r x r y r z E E D D D E D e e e E e e e D e e e εεεεεεεεεεεεεεεεεε==-===-=∴=-+=-+ =-+ 2-16一半径为a 的金属球位于两种不同电介质的无穷大分界平面处,导体球的电位为0?,

求两种电介质中各点的电场强度和电位移矢量。

解:边界电场连续,做半径为r 的高斯面 ()()()()()()2212122 1202 121212002222222S a a r D dS r E E r E Q Q E r Q Q E dr dr r a Q a a E e r πεεπεεπεε?πεεπεεπεε??∞ ∞?=+=+=∴= +?===++∴=+∴=?? ? ? 1 2 1020 1222 10 20 112210 20 1020 ,,,r r p n p n a a D e D e r r D D a a p e p e a a ε?ε?ε?ε?σσεεεεσ?σ?= === == --=?=- =?=- 两介质分界面上无极化电荷。 4-6 解:当2d z <- 时,()02 y x K B e e μ=- 当22d d z -<<时,()02 y x K B e e μ=-- 当2d z >时,()02 y x K B e e μ=-+ 4-8 解:当1r R <时,20022 1122r rI rB I B R R μπμπππ=?= 当12R r R <<时,0022I rB I B r μπμπ=?= 当23R r R <<时,()()2222 20302 222 323222r R I R r rB I I B r R R R R πμπμππ??--??=-?=?--???? 当3r R >时,0B = 4-9 解:2 0022 RJ RB R J B μπμπ=??=

电磁学基础知识

电磁学基础知识 电场 一、场强E (矢量,与q 无关) 1.定义:E = 单位:N/C 或V/m 方向:与+q 所受电场力方向 电场线表示E 的大小和方向 2.点电荷电场:E = 静电力恒量 k = Nm 2/C 2 匀强电场:E = d 为两点在电场线方向上的距离 3.E 的叠加——平行四边形定则 4.电场力(与q 有关) F = 库仑定律:F = (适用条件:真空、点电荷) 5.电荷守恒定律(注意:两个相同带电小球接触后,q 相等) 二、电势φ(标量,与q 无关) 1.定义:φA = = = 单位:V 说明:φ=单位正电荷由某点移到φ=0处的W ⑴沿电场线,电势降低 ⑵等势面⊥电场线;等势面的疏密反映E 的强弱 2.电势叠加——代数和 3.电势差:U AB = = 4.电场力做功:W AB = 与路径无关 5.电势能的变化:Δε=W 电场力做正功,电势能 ;电场力做负功,电势能 需要解决的问题: ①如何判电势的高低以及正负(由电场线判断) ②如何判电场力做功的正负(由F 、v 方向判) ③如何判电势能的变化(由W 的正负判) 三、电场中的导体 1.静电平衡:远端同号,近端异号 2.静电平衡特点 ⑴E 内=0;⑵E 表面 ⊥表面;⑶等势体(内部及表面电势相等);⑷净电荷分布在外表面 四、电容器 1.定义:C = (C 与Q 、U 无关) 单位:1 F =106 μF =1012 pF 2.平行板电容器: C = 3.两类问题:①充电后与电源断开, 不变;②始终与电源相连, 不变 五、带电粒子在电场中的运动 1.加速:qU = 2.偏转:v ⊥E 时,做类平抛运动 位移:L = ; y = = = 速度:v y = = ; v = ; tan θ= 六、实验:描绘等势线 1.器材: 2.纸顺序:从上向下

高中物理选修1-1:2.4麦克斯韦电磁场理论+练习+

第二章电磁感应与电磁场 四、麦克斯韦电磁场理论 一、选择题 1.建立完整的电磁场理论并首先预言电磁波存在的科学家是 [ ] A.法拉第 B.奥斯特 C.赫兹 D.麦克斯韦 2. 关于电磁场和电磁波的正确说法是 [ ] A.电场和磁场总是相互联系的,它们统称为电磁场 B.电磁场由发生的区域向远处的传播就是电磁波 C.电磁波传播速度总是3×108m/s D.电磁波是一种物质,可以在真空中传播 3. 根据麦克斯韦电磁场理论,下列说法正确的是( ) A.稳定的电场周围产生稳定的磁场 B.均匀变化的电场周围产生的均匀变化的磁场 C.均匀变化的磁场周围产生的均匀变化的电场 D.不均匀变化的电场周围产生不均匀变化的磁场 4. 验证电磁波存在的科学家是 [ ] A.法拉第 B.奥斯特 C.赫兹 D.麦克斯韦 5. 电磁波和机械波相比较,下列说法正确的有 [ ] A.电磁波传播不需要介质,机械波传播需要介质 B.电磁波在任何物质中传播速度相同,机械波波速大小决定于介质 C.电磁波、机械波都不会产生衍射

D.电磁波和机械波都不会产生干涉 6. 以下有关在真空中传播的电磁波的说法正确的是 [ ] A.频率越大,传播的速度越大 B.频率不同,传播的速度相同 C.频率越大,其波长越大 D.频率不同,传播速度也不同 7. 下列关于电磁波的叙述中,正确的是[ ] A. 只要空间某个区域有振荡的电场或磁场,就能产生电磁波 B. 电磁波在任何介质中的传播速度均为3.00×108m/s C.电磁波中每一处的电场强度和磁感强度总是互相垂直,且与波的传播方向垂直 D.电磁波不能产生干涉,衍射现象 二、填空题 8.1864年,麦克斯韦提出电磁场的基本方程组(后称麦克斯韦方程组),并 推断电磁波的存在,预测光是一种_________,为光的电磁理论奠定了基础。 9. 不变化的磁场周围 (填“产生”或“不产生”)电场,变化 的磁场周围 (填“产生”或“不产生”)电场;均匀变化的磁场周围产生的电场;周期性(振荡)变化的磁场周围产生同频率的的电场,周期性的变化的电场周围也产生同频率周期性变化的场. 10. 在真空中,任何频率的电磁波传播的速度都等于 _____________________. 三、计算题 11.从地球向月球发射电磁波,电磁波在地球与月球间往返一次所用时间是多久?

吉大物理电磁场理论基础答案.

3. 两根无限长平行直导线载有大小相等方向相反电流I, I以dI/dt的变化率增长,一矩形线圈位于导线平面内(如图,则 A.线圈中无感应电流; B B.线圈中感应电流为顺时针方向; C C.线圈中感应电流为逆时针方向; D D.线圈中感应电流方向不确定。 4. 在通有电流I 无限长直导线所在平面内,有一半经r、电阻R 导线环,环中心 距导线a,且a >> r。当导线电流切断后,导线环流过电量为 5.对位移电流,有下述四种说法,请指出哪一种说法是正确的 A A.位移电流是由变化电场产生的

B B.位移电流是由变化磁场产生的 C C.位移电流的热效应服从焦耳-楞次定律 D D.位移电流的磁效应不服从安培环路定理 6.在感应电场中电磁感应定律可写成 式中E K为感应电场的电场强度,此式表明 A. 闭合曲线C 上E K处处相等 B. 感应电场是保守力场 C.感应电场的电场线不是闭合曲线 D.感应电场不能像静电场那样引入电势概念

1. 长直导线通有电流I ,与长直导线共面、垂直于导线细金属棒AB ,以速度V 平行于导线作匀速运动,问 (1金属棒两端电势U A 和U B 哪个较高?(2若电流I 反向,U A 和U B 哪个较高?(3金属棒与导线平行,结果又如何?二、填空题 U A =U B U A U B

;

三、计算题 1.如图,匀强磁场B 与矩形导线回路法线 n 成60°角 B = B = B = kt kt (k 为大于零的常数。长为L的导体杆AB以匀速 u 向右平动,求回路中 t 时刻感应电动势大小和方向(设t = 0 时,x = 0。解:S B m ρρ?=φLvt kt ?=21dt d m i φε=2 21kLvt =kLvt =方向a →b ,顺时针。 ο 60cos SB =用法拉第电磁感应定律计算电动势,不必 再求动生电动势

《工程电磁场导论》练习题及答案

《工程电磁场导论》练习题 一、填空题(每空*2*分,共30分) 1.根据物质的静电表现,可以把它们分成两大类:导电体和绝缘体。 2.在导电介质中(如导体、电解液等)中,电荷的运动形成的电流成为传导电流。 3.在自由空间(如真空中)电荷运动形成的电流成为运流电流。 4.电磁能量的储存者和传递者都是电磁场,导体仅起着定向导引电磁能流的作用,故通常称为导波系统。 5.天线的种类很多,在通讯、广播、雷达等领域,选用电磁辐射能力较强的 细天线。 6.电源是一种把其它形式的能量转换成电能的装置,它能把电源内导电原子或分子的正负电荷分开。 7.实际上直接危及生命的不是电压,而是通过人体的电流,当通过人体的工频电流超过8mA 时,有可能发生危险,超过30mA 时将危及生命。 8.静电场中导体的特点是:在导体表面形成一定面积的电荷分布,是导体内的电场为0,每个导体都成等位体,其表面为等位面。 9.恒定电场中传导电流连续性方程∮S J.dS=0 。 10.电导是流经导电媒质的电流与导电媒质两端电压之比。 11.在理想导体表面外侧的附近介质中,磁力线平行于其表面,电力线则与其表面相垂直。 12.如果是以大地为导线或为消除电气设备的导电部分对地电压的升高而接地,称为工作接地。 13. 电荷的周围,存在的一种特殊形式的物质,称电场。 14.工程上常将电气设备的一部分和大地联接,这就叫接地。如

果是为保护工作人员及电气设备的安全而接地,成为保护接地。 二、回答下列问题 1.库伦定律: 答:在无限大真空中,当两个静止的小带电体之间的距离远远大于它们本身的几何尺寸时,该两带电体之间的作用力可以表示为: 这一规律成为库仑定律。 2.有限差分法的基本思想是什么? 答:把场域用网格进行分割,再把拉普拉斯方程用以各网格节点处的电位作为未知数的差分方程式来进行代换,将求拉普拉斯方程解的问题变为求联立差分方程组的解的问题。 3.静电场在导体中有什么特点? 答:在导体表面形成一定的面积电荷分布,使导体内的电场为零,每个导体都成为等位体,其表面为等位面。 4.什么是击穿场强? 答:当电场增大到某一数值时,使得电介质中的束缚电荷能够脱离它们的分子而自由移动,这时电介质就丧失了它的绝缘能力,称为被击穿。某种材料能够安全地承受的最大电场强度就称为该材料的击穿场强。 5. 什么叫静电屏蔽? 答:在工程上,常常把不可受外界电场影响的带电体或不希望去影响外界的带电体用一个接地的金属壳罩起来,以隔离有害的的静电影响。例如高压设备周围的屏蔽网等,就是起静电屏蔽作用的。 6.分离变量法的基本思想是什么? 答:把电位函数φ用两个或三个仅含一个坐标变量的函数乘积表示,带入偏微分

电磁场理论基础试题集上交

电磁场理论基础习题集 (说明:加重的符号和上标有箭头的符号都表示矢量) 一、填空题 1. 矢量场的散度定理为(1),斯托克斯定理为(2)。 【知识点】:1.2 【难易度】:C 【参考分】:3 【答案】:(1)()???=??S S d A d A ττ (2)() S d A l d A S C ???= ??? 2. 矢量场A 满足(1)时,可用一个标量场的梯度表示。 【知识点】:1.4 【难易度】:C 【参考分】:1.5 【答案】:(1) 0=??A 3. 真空中静电场的基本方程的积分形式为(1),(2),微分形式为(3),(4)。 【知识点】:3.2 【难易度】:B 【参考分】:6 【答案】:(1) 0=??c l d E (2) ∑?=?q S d D S 0

(3) 0=??E (4)()r D ρ=??0 4. 电位移矢量D 、极化强度P 和电场强度E 满足关系(1)。 【知识点】:3.6 【难易度】:B 【参考分】:1.5 【答案】:(1) P E P D D +=+=00ε 5. 有面电流s 的不同介质分界面上,恒定磁场的边界条件为(1),(2)。 【知识点】:3.8 【难易度】:B 【参考分】:3 【答案】:(1) ()021=-?B B n (2) ()s J H H n =-?21 6. 焦耳定律的微分形式为(1)。 【知识点】:3.8 【难易度】:B 【参考分】:1.5 【答案】:(1) 2E E J p γ=?= 7. 磁场能量密度=m w (1),区域V 中的总磁场能量为=m W (2)。 【知识点】:5.9 【难易度】:B 【参考分】:3

《工程电磁场导论》练习题及答案

《工程电磁场导论》练习题 1、填空题(每空*2*分,共30分) 1.根据物质的静电表现,可以把它们分成两大类:导电体和绝缘体 。 2.在导电介质中(如导体、电解液等)中,电荷的运动形成的电流成为传导电流。 3.在自由空间(如真空中)电荷运动形成的电流成为运流电流 。 4.电磁能量的储存者和传递者都是电磁场,导体仅起着定向导引电磁能流的作用,故通常称为导波系统。 5.天线的种类很多,在通讯、广播、雷达等领域,选用电磁辐射能力较强的 细天线 。 6.电源是一种把其它形式的能量转换成电能的装置,它能把电源内导电原子或分子的正负电荷分开。 7.实际上直接危及生命的不是电压,而是通过人体的电流,当通过人体的工频电流超过 8mA 时,有可能发生危险,超过 30mA 时将危及生命。 8.静电场中导体的特点是:在导体表面形成一定面积的电荷分布,是导体内的电场为0,每个导体都成等位体,其表面为等位面。 9.恒定电场中传导电流连续性方程∮S J.dS=0 。 10.电导是流经导电媒质的电流与导电媒质两端电压之比。 11.在理想导体表面外侧的附近介质中,磁力线平行于其表面,电力线则与其表面相垂直。 12.如果是以大地为导线或为消除电气设备的导电部分对地电压的升高而接地,称为工作接地。 13. 电荷的周围,存在的一种特殊形式的物质,称电场。

14.工程上常将电气设备的一部分和大地联接,这就叫接地。如 果是为保护工作人员及电气设备的安全而接地,成为保护接地 。 二、回答下列问题 1.库伦定律: 答:在无限大真空中,当两个静止的小带电体之间的距离远远大于它们本身的几何尺寸时,该两带电体之间的作用力可以表示为: 这一规律成为库仑定律。 2.有限差分法的基本思想是什么? 答:把场域用网格进行分割,再把拉普拉斯方程用以各网格节点处的电位作为未知数的差分方程式来进行代换,将求拉普拉斯方程解的问题变为求联立差分方程组的解的问题。 3.静电场在导体中有什么特点? 答:在导体表面形成一定的面积电荷分布,使导体内的电场为零,每个导体都成为等位体,其表面为等位面。 4.什么是击穿场强? 答:当电场增大到某一数值时,使得电介质中的束缚电荷能够脱离它们的分子而自由移动,这时电介质就丧失了它的绝缘能力,称为被击穿。 某种材料能够安全地承受的最大电场强度就称为该材料的击穿场强。 5. 什么叫静电屏蔽? 答:在工程上,常常把不可受外界电场影响的带电体或不希望去影响外界的带电体用一个接地的金属壳罩起来,以隔离有害的的静电影响。例

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题 一、填空题 1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。散度与通量的关系是矢量场中任意一点处通量对体积的变化率。 2、 散度 在直角坐标系的表达式 z A y A x A z y x A A ?? ????++=??= div ; 散度在圆柱坐 标系下的表达 ; 3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。当S 点P 时,存在极限环量密度。 二者的关系 n dS dC e A ?=rot ; 旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。

4.矢量的旋度在直角坐标系下的表达式 。 5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。 梯度的大小为该点标量函数?的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数?的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达 式 ; 7、直角坐标系下方向导数 u l ??的数学表达式是cos cos cos l αβγ????????uuuu=++xyz ,梯度的表达式x y z G e e e grad x y z φφφφφ???=++=?=???; 8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。

麦克斯韦电磁场理论的建立及意义

麦克斯韦电磁场理论的建立及意义 班级:物理系09本三班姓名:范日耀 摘要:文章通过对法拉第力线思想和W.汤姆孙的类比研究的阐述来引出麦克斯韦的电磁场理论。麦克斯韦经过三个艰难的过程建立了电磁场理论,为壮伟的物理大厦添砖加瓦,做出了巨大贡献。 关键字:法拉第力线思想W.汤姆孙类比研究麦克斯韦电磁场理论 一、引言 二、内容 1、前人的研究 (1)法拉第的力线思想 法拉第从广泛的实验研究中构想出描绘电磁作用的“力线”图像。他认为电荷和磁极周围的空间充满了力线,靠力线(包括电力线和磁力线)将电荷(或磁极)联系在一起。力线就像是从电荷(或磁极)发出、又落到电荷(或磁极)的一根根皮筋一样,具有在长度方向力图收缩,在侧向力图扩张的趋势。他以丰富的想象力阐述电磁作用的本质。 法拉第研究了电介质对电力作用的影响,认识到这一影响表明电力不可能是超距作用,而是通过电介质状态的变化;即使没有电介质,空间也会产生某种变化,布满了力线。后来,法拉第又进一步研究了磁介质,解释了顺磁性和反磁性。电磁感应现象则解释为磁铁周围存在某种“电应力状态”,当导线在其附近运动时,收到应力作用而有电荷做定向运动;回路中产生电动势则是由于穿过回路的磁力线数目发生了变化。 法拉第的力线思想实际上就是场的观念,这是近距理论的核心内容。 (2)W.汤姆孙的类比研究 在法拉第力线思想的激励下,W.汤姆孙对电磁作用的规律也进行过有益的研究。他从法国科学家傅里叶的热传导理论得到启示。傅里叶在1824年发表《热的分析理论》一书,详细的研究了在介质中热流的传播问题,建立了热传导方程。这本书W.汤姆孙对有很深的影响。 1842年,W.汤姆孙发表了第一篇关于热和电的数学论文,题为:《论热在均匀固体中的均匀运动及其与电的数学理论的联系》,他论述了热在均匀固体中的传导和法拉第电应力在均匀介质中传递这两种现象之间的相似性。他指出电的等势面对应于热的等温面,而电荷对应与热源。利用傅里叶的热分析法,他把法拉第的力线思想和拉普拉斯、泊松等人已经建立的完整的静电理论结合在一起,初步形成了电磁作用的统一理论。 1847年,W.汤姆孙进一步研究了电磁现象与弹性现象的相似性,在题为《论电力、磁力和伽伐尼力的力学表征》一文中,以不可压缩流体的流线连续性为基础,论述了电磁现象和流体力学现象的共性。1851年,他给除了磁场的定义,1856年,根据磁致旋光效应提出了磁具有旋转的特性,这样就为进一步借用流体力学中关于涡旋运动的理论,做好了准备。 W.汤姆孙运用类比方法,把法拉第的力线思想转变为定量的表述,为麦克斯韦的工作提供了十分有益的经验。 2、麦克斯韦建立电磁场理论 (1)电磁场理论建立的第一步 麦克斯韦在电磁理论方面的工作可以和牛顿在力学理论方面的工作相媲美。他和牛顿一样,是“站在巨人的肩上”,看得更深更远,作出了伟大的历史综合;他和牛顿一样,其丰硕的成果是一步一步提炼出来的。

《工程电磁场》复习题.docx

《工程电磁场》复习题 一.问答题 1什么是静电场?写出其基本方程并由此总结静电场的特点。 由静止电荷在其周围产生的电场。F=q1*q2∕4pi*R*R*eO静电场不随时间变化 2?什么是恒定电场?写出其基本方程并由此总结静电场的特点。恒定电流产生的电场。 3?什么是恒定磁场?写出其基本方程并由此总结静电场的特点。磁场强度和方向保持不变的磁场。 4. 如果区域中某点的电场强度为零,能否说明该点的电位也为零?为什么? 电场强度E是一个随空间点位置不同而变化的矢量函数,仅与该点的电场有关。a,b为两个 电荷相等的正反电荷,在其中心点处电位为零,但场强不为零。 5. 如果区域中某点的电位为零,能否说明该点的电场强度也为零?举例说明?不能。a,b为两个相等正电荷,在其中心点处电场强度为零,但电位不为零。 6. 静电场的电力线会闭合的吗?恒定电场的电力线会闭合的吗?为什么? 静电场的电力线不会闭合,起于正电荷止于负电荷。在变化的磁场产生的有旋电场中,电力线环形闭合,围绕着变化磁场。 7. 写出两种不同媒质分界面上恒定电场与恒定磁场的边界衔接条件。 恒定电场的边界衔接条件J*dS=O E*dl=0 恒定磁场的边界衔接条件B*dS=0 H*dl=l 8?什么是矢量磁位A?什么是磁感应强度B? B=O B=*A(*A)=0, 矢量磁位A是一个辅助性矢量。磁感应强度B是描述磁场强弱和方向的基本物理量9. 什么是磁导率?什么是介电常数? 表示磁介质磁性的物理量。介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真 空中)与最终介质中电场比值即为介电常数。 10. 导电媒质中恒定电场与静电场之间具有什么相似关系? 二.填空题 1. 静止电荷产生的电场,称之为_静电场 ___________ 场。它的特点是有散无旋场,不 随时间变化 ____________________ 。 2. 高斯定律说明静电场是一个___________ 有散__________ 场。 3. 安培环路定律说明磁场是一个有旋场。 4. 电流密度是一个矢量,它的方向与导体中某点的—正电荷_________ 的运动方向相同。 5. 在两种不同导电媒质的分界面上,________ 磁感应强度______ 的法向分量越过分界面时连续, 电场强度的切向分量连续。 6. 磁通连续性原理说明磁场是一个_____ 场。 7. 安培环路定律则说明磁场是一个—有旋__________ 场。 6. 矢量磁位A的旋度为_____________ ,它的散度等于 ____________ 。 7. 矢量磁位A满足的方程是。 & 恒定电场是一种无—散___________ 和无______ 旋—的场。

(完整版)电磁场理论试题

《电磁场理论》考试试卷(A 卷) (时间120分钟) 1. 关于有限区域内的矢量场的亥姆霍兹定理,下列说法中正确的是 (A )任意矢量场可以由其散度和旋度唯一地确定; (B )任意矢量场可以由其散度和边界条件唯一地确定; (C ) 任意矢量场可以由其旋度和边界条件唯一地确定; (D ) 任意矢量场可以由其散度、旋度和边界条件唯一地确定。 2. 谐变电 磁场所满足的麦克斯韦方程组中,能反映“变化的电场产生磁场”和“变化的磁场产生电场” 这一物理思想的两个方程是 (B 5关于高斯定理的理解有下面几种说法, 其中正确的是 、选择题(每小题2分,共20 分) (A) H 0, E — (B ) H J E, E (C H J, E 0 (D ) H 0, E - 3.—圆极化电磁波从媒质参数为 分量不产生反射,入射角应为 3 r 1的介质斜入射到空气中,要使电场的平行极化 (B ) (A) 15° (B ) 30° (C ) 45 (D) 60 4.在电磁场与电磁波的理论中分析中,常引入矢量位函数 A ,并令 B A ,其依据是 (C ) (A) B 0 ; (C ) B 0; (B) B J ; (D) B J

电磁学》试卷 第 2 页 共 7 页 (A) 如果高斯面内无电荷,则高斯面上 E 处处为零; (B) 如果高斯面上 E 处处不为零,则该面内必有电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零; (D) 如果高斯面上 E 处处为零,则该面内必无电荷。 6.若在某区域已知电位移矢量 ( A) 2 ( B ) 2 D xe x ( C ) ye y ,则该区域的电何体密度为 ( B ) 2 ( D ) 2 7. 两个载流线圈之间存在互感, 对互感没有影响的是 ( C ) (A )线圈的尺寸 (B ) 两个线圈的相对位置 (C )线圈上的电流 (D )线圈中的介质 8 . 以下关于时变电磁场的叙述中,正确的是 ( B ) (A )电场是无旋场 (B )电场和磁场相互激发 (C) 电场和磁场无关 (D )磁场是有源场 9. 两个相互平行的导体平板构成一个电容器, 与电容无关的是 10. 用镜像法求解静电场边值问题时, 判断镜像电荷设置是否正确的依据是 ( C ) (A) 镜像电荷的位置是否与原电荷对称 (B) 镜像电荷是否与原电荷等值异号 (C) 待求区域内的电位函数所满足的方程与边界条件是否保持不变 (D) 同时满足A 和B (A )导体板上的电荷 (C )导体板的几何形状 (B) 平板间的介质 (D) 两个导体板的相对位

谈谈关于电磁场理论

谈谈关于电磁场理论 电磁现象首先是从它们的力学效应开始的。 法拉第的电磁感应实验将机械功与电磁能联系起来,证明二者可以互相转化。麦克斯韦进一步提出:电磁场中各处有一定的能量密度,即能量定域于场中。根据这个理论,.坡印廷1884年提出在时变场中能量传播的坡印廷定理,矢量E×H代表场中穿过单位面积上单位时间内的能量流。这些理论为电能的广泛应用开辟了道路,为制造发电机、变压器、电动机等电工设备奠定了理论基础。 麦克斯韦预言的电磁辐射,在1887年由H.R.赫兹的实验所证实。电磁波可以不凭借导体的联系,在空间传播信息和能量。这就为无线电技术的广泛应用创造了条件。电磁场理论给出了场的分布及变化规律,若已知电场中介质的性质,再运用适当的数学手段,即可对电工设备的结构设计、材料选择、能量转换、运行特性等,进行分析计算,因而极大地促进电工技术的进步。电磁场理论所涉及的内容都属于大量带电粒子共同作用下的统计平均结果,不涉及物质构造的不均匀性及能量变化的不连续性。它属于宏观的理论,或称为经典的理论。涉及个别粒子的性质、行为的理论则属于微观的理论,不能仅仅依赖电磁场理论去分析微观起因的电磁现象,例如有关介质的电磁性质、激光、超导问题等。这并不否定在宏观意义上电磁场理论的正确性。电磁场理论不仅是物理学的重要组成部分,也是电工技术的理论基础 库仑定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。安培等人又发现电流元之间的作用力也符合平方反比关系,提出了安培环路定律。基于这与牛顿万有引力定律十分类似,泊松、高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。直到法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述。1846年,法拉第还提出了光波是力线振动的设想。麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将电磁场的基本定律归结为4个微分方程,人们称之为麦克斯韦方程组。在方程中麦克斯韦对安培环路定律补充了位移电流的作用,他认为位移电流也能产生磁场。根据这组方程,麦克斯韦还导出了场的传播是需要时间的,其传播速度为有限数值并等于光速,从而断定电磁波与光波有共同属性,预见到存在电磁辐射现象。静电场、恒定磁场及导体中的恒定电流的电场,也包括在麦克斯韦方程中,只是作为不随时间变化的特例。 麦克斯韦是继法拉第之后,又一位集电磁学大成于一身的伟大科学家。他全面地总结了电磁学研究的全部成果,并在此基础上提出了“感生电场”和“位移电流”的假说,建立了完整的电磁场理论体系,不仅科学地预言了电磁波的存在,而且揭示了光、电、磁现象的内在联系及统一性,完成了物理学的又一次大综合。他的理论成果为现代无线电电子工业奠定了理论基础。

电磁场理论 - 兰州大学物理学院

电磁场理论课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:电磁场理论 所属专业:微电子科学与工程 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 电磁场理论是宏观电磁现象的经典理论,是研究电磁场的基本属性、运动规律以及它与带电物质之间相互作用的一门重要基础理论课。电磁场理论是解决一切信息处理的物质基础。课程目标与任务:掌握静电场、恒磁场以及时变电磁场的基本理论,理解麦克斯韦方程组的来源以及电磁统一,会利用基本的电磁理论分析一些具体的工程问题,如电磁波传播、天线、微波等。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程:高等数学、数学物理方法、电磁学 关系:其中高等数学和数学物理方法是电磁场理论的数学基础,电磁学是电磁场理论的物理基础,电磁场理论在电磁学的基础上系统阐述电磁场的基本理论,并进一步阐述电磁场理论在解决实际问题方面的应用。 (四)教材与主要参考书。 选用教材:William H.Hayt,Jr.,John A. Buck编,赵彦珍等译,工程电磁场,西安交通大学出版社(第版)。 主要参考书: 1.《电动力学》,汪映海编著,兰州大学出版社,1995年 2.《电磁场理论基础》(第二版),陈重,崔正勤,胡冰编著,北京理工大学出版社,2010年 3.《工程电磁场导论》,冯慈章、马西奎编著,高等教育出版社,2000年 4.《电磁场与电磁波》,李书芳、李莉、张阳安、高泽华编著,科学出版社,2004年 二、课程内容与安排 第一章数学准备知识 第一节标量和矢量 第二节矢量代数

第四节矢量分量和单位矢量 第五节矢量场 第六节点乘和叉乘 第七节其他坐标系:圆柱坐标系、球坐标系第二章库仑定律和电场强度 第一节库仑定律 第二节电场强度 第三节连续分布体电荷的电场 第四节线电荷的电场 第五节面电荷的电场 第六节电力线和电场分布图 第三章电通量密度、高斯定律和散度 第一节电通量密度 第二节高斯定律 第三节高斯定律的应用:一些对称电荷的电场第四节高斯定律的应用:体积元电荷的电场 第五节散度和麦克斯韦第一方程 第六节矢量算子 和散度定理 第四章能量和电位 第一节点电荷在电场中运动时消耗的能量 第二节线积分 第三节电位差和电位的定义 第四节点电荷的电位 第五节点电荷系统的单位:保守性 第六节电位梯度 第七节电偶极子 第八节静电场中的能量密度 第五章导体和电介质 第一节电流和电流密度 第二节电流连续性 第三节金属导体 第四节导体性质和边界条件 第五节镜像法 第六节半导体 第七节电介质材料的性质 第八节理想电介质的边界条件 第六章电容 第一节电容的定义 第二节平行板电容器

电磁场考试试题及答案

电磁波考题整理 一、填空题 1. 某一矢量场,其旋度处处为零,则这个矢量场可以表示成某一标量函数的(梯度)形式。 2. 电流连续性方程的积分形式为(??? s dS j=- dt dq) 3. 两个同性电荷之间的作用力是(相互排斥的)。 4. 单位面积上的电荷多少称为(面电荷密度)。 5. 静电场中,导体表面的电场强度的边界条件是:(D1n-D2n=ρs) 6. 矢量磁位A和磁感应强度B之间的关系式:(B=▽x A) 7. .E(Z,t)=e x E m sin(wt-kz-)+ e y E m cos(wt-kz+),判断上述均匀平面电磁波的极化方式为:(圆极化)(应该是90%确定) 8. 相速是指均匀平面电磁波在理想介质中的传播速度。 9.根据电磁波在波导中的传播特点,波导具有(HP)滤波器的特点。(HP,LP,BP三选一) 10.根据电与磁的对偶关系,我们可以由电偶极子在远区场的辐射场得到(磁偶极子)在远区产生的辐射场 11. 电位移矢量D=ε0E+P在真空中P的值为(0) 12. 平板电容器的介质电容率ε越大,电容量越大。 13.恒定电容不会随时间(变化而变化)

14.恒定电场中沿电源电场强度方向的闭合曲线积分在数值上等于电源的(电动势) 15. 电源外媒质中电场强度的旋度为0。 16.在给定参考点的情况下,库伦规范保证了矢量磁位的(散度为零) 17.在各向同性媚质中,磁场的辅助方程为(D=εE, B=μH, J=σE) 18. 平面电磁波在空间任一点的电场强度和磁场强度都是距离和时间的函数。 19. 时变电磁场的频率越高,集肤效应越明显。 20. 反映电磁场中能量守恒与转换规律的定理是坡印廷定理。 二、名词解释 1. 矢量:既存在大小又有方向特性的量 2. 反射系数:分界面上反射波电场强度与入射波电场强度之比 3. TEM波:电场强度矢量和磁场强度矢量均与传播方向垂直的均匀平面电磁波 4. 无散场:散度为零的电磁场,即·=0。 5. 电位参考点:一般选取一个固定点,规定其电位为零,称这一固定点为参考点。当取点为参考点时,P点处的电位为=;当电荷分布在有限的区域时,选取无穷远处为参考点较为方便,此时=。 6. 线电流:由分布在一条细线上的电荷定向移动而产生的电流。 7.磁偶极子:磁偶极子是类比电偶极子而建立的物理模型。具有等值异号的两个点磁荷构成的系统称为磁偶极子场。磁偶极子受到力矩的作用会发生转动,只有当力矩为零时,磁偶极子才会处于平衡状

工程电磁场复习题填空题答案

二、填空 1. 矢量的通量物理含义是 矢量穿过曲面的矢量线总数 ,散度的物理意义 矢量 场中任意一点处通量对体积的变化率 ,散度与通量的关系是 矢量场中任意一点处 通量对体积的变化率 。 2. 矢量函数的环量定义 矢量 A 沿空间有向闭合曲线 C 的线积分 ,旋度的定 义过点 P 作一微小曲面 S,它的边界曲线记为 L, 面的法线方与曲线绕向成右 手螺旋法则。当 S 点 P 时 ,存在极限环量密度 。二者的关系 旋度的物理意义 点 P 的旋度的大小是该点环量密度的最大值; 向是该点最 大环量密度的方向 。 3. 电场强度与电位移矢量的关系: D 0 r E ; 点 P 的旋度的方 4. 当波从电介质中进入导电煤质后,其波幅衰减到 原波幅的 1 倍 时,它行经 e 的深度定义为透入深度,且其大小为 d 1 ( a 波的衰减系数 ) a 5. 趋肤效应是指 当交变电流通过导体时,随着电流变化频率的升高,导体上 所流过的电流将越来越集中于导体表面附近,导体内部的电流越来越小的现 象 ,趋肤深度的定义是 电磁波的振幅衰减到 e -1 时,它透入导电介质的深度 , 趋肤深度的表达式 。 n 1 k q k 6. 分立的带电导体系统的电场能量表达式为: 2 k 1 7. 线性煤质中,两导体间的电容与两导体所带的电量和两导体间的电压 无关 (填有关或无关),与两导体的几何尺寸、相互位以及空间煤质的电容率 有关 (填有关或无关) 8. 如下图,具有相同半径的 R 0 的平行双输电线,假设几何中心轴相聚 2x 0 ,则其电轴中心间的距离 D 的表达式为: D 2 x 0 2 R 0 2

经典电磁场理论的建立和发展及其重要意义

经典电磁场理论的建立和发展及其重要意义 电子13班肖青秀2110501112 电磁场理论的产生是物理学史上划时代的里程碑之一,电磁场理论体系的核心是麦克斯韦方程组,麦克斯韦全面总结电磁学研究的全部成果,建立完整的电磁场理论体系,完成物理学的又一次大综合,他的理论成果为现代无线电电子工业奠定理论基础。 1 经典电磁场理论体系 完整的电磁场理论包括:1)麦克斯韦方程组:它是在库仑定律、毕奥-萨法尔定律、法拉第电磁感应定律以及麦克斯韦提出位移电流假说的基础上建立起来的。它反映了电磁场的运动规律。变化的电场和磁场可以互相激发而在空间独立存在。由此,麦克斯韦预言了电磁波的存在,并预言了光是一种电磁波。不随时间变化,则为静态场。若电磁场的若电磁场很慢,则为拟稳场,说明市电在小尺度上可以用直流电路的计算方法。麦克斯韦方程组的建立是物理系史上的第三次大综合。2)洛伦兹力密度公式:它反映了电荷、电流受到的电磁场的作用力。3)电荷守恒定律:它反映了自然界中关于电荷守恒的一个基本规律。4)介质的电磁性质方程:它反映了物质在电磁场的作用下的性质,还反映了介质的结构。以上四点构成了完整的电磁场理论。 经典电磁场理论体系的核心是麦克斯韦方程组。在方程组中,电场和磁场相互联系、相互激发组成一个统一的电磁场。 麦克斯韦方程组的积分形式:

其中:1)式描述了电场的性质,即电场的高斯定理。2)式描述了磁场的性质,即磁场的高斯定理。3)式描述了变化的磁场激发感生电场的规律。4)式描述了变化的电场激发磁场的规律。此外,还要加上电磁场量和表征介质电磁特性的量之间的关系: 麦克斯韦方程组概括了电磁场的基本性质和规律,构成完整的经典电磁场理论体系,它不仅是整个宏观电磁理论的基础,而且也是许多现代电磁技术的理论基础。麦克斯韦的电磁理论充分体现了物理概念创新、逻辑体系严密、数学形式简单优美、电场与磁场以及时间与空间的明显对称等明显的特点。 2 经典电磁场理论建立的过程 以麦克斯韦方程组为核心的经典电磁理论,是由伟大的英国科学家麦克斯韦提出的,但在该理论建立的过程中凝结着无数各国科学工作者的科研成果,探究经典电磁场理论建立的过程及指导思想对科学探索研究仍然具有重要作用。

工程电磁场期末考试(最终打印版)

工程电磁场期末考试(预测题60%命中率) 一、简答题(60分)(请用电脑打开) 1、解释并简述霍尔效应原理,并列举相关元件(5分)(必考) 答案:磁场强度B与电流方向垂直时,形成电流的正电荷或负电荷将会受到磁场力的作用而发生微小移动,产生的微小电位差叫做霍尔电压。 元件:电子功率计、矩形脉冲元件、测量磁通密度的仪表 2、写出不同情况下的法拉第电磁感应电动势,并写出相关数学 表达式(5分)(必考) 答案:1、闭合路径静止不动,而与其相交链的磁通却随着时间发生变化:emf 2、一个恒定磁通与一个闭合路径之间有相对运动: 3、以上2种情况的复合: (注意:H、D、E、V、B、L、E、 S等加粗的字母一定要标箭头,否则一分都没有) 3、写出时变电磁场和静电场的麦克斯韦方程组并说明每个方程的物理意义(微分形式和积分形式)(5分)(注:此题必考,必要时可弄点小抄) 答案:时变电磁场(微分形式): ----位移电流和变化电场产生磁场 ------变化的磁场产生电场 -------静电场为有源场 ---------磁场为无源场

时变电磁场(积分形式): 静电场(微分形式): ▽ⅹE=0 ▽ⅹH=J 静电场(积分形式): ∮E.d L=0 ∮H.d L=Ι 4、分别写出导体、电介质、磁场的边界条件(5分)(注:此题必考,必要时可弄点小抄) 答案:导体边界条件: 1.在导体内部,静电场的电场强度为零。 2.导体表面上的电场强度处处垂直于导体表面。 3. 导体表面是一个等位面。

电介质边界条件: 磁场边界条件: 5、写出传输线的电报方程、传输波方程、无损耗传输线的方程、正弦波的复数表达式、低损耗传输的条件(5分)(必考) 答案:传输线的电报方程: 传输线的传输波方程: 无损耗传输线的方程: 正弦波的复数表达式: 在导体表面:E的切线分量为零 D 的法线方向为电荷面密度 V I RI L z t ?? ?? =-+-- ? ?? ?? I V GV C z t ?? ?? =-+ ? ?? ?? () () 22 22 22 22 V V V LC LG RC RGV z t t I I I LC LC RC RGI z t t ???? =+++ ????? ? ??? ?=+++ ???? ? V I L I V C z t ?? ? =- ? ? ?? ?=- ??? ? ——时变电流产生时变电压 ——时变电压产生时变电流 []() 00 1 (,)cos.. 2 j j z j t V V z t V t z V e e e c c φβω ωβφ± =±+=+ (此处请看教材P237-10.34)(必考)

相关主题
文本预览
相关文档 最新文档