当前位置:文档之家› 大学经典课件之高等数学——8-1多元函数的基本概念

大学经典课件之高等数学——8-1多元函数的基本概念

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

(整理)高等数学基本公式概念和方法

高等数学基本公式、概念和方法 一.函数 1.函数定义域由以下几点确定 (1)0)(;) (1 ≠= x f x f y (2)0)(;)(2≥=x f x f y n (其中n 为正整数) (3)0)(:)(log >=x f x f y a 。 (4)1 )(1);(arccos 1)(1);(arcsin ≤≤-=≤≤-=x f x f y x f x f y (5)函数代数和的定义域,取其定义域的交集. (6)对具有实际意义的函数,定义域由问题特点而定. 2.判断函数的奇偶性,依据以下两点确定,否则函数为非奇非偶的. (1) 若)(),()(x f x f x f =-是偶函数,若)(),()(x f x f x f -=-是奇函数. (2) 若)(x f y =的图象关于y 轴对称,则函数是偶函数.如x y x y cos ..2 ==等。 若)(x f y =的图象关于坐标原点对称,则函数是奇函数.如x y x y x y sin (3) === 3. 将函数分解成几个简单函数的合成. 由六类基本初等函数的形式,对要分解的函数,由外层到内层,分别设出关系.函数与常数的四则运算,不必另设一层关系. 二.极限与连续 1.主要概念和计算方法: (1).A x f x f A x f x x x x x x ==?=+-→→→)(lim )(lim )(lim 0 (2).若0)(lim 0 =→x f x x (极限过程不限),则当0x x →时)(x f 为无穷小量。 (3).若)()(lim 00 x f x f x x =→,则函数在0x 处是连续的。 即(1)函数值存在、(2)极限存在、(3)极限值和函数值相等。 若上述三条至少一条不满足,则0x 是函数的间段点。 (4).间断点的分类:设0x 是函数的间断点 若左、右极限均存在,则0x 称为第一类间断点。 若左、右极限至少有一个是无穷大,则0x 称为第二类间断点。 (5).重要公式:条件0)(lim =x ?(极限过程不限)

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

高等数学多元函数微分法

第 八 章 多元函数微分法及其应用 第 一 节 多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数 概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。 教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、 区域 1. 邻域 设),(000y x p 是xoy 平面上的一个点,δ是某一正数。与点),(000y x p 距离小于δ的点(,)p x y 的全体,称为点0P 的δ邻域,记为),(0δP U ,即 ),(0δP U =}{0δδ为半径的圆内部的点),(y x P 的全体。 2. 区域 设E 是平面上的一个点集,P 是平面上的一个点。如果存在点P 的某一邻域E P U ?)(,则称P 为E 的内点。显然,E 的内点属于E 。 如果E 的点都是内点,则称E 为开集。例如,集合 }41),{(221<+<=y x y x E 中每个点都是E 1的内点,因此E 1为开集。

如果点P 的任一邻域内既有属于E 的点,也有不属于E 的点(点P 本身可以属于E ,也可以不属于E ),则称P 为E 的边界点。E 的边界点的全体称为E 的边界。例如上例中,E 1的边界是圆周12 2 =+y x 和 22y x +=4。 设D 是点集。如果对于D 内任何两点,都可用折线连结起来,且该折线上的点都属于D ,则称点集D 是连通的。 连通的开集称为区域或开区域。例如,}0),{(>+y x y x 及 }41),{(22<+0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 h r V 2 π=。 这里,当r 、h 在集合}0,0),{(>>h r h r 内取定一对值),(h r 时,V 的对应值就随之确定。

高等数学(复旦大学版)第十章-多元函数积分学(一)

第十章 多元函数积分学(Ⅰ) 一元函数积分学中,曾经用和式的极限来定义一元函数()f x 在区间[a,b]上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节 二重积分 教学目的: 1、熟悉二重积分的概念; 2、了解二重积分的性质和几何意义,知道二重积分的中值定理; 3、掌握二重积分的(直角坐标、极坐标)计算方法; 4、能根据积分区域和被积函数正确选择积分顺序 教学重点: 1、二重积分的性质和几何意义; 2、二重积分在直角坐标系下的计算 教学难点: 1、二重积分的计算; 2、二重积分计算中的定限问题 教学内容: 一、二重积分的概念 1. 曲顶柱体的体积 设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积. 首先, 用一组曲线网把D 分成n 个小区域?σ 1, ?σ 2, ? ? ? , ?σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个?σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为高而底为?σ i 的平顶柱体的体积为 f (ξ i , η i ) ?σi (i =1, 2, ? ? ? , n ). 这个平顶柱体体积之和 i i i n i f V σηξ?≈=∑),(1 . 可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即 i i i n i f V σηξλ?==→∑),(lim 1 0. 其中λ是个小区域的直径中的最大值.

高数多元函数微分学教案 第一讲 多元函数的基本概念

第八章 多元函数微分法及其应用 第一讲 多元函数的基本概念 授课题目: §8.1多元函数的基本概念 教学目的与要求: 1、理解多元函数的概念. 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质. 教学重点与难点: 重点:多元函数的概念、二元函数的极限和连续的概念. 讲授内容: 一、平面点集 n 维空间 1、平面点集 平面上一切点的集合称为二维空间, 记为R 2 即 R 2=R ?R={(x , y ):x , y ∈R } 坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作 E ={(x , y ):(x , y )具有性质P }. 例如,平面上以原点为中心、r 为半径的圆内所有点的集合是 C ={(x , y ):x 2+y 2

如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U .. 点与点集之间的关系: 任意一点P ∈R 2与任意一个点集E ?R 2之间必有以下三种关系中的一种: (1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )?E , 则称P 为E 的内点. (2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )?E =?, 则称P 为E 的外点. (3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点. E 的边界点的全体, 称为E 的边界, 记作?E . E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E . (4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点. 由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E . 例如, 设平面点集E ={(x , y )|1

高数重要知识点汇总

高等数学上册重要知识点 第一章 函数与极限 一. 函数的概念 1 两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x) = 0[)(x g ],称g(x) 是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x )与g (x )是同阶无穷小。 (3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x ) 2 常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二 求极限的方法 1.两个准则 准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=

高等数学常用概念及公式

高等数学常用概念及公式 ● 极限的概念 当x 无限增大(x →∞)或x 无限的趋近于x 0(x →x 0)时,函数f(x)无限的趋近于常数A ,则称函数f(x)当x →∞或x →x 0时,以常数A 为极限,记作: lim ∞ →x f(x)=A 或 lim 0 x x →f(x)=A ● 导数的概念 设函数y=f(x)在点x 0某邻域内有定义,对自变量的增量Δx =x- x 0,函数有增量Δy=f(x)-f(x 0),如果增量比 x y ??当Δx →0时有极限,则称函数f(x)在点x 0可导,并把该极限值叫函数y=f(x)在点x 0的导数,记为f ’(x 0),即 f ’(x0)=lim →?x x y ??=lim 0x x →0 0)()(x x x f x f -- 也可以记为y ’=|x=x0,dx dy |x=x0或dx x df ) (|x=x0 ● 函数的微分概念 设函数y=f (x )在某区间内有定义,x 及x+Δx 都在此区间内,如果函数的增量 Δy=f (x+Δx )-f(x)可表示成 Δy=A Δx+αΔx 其中A 是常数或只是x 的函数,而与Δx 无关,α当Δx →0时是无穷小量( 即αΔx 这一项是个比Δx 更高阶的无穷小),那么称函数y=f (x )在点x 可微,而A Δx 叫函数y=f (x )在点x 的微分。记作dy ,即: dy=A Δx=f ’(x)dx

● 不定积分的概念 原函数:设f(x)是定义在某个区间上的已知函数,如果存在一个函数F(x),对于该区间上每一点都满足 F ’(x)= f(x) 或 d F(x)= f(x)dx 则称函数F(x)是已知函数f(x)在该区间上的一个原函数。 不定积分:设F(x)是函数f(x)的任意一个原函数,则所有原函数F(x)+c (c 为任意常数)叫做函数f(x)的不定积分,记作 ?dx x f )( 求已知函数的原函数的方法,叫不定积分法,简称积分法。 其中“?”是不定积分的记号;f(x)称为被积函数;f(x)dx 称为被积表达式;x 称为积分变量;c 为任意实数,称为积分常数。 ● 定积分的概念 设函数f(x)在闭区间[a ,b]上连续,用分点 a=x 0

高等数学基础知识点归纳

第一讲函数,极限,连续性 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给 定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集,记作N+。 ⑶、全体整数组成的集合叫做整数集,记作Z。 ⑷、全体有理数组成的集合叫做有理数集,记作Q。 ⑸、全体实数组成的集合叫做实数集,记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就 说A、B 有包含关系,称集合A 为集合B 的子集,记作A ?B。 ⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中 的元素完全一样,因此集合A 与集合B 相等,记作A=B。 ⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合 B 的真子集,记作A 。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。 ②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。 通常记作U。

高等数学同济第七版上册知识点总结归纳

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法

1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! )) 1()...(1(...! 2) 1(1)1(2n n x o x n n x x x +---+ +-+ +=+ααααααα )(1 2)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x

高等数学(同济第五版)第八章-多元函数微分学-练习题册

. 第八章 多元函数微分法及其应用 第 一 节 作 业 一、填空题: . sin lim .4. )](),([,sin )(,cos )(,),(.3arccos ),,(.21)1ln(.102 2 2 2 322= ===-=+=+++-+-=→→x xy x x f x x x x y x y x f y x z z y x f y x x y x z a y x ψ?ψ?则设的定义域为 函数的定义域为函数 二、选择题(单选): 1. 函数 y x sin sin 1 的所有间断点是: (A) x=y=2n π(n=1,2,3,…); (B) x=y=n π(n=1,2,3,…); (C) x=y=m π(m=0,±1,±2,…); (D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。 答:( ) 2. 函数?? ???=+≠+++=0,20,(2sin ),(22222 22 2y x y x y x y x y x f 在点(0,0)处: (A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。 答:( )

. 三、求.4 2lim 0xy xy a y x +-→→ 四、证明极限2222 20 0)(lim y x y x y x y x -+→→不存在。

第 二 节 作 业 一、填空题: . )1,(,arcsin )1(),(.2. )1,0(,0,0 ),sin(1),(.122 =-+== ?????=≠=x f y x y x y x f f xy x xy y x xy y x f x x 则设则设 二、选择题(单选): . 4 2)(;)(2)(;4ln 2)()(;4ln 2 )(:,22 2 2 2 2 2y x y x y x y y x y D e y x y C y y x B y A z z ++++?+?+??=等于则设 答:( ) 三、试解下列各题: .,arctan .2. ,,tan ln .12y x z x y z y z x z y x z ???=????=求设求设 四、验证.2 2222222 2 2 r z r y r x r z y x r =??+??+??++=满足 第 三 节 作 业 一、填空题:

高等数学知识点归纳知识讲解

第一讲: 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=? >?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () () x x t y y t =?? =? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→ 1(0)x x →→∞, 0lim 1x x x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0 lim ln 0n x x x + →=, 0, x x e x →-∞ ?→?+∞→+∞ ?

高等数学基本概念整理

命题人或命题小组负责人签名: 系(部)主任签名: 分院领导签名: ………………………………………………………………密封线…………………………………………………………… §1.1 函数 一、有关四种性质(奇偶性、单调性、周期性、有界性) 1. 0 () (0)()2() ()a a a f x a f x dx f x dx f x ->?? =???? ?当为奇函数当为偶函数 口诀(1):奇偶函数常遇到;对称性质不可忘。 2. 在(a,b )内,若()0f x '>,则()f x 单调增加 若()0f x '<,则()f x 单调减少 口诀(2):单调增加与减少;先算导数正与负 例1 求1 521[()ln(1)].x x I x x e e x x dx --= +-++? 解 1()x x f x e e -=-是奇函数,∵2 112()(),()ln(1)x x f x e e f x f x x x --=-=-=++是奇函数, ∵ 222 22 (1)()ln(1)ln 1 x x f x x x x x +--=-+ -=++ 22ln1ln(1)()x x f x =-++=- 因此2 ()ln(1)x x x e e x x --++是奇函数。 于是1 1 6 61 2027 I x dx x dx -= +== ? ?。 例2 设()()F x f x '=,则下列结论正确的是 (A)若()f x 为奇函数,则()F x 为偶函数。 (B)若()f x 为偶函数,则()F x 为奇函数。 (C)若()f x 为周期函数,则()F x 为周期函数。 (D)若()f x 为单调函数,则()F x 为单调函数。 解 (B)不成立,反例32 (),()13 x f x x F x ==+ (C)不成立,反例()cos 1,()sin f x x F x x x =+=+ (D)不成立,反例2 ()2,()(,)f x x F x x ==-∞+∞在内 (A)成立。 证明 0 ()(0)(),x F x F f t d t f =+ ? 为奇函数, 00 ()(0)()(0)()() (0)()() x x x F x F f t dt F f u d u F f u du F x --=+=+--=+=? ?? 所以,()F x 为偶函数。 例3 设()f x ,()g x 是恒大于零的可导函数,且()()()()0f x g x f x g x ''-<,则当a x b <<时,下列结论成立的是 (A)()()()()f x g b f b g x > (B)()()()()f x g a f a g x > (C)()()()()f x g x f b g b > (D)()()()()f x g x f a g a > 解 ∵2()1[()()()()]0()()f x f x g x f x g x g x g x '??''=-,故(A)成立。 二、有关复合函数 1. 已知()f x ,()g x 求[()]f g x 2. 已知[()]f g x 和()g x ,求()f x 例1、已知12() ()() f x x a f x f x x a ≤?=?>?和12 () ()() g x x b g x g x x b ≤?=?>? 求[()]f g x 解:11112221122 2[()] ()[()] ()[()][()] ()[()] () f g x x b g x a f g x x b g x a f g x f g x x b g x a f g x x b g x a ≤≤?? >≤?=? ≤>??>>?当,当,当,当,

最新高等数学场论基本概念

数学物理基础 梯度、散度和旋度 梯度、散度和旋度是矢量分析里的重要概念。之所以是“分析”,因为三者是三种偏导数计算形式。这里假设读者已经了解了三者的定义。它们的符号分别记作如下: 从符号中可以获得这样的信息: ①求梯度是针对一个标量函数,求梯度的结果是得到一个矢量函数。这里φ称为势函数; ②求散度则是针对一个矢量函数,得到的结果是一个标量函数,跟求梯度是反一下 的; ③求旋度是针对一个矢量函数,得到的还是一个矢量函数。 这三种关系可以从定义式很直观地看出,因此可以求“梯度的散度”、“散度的梯度”、“梯度的旋度”、“旋度的散度”和“旋度的旋度”,只有旋度可以连续作用两次,而一维波动方程具有如下的形式 (1) 其中a为一实数,于是可以设想,对于一个矢量函数来说,要求得它的波动方程,只有求它的“旋度的旋度”才能得到。下面先给出梯度、散度和旋度的计算式: (2) ( 3)

(4)旋度公式略显复杂。这里结合麦克斯韦电磁场理论,来讨论前面几个“X度的X度”。 I.梯度的散度: 根据麦克斯韦方程有: 而 (5)则电势的梯度的散度为 这是一个三维空间上的标量函数,常记作 (6)称为泊松方程,而算符▽2称为拉普拉斯算符。事实上因为定义 所以有 当然,这只是一种记忆方式。 当空间内无电荷分布时,即ρ=0,则称为拉普拉斯方程

当我们仅需要考虑一维情况时,比如电荷均匀分布的无限大平行板电容器之间(不包含极板)的电场,我们知道该电场只有一个指向,场强处处相等,于是该电场满足一维拉普拉斯方程,即 这就是说如果那边平行板电容器的负极板接地,则板间一点处的电压与该点距负极板的距离呈线性关系。 II.散度的梯度: 散度的梯度,从上面的公式中可以看到结果会比较复杂,但是它的物理意义却是很明确的,因为从麦克斯韦方程可以看出空间某点处电场的散度是该点处的电荷密度,那么再求梯度就是空间中电荷密度的梯度。这就好比说清水中滴入一滴红墨水,起初水面红色浓度最高,杯底浓度最低,这样水面与杯底形成一个浓度梯度,红墨水由水面向杯底扩散,最后均匀。在半导体中,载流子分布的不均匀会导致扩散电流。 散度的梯度这个概念其实不常用,因为计算复杂,但在后面讲用它来推导一个矢量恒等式。 III.梯度的旋度: 对于梯度的旋度,直接把(2)式代入(4)式中,有 由于势函数在空间一点的领域内往往是有二阶连续混合偏导数的,因此上式的结果为0.所以说梯度的旋度为零,它的物理意义也是很明确的。 比如一个人从海平面爬到一座山上,无论它是从山的陡坡爬上去还是从缓坡爬上去,亦或者坐直升机上去,重力对他所做的功总是相等的,即力场的做工只与位移有关,而与路径无关,这样的场称为保守场,而保守场是无旋场。再比如绘有等高线的地图,如果某点只有一个一根等高线穿过,那么该点有一个确定的相对高度。如果该点有两条或以上的等高线穿过,则这个点处在悬崖边上,这个点处是不可微,也就没有求梯度的意义。 IV.旋度的散度: 求旋度的散度也是将(4)式代入(3)式即可。若令 (7) 则

2017年369经济类数学微积分基本概念整理

2017年369经济类数学微积分基本概念 整理 1.若y=f(x)互为反函数,则f[g(x)]=x 若limf(x)存在,则limf(x)表示一个常数 x→x0 x→x0 例:已知limf(x)和limf(x)都存在,且f(x)=x^2+3xlimf(x)+2x^3limf(x)求f(x) x→1 x→2 x→1 x→2 若当x→x0时,或x→∞时,f(x)为无界变量,则当x→x0或x→∞时,f(x)必定为无穷大量(此命题是错误的) 例f(x)=x x为有理数 f(x)=1/x x为无理数两个无穷大量和必定为无穷大量(此命题是错误的) 例x→0 (2-1/x)+(3+1/x)=5 5.若x→x0时,f(x)为无穷大量,则当x→x0时ef(x)必定为无穷大量。(此命题是错误的) 当x→1时,1/(x-1)为无穷大量而lim1/(x-!)=∞ lim1/(x-!)= -∞ x→1+ x→1- lim e^1/(x-!)=+∞ lime^1/(x-1)=0 x→1+ x→1- 6.若lim(un,vn)=0,则必定有lim un=0或lim vn=0 n→∞ n→∞ n→∞ (此命题是错误的) 例un=1-(-1)^n vn=1+(-1)^n n=1,2…. U*v=0 因此lim(u,v)=0 但是u,v都存在 7.设对任意的x,总有Ф(x)≤f(x)≤g(x)且lim[g(x)-ф(x)]=0,则limf(x)必定 x→∞ x→∞ 存在。(此命题是错误的) 例设Φ(x)=(x^4-1)/x^2 f(x)=x^2 g(x)=(x^4+1)/x^2 则lim[g(x)-Φ(x)]=0 但limf(x) 不存在 x→∞ x→∞ 8.若y=f(x)在点x0连续,则在点x0必可导。(此命题是错误的) 例:y=∣x∣点x=0 处连续但不可导 已知f(x)=(x-a)g(x),其中g(x)在点x=a的某邻域内有定义,则g(x)在x=a处连续,求fˊ(x) 9.初等函数在定义区间内必定可导。(此命题是错误的) 例y=x^2/3在x=0处不可导 10.若f(x)在点x0可导,则f(x)在点x0必定可导。(此命题是错误的) 例:函数f(x)=(x^2-x-2)x^3-x不可导的点的个数为多少? 11.设f(x)在点x=a处可导,则∣f(x)∣在点x=a不可导的充分条件是f(a)=0且f’(x)≠0

高等数学期末复习--多元函数微分学

高等数学期末复习 第九章 多元函数微分学 一、内容要求 1、会求简单二元函数定义域 2、会求多二元函数表达式和值 3、会求简单二元函数的极限 4、掌握二元函数偏导数定义,性质,能确识别二元函数偏导数定义形式,得出偏导数正确表达 5、会求二元函数偏导数值:求偏导函数,代入点求值 6、会求二元函数微分值:求偏导函数,代入点求微分表达式 7、会按一元函数求导法则求直接函数的偏导数 8、会由轮换对称性确定多元函数对称元导数 9、会用链式规则求抽象形式多元函数的偏导数 10、会求多元函数全微分 11、会求多元隐函数的偏导数 12、会求二元函数驻点,判定二元函数极值的存在性 13、能观察出简单多元函数极值情况 14、能应用多元函数求极值方法解决简单应用问题 15、会求空间曲面的切平面、法线方程 16、会求空间曲线的切线、法平面方程 17、会求多元函数的方向导数 18、会求多元函数的梯度 二、例题习题 1、二元函数x y z arcsin =的定义域是( ) A.|}||||),{(x y y x ≤ B. }0|||||),{(≠≤x x y y x C. }0|||||),{(≠>x x y y x D. }0|||||),{(≠≥x x y y x 解:使函数x y z arcsin =有意义,只要||1,0y x x ≤≠,即||||,0y x x ≤≠,所以,选B. (内容要求1) 2、函数22 1 (,)ln()=++ +f x y x y x y 的定义域为 ; 解:使函数22 1(,)ln()=++ +f x y x y x y 有意义,只要22 0,0x y x y +>+≠,所以填22{(,)|0,0}x y x y x y +>+≠(内容要求1)

关于高等数学知识点归纳

关于高等数学知识点归 纳 标准化管理部编码-[99968T-6889628-J68568-1689N]

第一讲: 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 0()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt =? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 11()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞ ; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ±→) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞∞ ∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→ 1(0)x x →→∞, 0lim 1x x x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0lim ln 0n x x x +→=, 0,x x e x →-∞ ?→?+∞→+∞?

高等数学基本概念、基本公式

目录 一、函数与极限 (2) 1、集合的概念 (2) 2、常量与变量 (3) 2、函数 (4) 3、函数的简单性态 (4) 4、反函数 (5) 5、复合函数 (6) 6、初等函数 (6) 7、双曲函数及反双曲函数 (7) 8、数列的极限 (8) 9、函数的极限 (10) 10、函数极限的运算规则 (11)

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A?A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

相关主题
文本预览
相关文档 最新文档