当前位置:文档之家› 电力电子器件

电力电子器件

电力电子器件
电力电子器件

电力电子器件

电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。主电路:在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。

电力电子器件的特征

◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。

◆为了减小本身的损耗,提高效率,一般都工作在开关状态。

◆由信息电子电路来控制,而且需要驱动电路。

◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器。

电力电子器件的功率损耗

断态损耗

通态损耗:是电力电子器件功率损耗的主要成因。

开关损耗:当器件的开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素。分为开通损耗和关断损耗。

电力电子器件在实际应用中,一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。

电力电子器件的分类

按照能够被控制电路信号所控制的程度

◆半控型器件:指晶闸管(Thyristor)、快速晶闸管、逆导晶闸管、光控晶闸管、双向晶闸管。

◆全控型器件:IGBT、GTO、GTR、MOSFET。

◆不可控器件:电力二极管(Power Diode)、整流二极管。

按照驱动信号的性质

◆电流驱动型:通过从控制端注入或者抽出电流来实现导通或者关断的控制。Thyrister,GTR,GTO。

◆电压驱动型:仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。电力MOSFET,IGBT,SIT。

按照驱动信号的波形(电力二极管除外)

◆脉冲触发型:通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。晶闸管,SCR,GTO。

◆电平控制型:必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通并维持在通断状态。GTR,MOSFET,IGBT。

按照载流子参与导电的情况

◆单极型器件:由一种载流子参与导电。MOSFET、SBD(肖特基势垒二极管)、SIT。

◆双极型器件:由电子和空穴两种载流子参与导电。电力二极管,PN结整流管,SCR,GTR,GTO。

◆复合型器件:由单极型器件和双极型器件集成混合而成,也称混合型器件。IGBT,MCT。

GTO:门极可关断晶闸管。SITH(SIT):静电感应晶体管。

GTR:电力晶体管。MCT:MOS控制晶体管。

ITBT:绝缘栅双极晶体管。MOSFET:电力场效应晶体管。

电力二极管

二极管的基本原理——PN结的单向导电性

◆当PN结外加正向电压(正向偏置)时,在外电路上则形成自P区流入而从N区流出的电流,称为正向电流IF,这就是PN结的正向导通状态。

◆当PN结外加反向电压时(反向偏置)时,反向偏置的PN结表现为高阻态,几乎没有电流流过,被称为反向截止状态。

◆PN结具有一定的反向耐压能力,但当施加的反向电压过大,反向电流将会急剧增大,破坏PN结反向偏置为截止的工作状态,这就叫反向击穿。

按照机理不同有雪崩击穿和齐纳击穿两种形式,反向击穿发生时,采取了措施将反向电流限制在一定范围内,PN结仍可恢复原来的状态,否则PN结因过热而烧毁,这就是热击穿。

齐纳击穿和雪崩击穿区别:齐纳击穿可恢复,齐纳二极管(稳压二极管)击穿后可以自愈,是一种正常的工作状态,齐纳二极管就工作在齐纳击穿区。雪崩击穿不可恢复,是一种非正常的工作状态,一旦二极管工作在雪崩击穿区,该二极管即已损坏报废,表现为短路,失去半导体特性。当齐纳二极管的反向击穿电流超过其允许的最大击穿电流数倍时,齐纳二极管也会发生雪崩击穿,现象是二极管短路报废。

PN结的电容效应

称为结电容CJ,又称为微分电容。按其产生机制和作用的差别分为势垒电容CB和扩散电容CD。势垒电容只在外加电压变化时才起作用,外加电压频率越高,势垒电容作用越明显。在正向偏置时,当正向电压较低时,势垒电容为主。扩散电容仅在正向偏置时起作用。正向电压较高时,扩散电容为结电容主要成分。结电容影响PN结的工作频率,特别是在高速开关的状态下,可能使其单向导电性变差,甚至不能工作。

电力二极管的主要参数

正向平均电流IF(AV):指电力二极管长期运行时,在指定的管壳温度(简称壳温,用TC表示)和散热条件下,其允许流过的最大工频正弦半波电流的平均值。IF(AV)是按照电流的发热效应来定义的,使用时应按有效值相等的原则来选取电流定额,并应留有一定裕量。

正向压降UF:指电力二极管在指定温度下,流过某一指定的稳态正向电流时对应的正向压降。

反向重复峰值电压URRM:指对电力二极管所能重复施加的反向最高峰值电压。使用时,应当留有两倍的裕量。

最高工作结温TJM:结温是指管芯PN结的平均温度,用TJ表示。最高工作结温是指在PN结不致损坏的前提下所能承受的最高平均温度。TJM通常在125~175 C范围之内。

反向恢复时间trr

浪涌电流IFSM:指电力二极管所能承受最大的连续一个或几个工频周期的过电流。

电力二极管的主要类型

普通二极管(General Purpose Diode):又称整流二极管(Rectifier Diode),多用于开关频率不高(1kHz 以下)的整流电路中。其反向恢复时间较长,一般在5 s以上。其正向电流定额和反向电压定额可以达到很高。

快恢复二极管(Fast Recovery Diode——FRD):恢复过程很短,特别是反向恢复过程很短(一

般在5 s以下)。快恢复外延二极管(Fast Recovery Epitaxial Diodes——FRED),采用外延型P-i-N 结构,其反向恢复时间更短(可低于50ns),正向压降也很低(0.9V左右)。从性能上可分为快速恢复和超快速恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100ns以下,甚至达到20~30ns。

肖特基二极管(Schottky Barrier Diode——SBD):属于多子器件。优点在于:反向恢复时间很短(10~40ns),正向恢复过程中也不会有明显的电压过冲;在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管;因此,其开关损耗和正向导通损耗都比快速二极管还要小,效率高。弱点在于:当所能承受的反向耐压提高时其正向压降也会高得不能满足要求,因此多用于200V以下的低压场合;反向漏电流较大且对温度敏感,因此反向稳态损耗不能忽略,而且必须更严格地限制其工作温度。

半控型器件——晶闸管

静态特性

正常工作时的特性:当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。

主要参数电压定额

断态重复峰值电压UDRM:是在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压,国标规定断态重复峰值电压UDRM为断态不重复峰值电压(即断态最大瞬时电压)UDSM的90%。断态不重复峰值电压应低于正向转折电压Ubo。

反向重复峰值电压URRM:是在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。规定反向重复峰值电压URRM为反向不重复峰值电压(即反向最大瞬态电压)URSM的90%。反向不重复峰值电压应低于反向击穿电压。

通态(峰值)电压UT:晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压。通常取晶闸管的UDRM和URRM中较小的标值作为该器件的额定电压。选用时,一般取额定电压为正常工作时晶闸管所承受峰值电压2~3倍。

电流定额

通态平均电流IT(AV:国标规定通态平均电流为晶闸管在环境温度为40 C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。按照正向电流造成的器件本身的通态损耗的发热效应来定义的。一般取其通态平均电流为按发热效应相等(即有效值相等)的原则所得计算结果的1.5~2倍。

维持电流IH:维持电流是指使晶闸管维持导通所必需的最小电流,一般为几十到几百毫安。结温越高,则IH越小。

擎住电流IL:擎住电流是晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流。约为IH的2~4倍

浪涌电流ITSM:指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流。

动态参数

开通时间tgt和关断时间tq

断态电压临界上升率du/dt:在额定结温和门极开路的情况下,不导致晶闸管从断态到通态转换的外加电压最大上升率。电压上升率过大,使充电电流足够大,就会使晶闸管误导通。

通态电流临界上升率di/dt:在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。如果电流上升太快,可能造成局部过热而使晶闸管损坏。

晶闸管的派生器件

快速晶闸管(Fast Switching Thyristor——FST):有快速晶闸管和高频晶闸管。快速晶闸管的开关时间以及du/dt和di/dt的耐量都有了明显改善。从关断时间来看,普通晶闸管一般为数百微秒,快速晶闸管为数十微秒,而高频晶闸管则为10 s左右。高频晶闸管的不足在于其电压和电流定额都不易做高。由于工作频率较高,选择快速晶闸管和高频晶闸管的通态平均电流时,不能忽略其开关损耗的发热效应。

双向晶闸管(Triode AC Switch——TRIAC或Bidirectional triode thyristor):可以认为是一对反并联的普通晶闸管的集成。门极使器件在主电极的正反两方向均可触发导通,在第I和第III象限有对称的伏安特性。双向晶闸管通常用在交流电路中,因此不用平均值而用有效值来表示其额定电流值。

逆导晶闸管(Reverse Conducting Thyristor——RCT):是将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件,不具有承受反向电压的能力,一旦承受反向电压即开通。具有正向压降小、关断时间短、高温特性好、额定结温高等优点,可用于不需要阻断反向电压的电路中。

光控晶闸管(Light Triggered Thyristor——LTT):是利用一定波长的光照信号触发导通的晶闸管。由于采用光触发保证了主电路与控制电路之间的绝缘,而且可以避免电磁干扰的影响,因此光控晶闸管目前在高压大功率的场合。

典型全控型器件

门极可关断晶闸管、电力晶体管、电力场效应晶体管、绝缘栅双极晶体管。

优缺点

电力二极管:结构和原理简单,工作可靠;

晶闸管:承受电压和电流容量在所有器件中最高;

IGBT:开关速度高,开关损耗小,具有耐脉冲电流冲击的能力,通态压降较低,输入阻抗高,为电压驱动,驱动功率小;缺点:开关速度低于电力MOSFET,电压,电流容量不及GTO;

GTR:耐压高,电流大,开关特性好,通流能力强,饱和压降低;缺点:开关速度低,为电流驱动,所需驱动功率大,驱动电路复杂,存在二次击穿问题;

GTO:电压、电流容量大,适用于大功率场合,具有电导调制效应,其通流能力很强;缺点:电流关断增益很小,关断时门极负脉冲电流大,开关速度低,驱动功率大,驱动电路复杂,开关频率低;

MOSFET:开关速度快,输入阻抗高,热稳定性好,所需驱动功率小且驱动电路简单,工作频率高,不存在二次击穿问题;缺点:电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。

常用电力电子器件特性测试

实验二:常用电力电子器件特性测试 (一)实验目的 (1)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;(2)掌握各器件的参数设置方法,以及对触发信号的要求。 (二)实验原理 图1.MATLAB电力电子器件模型 MATLAB电力电子器件模型使用的是简化的宏模型,只要求器件的外特性与实际器件特性基本相符。MATLAB电力电子器件模型主要仿真了电力电子器件的开关特性,并且不同电力电子器件模型都具有类似的模型结构。 模型中的电阻Ron和直流电压源Vf分别用来反映电力电子器件的导通电阻和导通时的门槛电压。串联电感限制了器件开关过程中的电流升降速度,模拟器件导通或关断时的动态过程。MATLAB电力电子器件模型一般都没有考虑器件关断时的漏电流。 在MATLAB电力电子器件模型中已经并联了简单的RC串联缓冲电路,在参数表中设置,名称分别为Rs和Cs。更复杂的缓冲电路则需要另外建立。对于MOSFET模型还反并联了二极管,在使用中要注意,需要设置体内二极管的正向压降Vf和等效电阻Rd。对于GTO和IGBT需要设置电流下降时间Tf和电流拖尾时间Tt。 MATLAB的电力电子器件必须连接在电路中使用,也就是要有电流的回路,

但是器件的驱动仅仅是取决于门极信号的有无,没有电压型和电流型驱动的区别,也不需要形成驱动的回路。尽管模型与实际器件工作有差异,但使MATLAB电力电子器件模型与控制连接的时候很方便。MATLAB的电力电子器件模型中含有电感,因此具有电流源的性质,所以在模块参数中还包含了IC即初始电流项。此外也不能开路工作。 含电力电子模型的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s。电力电子器件的模块上,一般都带有一个测量输出端口,通过输出端m可以观测器件的电压和电流。本实验将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 (1)在MATLAB/Simulink中构建仿真电路,设置相关参数。 (2)改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 Matlab平台 2.仿真参数 (1)Thyristor参数设置: 直流源和电阻参数:

电力电子器件

电力电子器件 电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。主电路:在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。 电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。 ◆由信息电子电路来控制,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器。 电力电子器件的功率损耗 断态损耗 通态损耗:是电力电子器件功率损耗的主要成因。 开关损耗:当器件的开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素。分为开通损耗和关断损耗。 电力电子器件在实际应用中,一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。 电力电子器件的分类 按照能够被控制电路信号所控制的程度

◆半控型器件:指晶闸管(Thyristor)、快速晶闸管、逆导晶闸管、光控晶闸管、双向晶闸管。 ◆全控型器件:IGBT、GTO、GTR、MOSFET。 ◆不可控器件:电力二极管(Power Diode)、整流二极管。 按照驱动信号的性质 ◆电流驱动型:通过从控制端注入或者抽出电流来实现导通或者关断的控制。Thyrister,GTR,GTO。 ◆电压驱动型:仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。电力MOSFET,IGBT,SIT。 按照驱动信号的波形(电力二极管除外) ◆脉冲触发型:通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。晶闸管,SCR,GTO。 ◆电平控制型:必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通并维持在通断状态。GTR,MOSFET,IGBT。 按照载流子参与导电的情况 ◆单极型器件:由一种载流子参与导电。MOSFET、SBD(肖特基势垒二极管)、SIT。 ◆双极型器件:由电子和空穴两种载流子参与导电。电力二极管,PN结整流管,SCR,GTR,GTO。 ◆复合型器件:由单极型器件和双极型器件集成混合而成,也称混合型器件。IGBT,MCT。 GTO:门极可关断晶闸管。SITH(SIT):静电感应晶体管。

变频器常用电力电子器件

无锡市技工院校 教案首页 课题:变频器常用电力电子器件 教学目的要求:1. 了解变频器中常用电力电子器件的外形和符号2.了解相关电力电子器件的特性 教学重点、难点: 重点:1. 认识变频器中常用电力电子器件 2. 常用电力电气器件的符号及特性 难点:常用电力电气器件的特性 授课方法:讲授、分析、图示 教学参考及教具(含多媒体教学设备): 《变频器原理及应用》机械工业出版社王延才主编 授课执行情况及分析: 在授课中,主要从外形结构、符号、特性等几方面对变频器中常用的电力电子器件进行介绍。通过本次课的学习,大部分学生已对常用电力电子器件有了一定的认识,达到了预定的教学目标。

板书设计或授课提纲

电力二极管的内部也是一个PN 结,其面积较大,电力二极管引出了两个极,分别称为阳和阴极K 。电力二极管的功耗较大,它的外形有螺旋式和平板式两种。2.伏安特性:电力二极管的阳极和阴极间的电压和流过管子的电流之间的关系称为伏安特性。 如果对反向电压不加限制的话,二极管将被击穿而损坏。(1)正向特性:电压时,开始阳极电流很小,这一段特性 曲线很靠近横坐标。当正向电压大于时,正向阳极电流急剧上升,管子正向导 通。如果电路中不接限流元件,二极管将 被烧毁。

晶闸管的种类很多,从外形上看主要由螺栓形和平板形两种,螺栓式晶闸管容量一般为10~200A;平板式晶闸管用于200A3个引出端分别叫做阳极A、阴极 控制极。 结构 晶闸管是四层((P1N1P2N2)三端(A、K、G)器件。 晶闸管的导通和阻断控制 导通控制:在晶闸管的阳极A和阴极K间加正向电压,同时在它的门极 正向触发电压,且有足够的门极电流。 晶闸管一旦导通,门极即失去控制作用,因此门极所加的触发电压一般为脉冲电压。 管从阻断变为导通的过程称为触发导通。门极触发电流一般只有几十毫安到几百毫安, 管导通后,从阳极到阴极可以通过几百、几千安的电流。要使导通的晶闸管阻断,必须将阳极电流降低到一个称为维持电流的临界极限值以下。 三、门极可关断晶闸管(GTO) 门极可关断晶闸管,具有普通晶闸管的全部优点,如耐压高、电流大、控制功率大、使用方便和价格低;但它具有自关断能力,属于全控器件。在质量、效率及可靠性方面有着明显的优势,成为被广泛应用的自关断器件之一。 结构:与普通晶闸管相似,也为PNPN四层半导体结构、三端(阳极 )器件。 门极控制 GTO的触发导通过程与普通晶闸管相似,关断则完全不同,GTO 动电路从门极抽出P2基区的存储电荷,门极负电压越大,关断的越快。 四、电力晶体管(GTR) 电力晶体管通常又称双极型晶体管(BJT),是一种大功率高反压晶体管,具有自关断能力,并有开关时间短、饱和压降低和安全工作区宽等优点。它被广泛用于交直流电机调速、中频电源等电力变流装置中,属于全控型器件。 工作原理与普通中、小功率晶体管相似,但主要工作在开关状态, 承受的电压和电流数值较大。 五、电力MOS场效应晶体管(P-MOSFET) 电力MOS场效应晶体管是对功率小的电力MOSFET的工艺结构进行改进,在功率上有

电力电子元件简介

電力電子元件簡介
Introduction to Power Electronic Devices
C. M. Liaw Department of Electrical Engineering National Tsing Hua University Hsinchu, Taiwan, ROC.
兩段式電熱控制
(應用 Power diode)
AC source Power diode AC source
Load
無段式電熱控制 (應用 SCR)
SCR
P
Load
Firing circuit
Diode: Uncontrolled turn-on and turn-off
SCR: Controlled turn-on and uncontrolled turn-off
不可控制交流輸出電壓 故控制性能較差
可控制交流輸出電壓 故控制性能較佳
Page 1

常用功率半導體元件之額定(表二) Voltage/current ratings Switching frequency (speed) Switching time On-state resistance (or on-state voltage/current)
功率半導體元件 功率半導體元件
(A) 閘流體 (Thyristor) 或矽控整流器 (Silicon Controlled Rectifier, SCR) : Controlled turn-on, uncontrolled turn-off (B) 雙向閘流體 (Bidirectional Thyristor 或 TRIAC) (C) GTO (Gate Turn-off Thysistor) (D) 基體閘換向閘流體 (Integrated Gate-Commutated Thyristor, IGCT): It is introduced by ABB in 1997. It is a high-voltage, hard-driven, asymmetrical-blocking GTO with unity gain. The gate drive circuit is built-in on the device module. (E) 功率電晶體 (Power BJT) : Current control device (F) IGBT (Insulated Gate Bipolar Transistor): - Combines the conduction characteristic of BJT and the control characteristic of the MOSFET (G) MOS控制閘流體 (MOS -controlled Thyristor, MCT): - Combines the load characteristic of the thyristor and the control characteristic of the MOSFET - Low on-state voltage (H) 功率金氧半電晶體 (Power MOSFET) : Voltage control device (I) 其它
耐壓 耐流
操作 速度
Page 2

常用电力电子器件

第5章 常用电力电子器件 在开关电源中,电力电子器件是完成电能转换以及主电路拓扑中最为关键的元件。为降低器件的功率损耗,提高效率,电力电子器件通常工作于开关状态,因此又常称为开关器件。电力电子器件种类很多,按照器件能够被控制电路信号所控制的程度,可以将电力电子器件分为①不可控器件,即二极管;②半控型器件,主要包括晶闸管(SCR)及其派生器件;③全控型器件,主要包括绝缘栅双极型晶体管(IGBT)、电力晶体管(GTR)、电力场效应晶体管(电力MOSFET)等。半控型及全控型器件按照驱动方式又可以分为电压驱动型、电流驱动型两类,上述分类见图5-1。 电力电子器件 不可控器件 二极管半控型器件 SCR 全控型器件 IGBT 电力MOSFET GTR GTO 晶闸管 电力电子器件 电压驱动型 电流驱动型 电力MOSFET IGBT SCR GTO 晶闸管GTR 图5-1电力电子器件的分类 随着半导体材料及技术的发展,新型电力电子器件不断推出,传统电力电子器件的性能也不断提高,这成为包括开关电源在内的各种电力电子装置的体积、效率等性能指标不断提高的重要因素。了解和掌握各种电力电子器件的特性和使用方法是正确设计开关电源的基础。 在开关电源中应用的电力电子器件主要为二极管、IGBT 和MOSFET 。SCR 在开关电源的输入整流电路及其软起动中有少量应用,GTR 由于驱动较为困难、开关频率较低,也逐渐被IGBT 和MOSFET 所取代。因此这里将主要介绍二极管、IGBT 和MOSFET 的工作原理,主要参数及驱动方法。 5. 1二极管 二极管是最为简单但又是十分重要的一种电力电子器件,在开关电源的输入整流电路、逆变电路、输出高频整流电路以及缓冲电路中均有使用。 1、二极管的基本结构及工作原理 开关电源中应用的二极管除电压、电流等参数与电子电路中的二极管有较大差别外,其基本结构和工作原理是相同的,都是由半导体PN 结构成,即P 型半导体与N 型半导体结合构成,其结构见图5-2。 P 型半导体是在半导体中添加三价元素,因此硅原子外层缺少一个电子形成稳定结构,即形成空穴。N 型半导体是在半导体中添加五价元素,因此它在形成稳定结构后,半导体晶体中能给出一个多余的电子。在纯净的半导体中,空穴和电子成对出现,数量极少,所以导电能力很差。而P 型或N 型半导体中的空穴或自由电子数量大大增加,导电能力大大增强。在P 型半导体中空穴数远远大于自由电子数,因此空穴称为多子,自由电子称为少子。在N 型半导体中则相反,空穴为少子,自由电子为多子。

电力电子基础知识大作业要点

《电力电子技术》课程大作业电力电子技术器件、电路和技术综述 院(系)名称信息工程学院 专业名称电子信息工程技术 学生姓名XXX 学号xxx 指导教师王照平 2015年6月12日

基于电力电子技术器件、电路和技术综述的 1、概述 从广义来讲,电子技术应包含信息电子技术和电力电子技术两大分支,而通常所说的电子技术一般指信息电子技术。 电力电子技术也称为电力电子学,它真正成为一门独立的学科始于1957年第一只晶闸管的问世。在1970年国际电气和电子工程协会(IEEE)电力电子学会上对电力电子技术作了以下定义:“电力电子技术就是有效地使用电力电子器件,应用电路和设计理论及分析开发工具,实现对电能的高效能变换和控制的一门技术。它包括对电压、电流频率和波形的变换。”简言之,电力电子技术就是利用电力电子器件对电能形态进行变换和控制的一门技术。 电力电子技术是电力、电子控制三大电气工程技术领域之间的交叉学科,它们之间的关系可用倒三角图形描述,如图1-1所示。 图1-1 描述电力电子学的倒三角形 第一,电力电子技术是在电子技术的基础上发展起来的,它们都可可分为器件、电路和应用三个部分,且器件的材料和制造工艺基本相同,只有两者的应用目的有所不同,电

子技术应用于信息的处理(如放大等),电力电子技术应用于电力变换和控制,它所变换的功率可大到数百甚至数千兆瓦,也可以小到几瓦或毫瓦数量级。第二,电力电子技术广泛应用于电器工程,如高压直流输电、静止无功补偿、电力机车牵引、交直流电力传动、电解、励磁、电加热、高性能交直流电源等电力系统和电器工程中,它对电器工程的现代化起着重要推动作用。第三,电力电子技术可以看成是弱电控制强电的技术,是弱点和强电之间的接口。而控制理论是实现这种接口的一种强有力的纽带,是电力电子技术重要理论依据。所以,也可以认为:电力电子技术是运用控制理论将电子技术应用到电力领域的综合性技术。 2、电力电子常用器件 2.1、电力电子器件概念 可以直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。 2.2、电力电子器件分类 按照电力电子器件能够被控制所实现控制的程度分为下列三类: 不可控器件(Power Diode):不能用控制信号来控制其通断, 因此也就不需要驱动电路。 半控型器件(Thyristor):通过控制信号可以控制其导通而不能控制其关断 全控型器件(IGBT,MOSFET):通过控制信号既可控制其导通又可控制其关断,又称自关断器件。 按照驱动电路加在电力电子器件控制端和公共端之间的信号的性质,我们又可以将电力电子器件分为电流驱动型和电压驱动型两类: 电流驱动型:通过从控制端注入或者抽出电流来实现导通或者关断的控制。 电压驱动型:仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。 2.3、不可控器件—电力二极管 2.3.1 电力二极管的工作原理 基本结构和工作原理与信息电子电路中的二极管是一样的。由一个面积较大的PN

常用电力电子器件特性测试

实验二:常用电力电子器件特性测试 (一) 实验目的 (1)掌握几种常用电力电子器件(SCR 、GTO 、MOSFET 、IGBT )的工作特性; (2)掌握各器件的参数设置方法,以及对触发信号的要求。 (二) 实验原理 A + K ak V _ f _ 图1.MATLAB 电力电子器件模型 MATLAB 电力电子器件模型使用的是简化的宏模型,只要求器件的外特性与实际器件特性基本相符。MATLAB 电力电子器件模型主要仿真了电力电子器件的开关特性,并且不同电力电子器件模型都具有类似的模型结构 。 模型中的电阻Ron 和直流电压源Vf 分别用来反映电力电子器件的导通电阻和导通时的门槛电压。串联电感限制了器件开关过程中的电流升降速度,模拟器件导通或关断时的动态过程。MATLAB 电力电子器件模型一般都没有考虑器件关断时的漏电流。 在MATLAB 电力电子器件模型中已经并联了简单的RC 串联缓冲电路,在参数表中设置,名称分别为Rs 和Cs 。更复杂的缓冲电路则需要另外建立。对于MOSFET 模型还反并联了二极管,在使用中要注意,需要设置体内二极管的正向压降Vf 和等效电阻Rd 。对于GTO 和IGBT 需要设置电流下降时间Tf 和电流拖尾时间Tt 。 MATLAB 的电力电子器件必须连接在电路中使用,也就是要有电流的回路,

但是器件的驱动仅仅是取决于门极信号的有无,没有电压型和电流型驱动的区别,也不需要形成驱动的回路。尽管模型与实际器件工作有差异,但使MATLAB电力电子器件模型与控制连接的时候很方便。MATLAB 的电力电子器件模型中含有电感,因此具有电流源的性质,所以在模块参数中还包含了IC即初始电流项。此外也不能开路工作。 含电力电子模型的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s。电力电子器件的模块上,一般都带有一个测量输出端口,通过输出端m可以观测器件的电压和电流。本实验将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 (1)在MATLAB/Simulink中构建仿真电路,设置相关参数。 (2)改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 Matlab平台 2.仿真参数 (1)Thyristor参数设置: 直流源和电阻参数:

4.1 典型全控型电力电子器件

典型全控型电力电子器件 教学目的和要求:掌握门极可关断晶闸管的工作原理及特性、电力晶体管的工作 原理,了解电力场控晶体管的特性与参数及安全工作区。掌握电力场控晶体管的 工作原理。掌握绝缘栅双极型晶体管的工作原理、参数特点。了解静电感应晶体 管静电感应晶闸管的工作原理。 重点与难点:掌握电力晶体管、电力场控晶体管、绝缘栅双极型晶体管的工作原 理、参数特点。 教学方法: 借助PPT演示、板书等多种形式启发式教学 预复习任务:复习上节课学的半控型器件晶闸管的相关知识,对比理解掌握本节课程。内容导入: 门极可关断晶闸管——在晶闸管问世后不久出现。 全控型电力电子器件的典型代表:门极可关断晶闸管、电力晶体管、 电力场效应晶体管、绝缘栅双极晶体管。 一、门极可关断晶闸管 晶闸管的一种派生器件。可以通过在门极施加负的脉冲电流使其关断。 GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大 功率场合仍有较多的应用。 1. GTO的结构和工作原理 与普通晶闸管的相同点: PNPN四层半导体结构,外部引出阳极、阴极和门 极。和普通晶闸管的不同点:GTO是一种多元的功率集成器件。 工作原理:与普通晶闸管一样,可以用图所示的双晶体管模型来分析。

由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极电流增益α1 和α2 。α1+α2=1是器件临界导通的条件。 GTO的关断过程与普通晶闸管不同。关断时,给门极加负脉冲,产生门极电流-I G,此电流使得V1管的集电极电流I Cl被分流,V2管的基极电流I B2减小,从而使I C2和I K减小,I C2的减小进一步引起I A和I C1减小,又进一步使V2的基极电流减小,形成内部强烈的正反馈,最终导致GTO阳极电流减小到维持电流以下,GTO由通态转入断态。 结论: ?GTO导通过程与普通晶闸管一样,只是导通时饱和程度较浅。 ?GTO关断过程中有强烈正反馈使器件退出饱和而关断。 ?多元集成结构还使GTO比普通晶闸管开通过程快,承受d i/d t能力强。 2. GTO的动态特性 开通过程:与普通晶闸管相同 关断过程:与普通晶闸管有所不同 3. GTO的主要参数 (a)开通时间t on (b)关断时间t off (c)最大可关断阳极电流I ATO (d)电流关断增益βoff ——最大可关断阳极电流与门极负脉冲电流最大值I GM之比称为电流关断增益。 βoff一般很小,只有5左右,这是GTO的一个主要缺点。1000A的GTO关断

电力电子课后习题答案-部分

2-11试列举你所知道的电力电子器件,并从不同的角度对这些电力电子器件进行分类。目前常用的控型电力电子器件有哪些? 答:1. 按照器件能够被控制的程度,分为以下三类: (1)半控型器件:晶闸管及其派生器件 (2)全控型器件:IGBT,MOSFET,GTO,GTR (3)不可控器件:电力二极管 2. 按照驱动信号的波形(电力二极管除外) (1)脉冲触发型:晶闸管及其派生器件 (2)电平控制型:(全控型器件)IGBT,MOSFET,GTO,GTR 3. 按照器件内部电子和空穴两种载流子参与导电的情况分为三类: (1)单极型器件:电力 MOSFET,功率 SIT,肖特基二极管 (2)双极型器件:GTR,GTO,晶闸管,电力二极管等 (3)复合型器件:IGBT,MCT,IGCT 等 4.按照驱动电路信号的性质,分为两类: (1)电流驱动型:晶闸管,GTO,GTR 等 (2)电压驱动型:电力 MOSFET,IGBT 等 常用的控型电力电子器件:门极可关断晶闸管, 电力晶闸管,电力场效应晶体管,绝缘栅双极晶体管。 2-15 对晶闸管触发电路有哪些基本要求?晶闸管触发电路应满足下列要求: 1)触发脉冲的宽度应保证晶闸管的可靠导通; 2)触发脉冲应有足够的幅度,对户外寒冷场合,脉冲电流的幅度应增大为器件最大触发电流的3-5倍,脉冲前沿的陡度也需增加,一般需达到1-2A/US。 3)所提供的触发脉冲应不超过晶闸管门极的电压、电流和功率定额,且在门极伏安特性的可靠出发区域之内。 4)应有良好的抗干扰性能、温度稳定性及与主电路的电气隔离。 2-18 IGBT、GTR、GTO和电力MOSFET的驱动电路各有什么特点? IGBT驱动电路的特点是:驱动电路具有较小的输出电阻,IGBT是电压驱动型器件,IGBT 的驱动多采用专用的混合集成驱动器。 GTR驱动电路的特点是:驱动电路提供的驱动电流有足够陡的前沿,并有一定的过冲,这样可加速开通过程,减小开通损耗;关断时,驱动电路能提供幅值足够大的反向基极驱动电流,并加反偏截止电压,以加速关断速度。 GTO驱动电路的特点是:GTO要求其驱动电路提供的驱动电流的前沿应有足够的幅值和陡度,且一般需要在整个导通期间施加正门极电流,关断需施加负门极电流,幅值和陡度要求更高,其驱动电路通常包括开通驱动电路,关断驱动电路和门极反偏电路三部分。 电力MOSFET驱动电路的特点:要求驱动电路具有较小的输入电阻,驱动功率小且电路简单。 2、晶闸管对触发脉冲的要求是要有足够的驱动功率、触发脉冲前沿要陡幅值要高和触发脉冲要与晶闸管阳极电压同步。 1.晶闸管两端并联R、C吸收回路的主要作用有哪些?其中电阻R的作用是什么? 答:R、C回路的作用是:吸收晶闸管瞬间过电压,限制电流上升率,动态均压作用。R的作用为:使L、C形成阻尼振荡,不会产生振荡过电压,减小晶闸管的开通电流上升率,降低开通损耗。、

相关主题
文本预览
相关文档 最新文档