当前位置:文档之家› 物理化学学习方法

物理化学学习方法

物理化学学习方法
物理化学学习方法

物理化学学习方法

关于热力学定律和热力学基本方程物理化学学习方法

物理化学学习方法

在谈学习方法之前,首先要转变一个观念,夸大教师在学习上的作用。关于教与学,向来就有猎枪与干粮、渔与鱼之争,干粮与鱼总有吃尽的时候,而唯有成为渔翁和猎人才有取之不尽的食物,那种把一切都在课堂上讲懂的是不负责任的大学教师,一个孩子总要断奶,教师的作用是释疑,使学生在学习时少走弯路、事半功倍。丢掉幻想,一切靠自己钻研、思考和领悟。

犹如没有包医百病的灵丹妙药,不存在适合于任何人的奇妙的学习方法。

我自己学习物理化学的方法,应该说也走过弯路,最后形成了自己的方法,择其一二介绍如下。

一、勤于思考:十分重视教科书,把其原理、公式、概念、应用一一认真思考,不粗枝大叶,且眼手并用,不放过细节,如数学运算。对抽象的概念如熵等千方百计领悟其物理意义,甚至不妨采用形象化的理解。适当地与同学老师交流、讨论,在交流中摒弃错误。

二、勤于应用:在学习阶段要有意识地应用原理去解释客观事物,去做好每一道习题,与做物化实验一样,“应用”对加深对原理的理解有神奇的功效,有许多难点是通过解题才真正明白的。做习题不在于多,而在于精。对于典型的题做完后一定要总结和讨论,力求多一点“觉悟”。以我的习惯宁肯精做一题,也不马虎做十题。过分地依赖题解书是十分有害的。

三、勤于对比与总结:这里有纵横二个方面,就纵向来说,一个概念原理总是经历提出、论证、应用、扩展等过程,并在课程中多次出现,进行总结定会给你豁然开朗的感觉。就横向来说,一定存在相关的原理,其间一定有内在的联系,如熵增原理、Gibbs自由能减少原理、平衡态稳定性等,通过对比对其相互关系、应用条件等定会有更深的理解,又如把许多相似的公式列出对比也能从相似与差别中感受其意义与功能。初学物化一定要有自己的笔记本,在课堂上做笔记,在自习时进行总结,并随时记下自己学习中的问题及感悟到的思想火花。

书本上的、课堂上的物化都不属于自己,只有经历刻苦学习转化为自己的“觉悟”才是终身有用的。

第二、三章是热力学部分的核心与精华,在学习和领会本章内容中,有几个问题要作些说明。

1. 热力学方法在由实践归纳得出的普遍规律的基础上进行演绎推论的一种方法。

热力学中的归纳,是从特殊到一般的过程,也是从现象到本质的过程。拿第二定律来说,人们用各种方法制造第二类永动机,但都失败了,因而归纳出一般结论,第二类永动机是造不出来的,换句话说,功变为热是不可逆过程。第二定律抓住了所有宏观过程的本质,即不可逆性。

热力学方法的主体是演绎。热力学的整个体系,就是在几个基本定律的基础上,通过循环和可逆过程的帮助,由演绎得出的大量推论所构成。有些推论与基本定律一样具有普遍性,有些则结合了一定的条件,因而带有特殊性。例如从第二定律出发,根据可逆过程的特性,证明了卡诺定理,并得出热力学温标,然后导出了克劳修斯不等式,最终得出了熵和普遍的可逆性判据。以后又导出一些特殊条件下的可逆性判据。这个漫长的演绎推理过程,具有极强的逻辑性,是热力学精华之所在。采用循环和以可逆过程为参照,则是热力学独特的基本方法。

2. 热力学基本方程是热力学理论框架的中心热力学基本方程将p、V、T、S、U、H、A、G 等八个状态函数及其变化联系起来,它是一种普遍联系,可以由一些性质预测或计算另一些性质。只要输入的数据是可靠的,得到的结果必定可靠。例如根据由基本方程导得的克拉佩龙-克劳修斯方程,可由较容易测定的

饱和蒸气压随温度的变化,预测较难测定的相变热,这种预测是热力学理论最能动之所在。

3. 解决实际问题时还必须输入物质特性热力学理论是一种普遍规律,必须结合实际系统的特点,才能得出有用结果。实际系统的物质特性主要有两类,即第一章所介绍的pVT关系和标准态热性质。这两类性质本身并不能从热力学理论得到,它们来自直接实验测定、经验半经验方法,或更深层次的统计力学理论。

4. 过程的方向和限度以及能量的有效利用是两类主要的应用它们都植根

于可逆性判据或不可逆程度的度量。由此得出的平衡判据,即前者的依据,由此得出的功损失和有效能概念,则是后者的出发点。还要指出,不可逆程度还将引出第三个重要的应用领域,即不可逆过程的热力学,不可逆程度与时间联系,就是不可逆过程热力学中的重要概念"熵产生"。

5. 热力学计算主要内容是Q、W、ΔU、.H、ΔS、ΔA和ΔG的计算。最基本的公式有两个,还有六个最基本的定义式,由此派生出的许多公式,大都是结合某种条件的产物。当求解具体问题时,要注意:

⑴明确所研究的系统和相应的环境。

⑵问题的类型:I. 理想气体的pVT变化;Ⅱ.实际气体、液体或固体的pVT 变化;Ⅲ.相变化;Ⅳ.化学变化;Ⅴ.上述各种类型的综合。

⑶过程的特征:a. 恒温可逆过程;b. 恒温过程;c. 绝热可逆过程;d. 绝热过程;e. 恒压过程;f.恒容过程;g. 上述各种过程的综合;h. 循环过程。

⑷确定初终态。

⑸所提供的物质特性,即pVT关系和标准热性质。

⑹寻找合适的计算公式。这是最费神也是最重要的一步。复杂性在于:a. 具体计算公式都是有条件的,不同类型不同过程的公式不能张冠李戴。b. Q、W、ΔU、ΔH、ΔS、ΔA、ΔG是相互关联的,计算时要注意方法和技巧。先计算哪一个要根据具体情况而定,选择得合适往往可以大大简化计算过程。c. 有些还需要设计过程进行计算。设计过程是因为直接计算有困难,但由于状态函数的变化只决定于初终态,因而可以利用题目所给条件,设计有效过程,达到原来的计算目的。

关于多组分系统的热力学,逸度和活度

本章的两大部分分别是第二章和第一章内容向多组分系统的延伸。

第一部分是多组分系统的热力学普遍规律,核心是引入化学势μi。组成可变的多组分系统热力学基本方程与组成不变的相应方程的区别,就在于多了一项系数Σμidni。由此得到适用于相变化和化学变化过程的平衡判据,并得出用化学势表示的相平衡条件和化学平衡条件。它们将成为进一步研究相平衡和化学平衡的出发点。但正如本书着重强调的,普遍规律必须结合物质特性才能解决实际问题,后者就是第二部分的中心内容,它总结了本世纪初至今物理化学和化工热力学界所积累的丰富经验,其目标是提供统一而又简洁的化学势表达式。这就要求对物质特性作重新概括。逸度和活度的引入是这种重新概括的成果。它们共同的巧妙之处,在于选用了恰当的参考状态,或已经包含了物质特性的相当重要部分,而这部分在进一步推导时又大多消去。剩下的实际组分与处于参考状态的

组分的差异,采用了校正压力即逸度和校正摩尔分数(或浓度)即活度,因而使化学势表达式具有十分简洁的形式。这不但给进一步推导带来极大的便利,例如相平衡条件可简化为β,就是在实际应用和计算时也节省了时间。我们曾指出,逸度和活度的引入并没有使实际系统的复杂性消失,它仍隐藏在逸度和活度之中。然而由于人们已经找出了许多有关逸度和活度的规律,虽然找寻规律是辛苦的,但别人在应用时却方便了。例如应用对应状态方法,设想不引入逸度,而是用普遍化压缩因子图计算不同压力下的体积,然后积分得到化学势的变化,需要相当的工作量,现在用普遍化逸度因子图,一步就得到结果。这一点在工程上显得尤其重要。这也是逸度和活度普遍受到工程界欢迎的重要原因。

人们常有一种误解,以为逸度只适用于气态混合物,实际上从路易斯提出时就对气液固及其混合物进行了统一的定义。但是由于早期的状态方程只用于气相,因此使逸度的应用受到限制,并且相应地发展了主要应用于液相和固相的活度。现在状态方程应用于气液两相及其相变已经不是新鲜事了。因此逸度的应用特别是向液相发展已经成为潮流。然而活度的生命力并未减退。这是因为一方面,它只需要混合物相平衡时的pTxy关系,一般不需要研究难度较高的pVTx的关系;另一方面,对于较复杂的系统如电解质溶液、高分子溶液和生物大分子溶液等,状态方程研究还刚刚开始,至于能同时应用于液固两相的状态方程,则更是遥远。

还要说明,我们在讨论逸度和活度的求取时,主要强调了pVTx关系和pTxy关系。而对于热性质,并没有多化笔墨。这是由于篇幅限制之故。

关于相平衡

本章的内容分为两大部分,一是实验规律,二是理论推导与计算,它们是研究多组分系统相平衡相辅相成的两个方面。实验是基础,它提供第一手的实用的资料,并且是检验理论的依据。理论则说明问题的本质,它不仅能帮助我们有效地整理和关联实验数据,得到便于使用的数学方程或模型,更重要的是有预测功能,可以大大减少实验工作量。

实际系统的相图千变万化,本章中只能介绍一些最基本的类型,重要的是掌握规律。

在任一类型的二元相图中,线条总是成对地出现,例如气相线和液相线,液相线和固相线等,这是因为平衡时两相组成一般并不相同之故。又如恒温相图和恒压相图中气相线与液相线的位置正好颠倒。再如从液态理想混合物、一般正偏差、最低恒沸点、部分互溶到完全不互溶系统的相图,体现着正偏差一直增大引起的变化等。还有许多其它的规律值得去总结。有两点值得引起重视:第一,本章着重介绍的是T-x图和p-x图。然而在高压相平衡领域多见T-p图,在冶金、材料领域多见投影图。第二,本章着重介绍的是两组分系统,实际应用时常遇到三组分、四组分乃至更复杂的系统。本章材料的组织,力图帮助读者在将来顺利实现这种过渡。

对于相平衡理论计算,需综合运用热力学普遍规律和物质特性。本章已作了较全面的概括。但是由于篇幅和时间限制,我们只能着重于理想混合物和理想稀溶液的计算,对非理想混合物的实际应用,要用到逸度和活度,只能举极少量的例子。但是作为框架,已经基本构筑完备。读者将来可能遇到更复杂的运算,涉及各种新近发展的状态方程和活度因子关联式,但总可以在本章中找到基本原理方面的依据以及基本的计算思路。

本章是在宏观层次介绍研究相平衡的实验方法和理论方法。更深入地研究相平衡系统的特性,要发展状态方程理论、溶液理论以及固体结构理论,它涉及统计力学、凝聚态物理和量子化学,要进入从微观到宏观的层次以及微观的层次。

关于化学平衡

化学平衡的概念早就为人们所认识。化学平衡的原理则经历了一个从经验到理论的不断完善的过程。早在上世纪下半叶建立的吕·查德里平衡移动原理告诉我们,若条件(压力、温度、体积等)发生变更,平衡便向削弱或解除这种变更的方向移动。这一原理长期指导着人们去认识各种条件对平衡的影响。但它是一个经验的定性的规则。对化学平衡的定量研究逐步使人们认识到,存在一个平衡常数Kc,它决定于反应本性和温度。最早得出的是以浓度表示的平衡常数,以后又逐步建立了Kx、Kp等,对平衡的理解不断深入,对平衡的计算更为准确。

化学热力学出现以后,才从理论上证明确实存在平衡常数。由热力学理论导得的Kf、Ka等,基本上不随压力和平衡组成而变,表现出比Kx、Kc、Kp等有明显的优越性。但由于选择标准状态上的不一致,以及各平衡常数间的单位差别,仍存在一定程度的混乱。一直到最近,国际上才逐步接受了统一的标准。本章介绍的标准平衡常数,不受反应类型的限制,可以用统一的公式表达,是只决定于反应本性和温度的数,它与各种实用的平衡常数之间有确定的换算关系。但也必须明确,具体应用时如计算平衡转化率,还是要用Kx、Kc、Kp,这时必须输入反应物质的特性,如逸度因子、活度因子等。

化学平衡热力学理论的最大贡献,在于开辟了应用热性质数据从理论上计算平衡常数的途径。这不仅节省了大量实验时间,更重要的是大大提高了平衡常数的准确度,使许多实验难以准确测定的反应的平衡常数得以解决。至于热性质数据的来源,第一章已经介绍,有三种方法,即实验、半经验和理论方法,后者要进入从微观到宏观的层次。平衡常数的理论计算相应地有另一条有效途径,它是在光谱数据或量子力学提供的微观物质特性的基础上,应用统计力学原理进行计算,这将在第六章介绍。

污水的物理处理

污水的物理处理 一、污水处理方法简介 污水中含有各种有毒、有害物质,如不加处理任意排放,会污染环境,造成公害,所以,在排放前必须先处理。 污水处理的实质是:利用各种方法将污水中所含的污染物质分离出来或将其转化为无害的物质,使污水得到净化。 1、污水处理方法: ⑴按照作用的原理分:物理法、化学法、生物化学法和物理化学法。 物理法:是利用物理作用来分离废水中呈悬浮状态的污染物质,在处理过程中不改变污染物的化学性质。 化学法:是利用化学反应来分离或回收废水中的污染物质,或将其转化为无害的物质。 生物化学法:是利用微生物的生理作用来去除废水中溶解的和胶体状态的有机物。 物理化学法:是通过物理和化学的综合作用使废水得到净化。 ⑵按照处理程度分:一级处理、二级处理和深度处理。 ①一级处理:主要采用物理处理方法,像格栅、沉砂池、初次沉淀池等, 。 去除对象:污水中的悬浮物,一般可以去除50%左右的悬浮物和25%~30%左右的BOD 5②二级处理:物理法+生物法 去除对象:主要去除有机污染物,一般BOD的去除率可以在90%以上,出水的BOD在20mg/L以下,有些还可以去除N、P等营养元素。 ③深度处理:为了满足高标准的受纳水体要求或以回用为目的。主要采用物理化学处理方法及生化法。 2、污水处理方法的组合:遵循的原则:先易后难,先简后繁。 也就是说,首先,去除大块的垃圾以及漂浮物,然后在依次去除悬浮固体、胶体物质及溶解性物质,即先物理法,在化学法和生化法,某种污水具体采用哪种处理工艺,还要根据污水的水质、水量、经济效益及排放要求等共同决定。 3、城市污水处理典型流程: 二、物理法 常见的物理处理法有:格栅或者筛网、调节、沉淀、澄清、气浮等。 (一)格栅(筛网)的运行管理 1、格栅(筛网)的作用:将污水中的大块污物(树枝、木塞等)拦截出来,防止其将堵塞后续单元的机泵或工艺管线。 和筛网比较,格栅的应用更为广泛,所以,我们今天重点介绍格栅的运行管理。

【通用】水和废水物化处理的原理与工艺习题集.doc

《水处理工程》 第一篇水和废水物化处理的原理与工艺 习题集 第二章混凝 1. 何谓胶体稳定性?试用胶粒间相互作用势能曲线说明胶体稳定性的原因。 2. 混凝过程中,压缩双电层何吸附-电中和作用有何区别?简要叙述硫酸铝混 凝作用机理及其与水的pH值的关系。 3. 高分子混凝剂投量过多时,为什么混凝效果反而不好? 4.为什么有时需要将PAM在碱化条件下水解成HPAM?PAM水解度是何涵义? 一般要求水解度为多少? 5.混凝控制指标有哪几种?为什么要重视混凝控制指标的研究?你认为合理的 控制指标应如何确定? 6.混合和絮凝反应同样都是解决搅拌问题,它们对搅拌有何不同?为什么? 7.根据反应器原理,什么形式的絮凝池效果较好?折板絮凝池混凝效果为什么优 于隔板絮凝池? 8.采用机械絮凝池时,为什么要采用3~4档搅拌机且各档之间需用隔墙分开? 9.试述给水混凝与生活污水及工业废水混凝各自的特点。 10.某粗制硫酸铝含Al2O315%、不溶解杂质30%,问:(1)商品里面Al2(SO4)3和溶 解杂质各占的百分数;(2)如果水中加1克这种商品,计算在水中产生的 Al(OH)3、不溶解杂质和溶解的杂质分别重多少? 11.For a flow of 13500 m3/d containing 55mg/L of suspended solids, ferric sulfate is used as a coagulant at a dose of 50mg/L (a) Assuming that there is little alkalinity in the water, what is the daily lime dose? (b) If the sedimentation basin removes 90% of the solids entering it, what is the daily solids production from the sedimentation basin? 12.隔板絮凝池设计流量75000m3/d。絮凝池有效容积为1100m3。絮凝池总水头 G值各为多少?(水厂自用损失为0.26m。求絮凝池总的平均速度梯度G值和T 水量按5%计) 13.某机械絮凝池分成3格。每格有效尺寸为2.6m(宽)?2.6m(长)?4.2m(深)。

水的物理、化学及物理化学处理方法

水的物理、化学及物理化学处理方法简介 (一)物理处理方法 利用固体颗粒和悬浮物的物理性质将其从水中分离去除的方法称为物理处理方法。物理处理法的最大优点是简单易行,效果良好,费用较低。 物理处理法的主要处理对象是水中的漂浮物、悬浮物以及颗粒物质。 常用的物理处理法有格栅与筛网、沉淀、气浮等。 (1)格栅与筛网 格栅是用于去除水中较大的漂浮物和悬浮物,以保证后续处理设备正常工作的一种装置。格栅通常有一组或多组平行金属栅条制成的框架组成,倾斜或直立地设立在进水渠道中,以拦截粗大的悬浮物。 筛网用以截阻、去除水中的更细小的悬浮物。筛网一般用薄铁皮钻孔制成,或用金属丝编制而成,孔眼直径为0.5~1.0mm。 在河水的取水工程中,格栅和筛网常设于取水口,用以拦截河水中的大块漂浮物和杂草。在污水处理厂,格栅和筛网常设于最前部的污水泵之前,以拦截大块漂浮物以及较小物体,以保护水泵及管道不受阻塞。 (2)沉淀 沉淀是使水中悬浮物质(主要是可沉固体)在重力作用下下沉,从而与水分离,使水质得到澄清。这种方法简单易行,分离效果良好,是水处理的重要工艺,在每一种水处理过程中几乎都不可缺少。按照水中悬浮颗粒的浓度、性质及其絮凝性能的不同,沉淀现象可分为:自由沉淀、絮凝沉淀、拥挤沉淀、压缩沉淀。 水中颗粒杂质的沉淀,是在专门的沉淀池中进行的。按照沉淀池内水流方向的不同,沉淀池可分为平流式、竖流式、辐流式和斜流式四种。 (3)气浮 气浮法亦称浮选,它是从液体中除去低密度固体物质或液体颗粒的一种方法。通过空气鼓入水中产生的微小气泡与水中的悬浮物黏附在一起,靠气泡的浮力一起上浮到水面而实现固液或液液分离的操作。其处理对象是:靠自然沉降或上浮难以去除的乳化油或相对密度接近于1的微小悬浮颗粒。 浮选过程包括微小气泡的产生、微小气泡与固体或液体颗粒的粘附以及上浮分离等步骤。实现浮选分离必须满足两个条件:一是必须向水中提供足够数量的

常见污水处理工艺介绍一.物理法二.化学法三.物理化学法重点介绍

常见污水处理工艺介绍 一.物理法: 1.沉淀法:主要去除废水中无机颗粒及SS 2.过滤法:主要去除废水中SS和油类物质等 3.隔油:去除可浮油和分散油 4.气浮法:油水分离、有用物质的回收及相对密度接近于1(水的密度近似1)的悬浮固体 5.离心分离:微小SS的去除 6.磁力分离:去除沉淀法难以去除的SS和胶体等 二.化学法: 1.混凝沉淀法:去除胶体及细微SS 2.中和法:酸碱废水的处理 3.氧化还原法:有毒物质、难生物降解物质的去除 4.化学沉淀法:重金属离子、硫离子、硫酸根离子、磷酸根、铵根等的去除 三.物理化学法: 1.吸附法:少量重金属离子、难生物降解有机物、脱色除臭等 2.离子交换法:回收贵重金属,放射性废水、有机废水等 3.萃取法:难生物降解有机物、重金属离子等 4.吹脱和汽提:溶解性和易挥发物质的去除。 重点介绍 (随着各种工艺不断改进,原有缺点不断被修正,因此只列出各种工艺的优点) 四.生物法 1.活性污泥法:废水生物处理中微生物(micro-organism)悬浮在水中的各种方法的统称。 (1)SBR法 序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。 工艺流程图:

SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一 池,无污泥回流系统。 优点: 1)工艺简单,节省费用 2)理想的推流过程使生化反应推力大、效率高 3)运行方式灵活,脱氮除磷效果好 4)防治污泥膨胀的最好工艺 5)耐冲击负荷、处理能力强 (2)CASS法 CASS法是SBR法的改进型,特点是占地小、运行费用低、技术成熟、工艺稳定。 CASS法是在CASS反应池前部设置生物选择区,后部设置可升降的自动滗水装置。 工艺流程图: (3)AO法 AO工艺法也叫厌氧好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。 工艺流程图:

大学物理化学核心教程第二版(沈文霞)课后参考答案第7章

第七章化学反应动力学 一.基本要求 1.掌握化学动力学中的一些基本概念,如速率的定义、反应级数、速率系数、基元反应、质量作用定律和反应机理等。 2.掌握具有简单级数反应的共同特点,特别是一级反应和a = b的二级反应的特点。学会利用实验数据判断反应的级数,能熟练地利用速率方程计算速率系数和半衰期等。 3.了解温度对反应速率的影响,掌握Arrhenius经验式的4种表达形式,学会运用Arrhenius经验式计算反应的活化能。 4.掌握典型的对峙、平行、连续和链反应等复杂反应的特点,学会用合理的近似方法(速控步法、稳态近似和平衡假设),从反应机理推导速率方程。学会从表观速率系数获得表观活化能与基元反应活化能之间的关系。 5.了解碰撞理论和过渡态理论的基本内容,会利用两个理论来计算一些简单反应的速率系数,掌握活化能与阈能之间的关系。了解碰撞理论和过渡态理论的优缺点。 6.了解催化反应中的一些基本概念,了解酶催化反应的特点和催化剂之所以能改变反应速率的本质。 7.了解光化学反应的基本定律、光化学平衡与热化学平衡的区别,了解光敏剂、量子产率和化学发光等光化反应的一些基本概念。 二.把握学习要点的建议 化学动力学的基本原理与热力学不同,它没有以定律的形式出现,而是表现为一种经验规律,反应的速率方程要靠实验来测定。又由于测定的实验条件限制,同一个反应用不同的方法测定,可能会得到不同的速率方程,所以使得反应速率方程有许多不同的形式,使动力学的处理变得比较复杂。反应级数是用幂函数型的动力学方程的指数和来表示的。由于动力学方程既有幂函数型,又有非幂函数型,所以对于幂函数型的动力学方程,反应级数可能有整数(包括正数、负数和零)、分数(包括正分数和负分数)或小数之分。对于非幂函数型的动力学方程,就无法用简单的数字来表现其级数。对于初学者,

物化法、化学法、生物法对含油废水的处理

物化法、化学法、生物法对含油废水的处 理 随着经济和工业的快速发展,石油化工,金属工业,机械工业,食品加工等行业也在快速发展,进而产生了大量的含油废水。据统计,世界上每年至少有500~1000 万t 油类污染物通过各种途径进入水体[1],它已严重影响,破坏了环境,并且危害人体健康。含油废水是一种量大面广且危害严重的工业废水,具有COD,BOD 值高,有一定的气味和色度,易燃,易氧化分解,难溶于水的特点。 含油废水的处理方法根据其成分以及作用原理一般可以分为:物化法、化学法、生物法,但各种方法都有其局限性,在实际应用中通常将几种方法联合分级使用,从而实现良好的除油效果。文章主要从物化法、化学法、生物法三方面介绍了含油废水的处理。 1.1 物理化学法 1.1.1气浮法 气浮法是向废水中通入空气,利用油珠粘附于高度分散的微气泡后使浮力增大,进而上浮速度提高近千倍,因此油水分离效率很高。它可用于水中固体与固体、固体与液体、液体与液体乃至溶质中离子的分离[2]。 同时混凝剂的加入对气浮法处理含油废水的效率也有影响。魏飞等[3]采用溶气气浮模拟装置,研究了混凝剂投加量对除油效率的影响,指出在pH=8.0,溶气压力为0.30 MPa,溶气水流量为80 L/h的条件下,随着混凝剂的增加,除油率呈先升后降趋势。投药量在50~70 mg/L时,除油率最高且稳定。 此外,将气浮法与磁分离工艺联合起来处理含油废水以成为一个新的发展方向,杨瑞洪等[4]采用气浮—磁分离工艺处理某石化企业含油废水,其中气浮单元作为预处理主要用于去除分散油和部分乳化油,磁分离单元作为深度处理去除乳化油和部分溶解油,结果表明,此种方法除油率高,除油效果显著稳定。 1.1.2吸附法 吸附法是利用多孔固体吸附剂对含油废水中的溶解油及其它溶解性有机物进行表面吸附。活性炭是最常用的吸附剂,其吸附能力强但成本高,再生困难,加之吸附有限,限制了其应用[5],因此寻求合适的吸附剂成为目前迫待解决的问题。 连少伟等[6]将ST粉煤灰改性后处理含油废水,结果表明,改性粉煤灰用量为100 g/L、

物化水处理技术

改善物化污泥沉降性能的研究 摘要:物化污泥絮体细小沉降性差且机械脱水难度高。本实验利用生化污泥吸附性强、沉降性好的特点,选择适当比例与物化污泥进行混合微曝气,明显改善物化污泥沉降性,混合污泥的SV30从87%降至37%,并经中试验证,经过4小时曝气,污泥浓度明显下降,减容率为30%以上。 关键词:污泥沉降性;微曝气;减容减量 1.背景 绍兴水处理发展有限公司目前已建成投运一二三期工程,日处理水量为90万吨,处理工艺为”预处理一厌氧(水解酸化)一好氧”,其中日产生污泥约7万多吨,包括物化污泥、厌氧污泥和好氧污泥,以不同比例进入污泥处理系统,然后采用重力浓缩一浓缩池,机械脱水一带式压滤机,离心脱水机,来对污泥进行减容减量处置。物化污泥,沉降l生差,絮体细小,吸附性和粘性差,易造成浓缩池上清液大量带泥;这带来两个结果:1)由于沉降效果差,使相当比例的污 泥通过提升泵房回到水处理系统,增加了其处理负担;2)进机械脱水段污泥含水率居高不下,导致泥处理成本大幅度提高。如果能改善重力浓缩段污泥的沉降胜能,提高污泥浓度,那么对于提高污泥脱水设备的运行效率、稳定泥饼含水率、降低污泥脱水成本都有着十分重要的意义。为此,对物化污泥的性质、改善其沉降能等方面进行一些探讨和研究,很有必要。活性污泥具有良好的沉降陛和吸附眭。活性污泥中具有大量的微生物,而研究表明多种微生物能分泌一种具有粘性的高分子有机物,使细胞具有絮凝现象m。因此,可以考虑通过发挥活性污泥的絮凝特陛,将生化污泥掺入到物化污泥中,改善物化污泥的沉降性,并可通过适度的微曝气工艺,使微生物进入自身氧化阶段,来实现污泥减容减量的目的。本实验以小试结果为基础,在确定物化污泥和生化污泥的混合比例,微曝气时间,曝气量等因素的影响大小下,并通过中试试验放大考察该工艺的优缺点和具体参数要求。 2.材料与方法 2.1试验方案 研究分2个阶段:(1)小试阶段:研究物化污泥与生化污泥的比例(2:1或3:

常见废水处理技术方法物理化学法

常见废水处理技术方法物理化学法 (1)了解离子交换法:离子交换反应原理、离子交换剂的种类和性质 离子交换树脂的原理 离子交换树脂是一类具有离子交换功能的高分子材料。在溶液中它能将本身的离子与溶液中的同号离子进行交换。按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。 阳离子交换树脂大都含有磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基团,其中的氢离子能与溶液中的金属离子或其他阳离子进行交换。例如苯乙烯和二乙烯苯的高聚物经磺化处理得到强酸性阳离子 交换树脂,其结构式可简单表示为R—SO3H,式中R代表树脂母体,其交换原理为2R—SO3H+Ca2+—(R—SO3) 2Ca+2H+ 这也是硬水软化的原理。 阴离子交换树脂含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亚胺基(—NH2)等碱性基团。它们在水中能生成OH-离子,可与各种阴离子起交换作用,其交换原理为 R—N(CH3)3OH+Cl- R—N(CH3)3Cl+OH-

由于离子交换作用是可逆的,因此用过的离子交换树脂一般用适当浓度的无机酸或碱进行洗涤,可恢复到原状态而重复使用,这一过程称为再生。阳离子交换树脂可用稀盐酸、稀硫酸等溶液淋洗;阴离子交换树脂可用氢氧化钠等溶液处理,进行再生。 离子交换树脂的用途很广,主要用于分离和提纯。例如用于硬水软化和制取去离子水、回收工业废水中的金属、分离稀有金属和贵金属、分离和提纯抗生素等。 离子交换树脂的基本类型 (1) 强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。

(环境管理)工业废水的物理化学处理

第13章工业废水的物理化学处理 13.1 混凝 处理环节:预处理、中间处理、最终处理、三级处理、污泥处理、除油、脱色。 胶体:憎水性对混凝敏感,亲水性需特殊处理 高分子絮凝剂:分子量大的水溶性差,分子量小的水溶性好,故分子量要适当。 混凝的操作程序:里特迪克程序。 1)提高碱度:加重碳酸盐(增加碱度但pH值不提高)――快速搅拌1~3min 2)投加铝盐或铁盐――快速搅拌1~3min 3)投加活化硅酸和聚合电解质之类的助凝剂――搅拌20~30min 应用:1)造纸和纸板废水:加入少量的硫酸铝即可有效地混凝。如表13-1 2)滚珠轴承制造厂含乳化油废水:用CaCl2破除乳化,用硫酸铝去除油脂、悬浮物、Fe、PO4。 13.2气浮 13.2.1 气浮的基本原理 气浮=固液分离+液液分离――用于悬浮物、油类、脂肪、污泥浓缩 原理:微气泡――粘附微粒――气浮体(密度小于水)――去除浮渣。 探讨: 1、水中颗粒与气泡粘附条件 (1)界面张力、接触角和体系界面自由能 任何不同介质的相表面上都因受力不均衡而存在界面张力 气浮的情况涉及:气、水、固三种介质,每两个之间都存在界面张力σ。 三相间的吸附界面构成的交界线称为润湿周边。通过润湿周边作水、粒界面张力作用线和水、气界面张力作用线,二作用线的交角称为润湿接触角θ。见图13-3和13-4。 θ>90,疏水性,易于气浮 θ<90, 亲水性 悬浮物与气泡的附着条件: 按照物理化学的热力学理论, 任何体系均存在力图使界面能减少为最小的趋势。 界面能W =σS S:界面面积;σ:界面张力 附着前W1 =σ水气+σ水粒(假设S 为1) 附着后W2=σ气粒 界面能的减少△W= W1-W2=σ水气+σ水粒-σ气粒 图13-4,σ水粒=σ气粒+σ水气COS(180?-θ) 所以: △W=σ水气(1-COSθ) 按照热力学理论, 悬浮物与气泡附着的条件:△W>0 △W越大,推动力越大,越易气浮。 (2)气-粒气浮体的亲水吸附和疏水吸附 由于水中颗粒表面性质的不同,所构成的气一粒结合体的粘附情况也不同。 亲水吸附:亲水性颗粒润湿接触角(θ)小,气粒两相接触面积小,气浮体结合不牢,易脱落。 疏水吸附:疏水性颗粒的接触角(θ)大,气浮体结合牢固。 根据△W=σ水气(1-COSθ),得: 1) θ→0, COSθ→1, △W= 0 气浮 θ<90, COSθ<1, △W<σ水气颗粒附着不牢 θ>90, △W>σ水气气浮――疏水吸附 θ→180 △W=2σ水气最易被气浮

07310690冶金物理化学研究方法

冶金物理化学研究方法 Research Approaches for Physical Chemistry of Metallurgy 课程编号:07310690 学分: 2 学时:30 (其中:讲课学时:30 实验学时:0 上机学时:0) 先修课程:物理化学、无机化学、分析化学、高等数学 适用专业:冶金工程 教材:《冶金物理化学实验研究方法》;王常珍;冶金工业出版社(第3版),2002 开课学院:材料科学与工程学院 一、课程的性质与任务: 《冶金物理化学实验研究方法》包括“高温冶金物理化学研究的基本技术”和“高温冶金物理化学实验研究方法”两部分内容。本课程是冶金工程专业的一门主要专业课程,为必修课程。其基本任务是: 1.掌握冶金实验的基本理论和基本技能; 2.能够进行冶金学科方向的科学实验和数据处理。 二、课程的基本内容及要求: 绪论 1.教学内容 (1)冶金工艺流程 (2)冶金生产发展趋势:A、纯净钢;B、绿色冶金;C、冶金过程数值模拟;D、高性能合金 (3)本课程学习意义、课程特点、时间安排 2.学习要求 (1)了解常规冶金工艺流程和冶金工业发展新趋势; (2)了解本课程的意义和特点。 3.重难点 (1)重点是了解课程的学习内容; 第一部分高温冶金物理化学的基本技术 第一章实验室的高温获得 1.教学内容 (1)冶金实验的高温特点 (2)获得高温的方法电阻炉、感应炉、电弧炉和等离子炉等高温炉的基本原理(3)电阻炉的结构和设计,电阻炉的恒温带

(4)金属和非金属电热体的种类、特点和选择 2.基本要求 (1)了解冶金实验的高温特点和常用高温炉的原理、结构和特点;(2)能设计电阻炉,了解恒温带的概念; (3)了解实验室常用电热体的种类和使用。 3.重难点 (1)重点是高温炉恒温带的确定; (2)难点是高温炉的原理、结构和特点。 第二章温度测量方法 1.教学内容 (1)温标及温度的测量方法 (2)热电偶的工作原理、结构和使用 (3)辐射温度计的工作原理,介绍常用几种辐射温度计 2.基本要求 (1)了解温度的测量方法,热电偶的工作原理和结构。 第三章实验室用耐火材料 1.教学内容 (1)耐火材料的性能指标 (2)常用耐火材料化合物 (3)耐火材料的制造工艺以及常见问题 2.基本要求 (1)掌握耐火材料的性能要求和常用化合物性质; (2)了解耐火材料制造工艺。 第四章气体净化及气氛控制 1.教学内容 (1)气体储备和安全使用防毒、防火、防爆 (2)常用气体净化方法吸收、吸附、催化和冷凝 (3)常用的气体净化剂干燥剂、脱氧剂和吸附剂 (4)气体流量的测定转子流量计和毛细管流量计 2.基本要求 (1)了解气体储备和安全使用常识; (2)掌握常用几种气体净化方法和气体净化剂; (3)了解气体流量计的工作原理。

危险废物处置中心废水物化处理工艺探讨

危险废物处置中心废水物化处理工艺探讨 随着经济的不断发展,各种废弃物问题日益严重,尤其是废水处理问题更加的严峻。在危险废物处置中心的废水由于其来源非常的广泛,废水水质呈现不确定性,因此在进行废水处理的过程中要先进行物化预处理,然后在进入后续的具体处理工艺中,物化预处理工艺具有较强的广谱性。基于此,本文从废物处置中心的废水处理工艺出发,着重分析其中的物化处理工艺,旨在更好的保证废水处理质量。 标签:危险废物处置中心;废水处理工艺;物化处理工艺;应用 0 引言 危险废物处置中心顾名思义指的就是对人们生产生活中产生的具有危险性的废弃物进行处理。它的重要工作任务就是物化处理低热值废物或废液、燃烧可燃性危险物以及固化、填埋无机的危险废弃物等。其中由于危险废物处置中心的废水来源较广,其水质存在很大的不确定性,处理难度较大,处理工艺较为复杂,因此在处理设计的选用中应该具有较强的适应性和稳定性,而物化处理工艺满足废水处理工艺的要求,并且在废水处理中占据重要的地位。 1 危险废物处置中心废水处理工艺 危险废物处置中心的废水来源渠道主要是废物运输车辆的洗车水、焚烧车间的冲洗水、安全填埋场的渗透液、化学实验楼的废水以及许多重金属废液、生活污水等。因为危险废物处置中心的废水来源渠道十分的广泛,使废水的稳定性较差,污染成分较为复杂,并且一般都含有较多种类的重金属,无法直接采取生化措施。因此,当前的危险废物处置中心的废水处理工艺基本上都是采取“物化处理+生化处理+深度处理”的工艺流程,并且对重金属含量较高的废水尤为的有效。首先废水进入物化阶段,剥离废水中的重金属离子,之后在通过生化处理,移除废水中的COD、BOD5等污染物,最后通过深度处理,使废水达到最后的处理标准。 危险废物处置中心的废物物化处理工艺的主要任务就是剥离废水中的重金属离子,使废水水质趋于稳定。在对大量的重金属废水研究以后,可发展物化处理工艺中电解还原法、离子交换法、反渗透和电渗析法以及铁盐-石灰法,都是应用效果较为明显的物化处理方法,其中铁盐-石灰法的综合性能是最好的,其应用也最广泛。 上文中已经提出生化处理工艺的主要作用就是消除废水中COD、BOD5等污染物,并且还具有较多的应用方法,例如活性污泥法、曝气生物滤池、生物接触氧化都属于生化处理工艺,在选用具体的处理方法时应该根据废水的具体水质要求。

含镭废水的物化处理法

含镭废水的物化处理法 我国的重金属废水的排放量在逐年升高,重金属主要包括铜、锌、镍、镉、镭、汞等,此类的废水主要有电镀、冶金、煤矿等行业居多。重金属不能被生物降解,只能在生物界的各生物体内转换,最终在人体内的各个器官内累积,当重金属含量达到一定的高度时,将造成生命危险。 从废水中去除镭的方法很多,有二氧化锰吸附法,高锰酸钾活化木屑吸附法,重晶石吸附法,硫酸钡共沉淀法等,可针对具体对象和条件选用。根据酸法堆浸废水的特点,推荐采用硫酸钡共沉淀法。 硫酸钡共沉淀法的原理,是在含有大量SO42-的废水中加入氯化钡,钡离子和硫酸根生成硫酸钡。在这个过程中,尽管Ra2+和SO42-的浓度仍达不到硫酸镭的溶度积(4.25×10-11),但由于镭与钡性质相似,硫酸镭和硫酸钡发生同晶共沉淀,从而使镭可以进入到硫酸钡沉淀的晶格中去,形成Ba(Ra)SO4的沉淀物。 这种沉淀物颗粒很细,难于过滤和沉降,但加入石灰,能加快沉降速度。酸法堆浸废水中硫酸根含量高,又是用石灰中和,恰好能满足硫酸钡共沉淀法的前提和必要条件。诚然要达到理想的除镭效果,还有很多条件要认真控制。影响除镭效果的主要因素有废水中SO42-和Ra2+的含量,Ba2+的加入量,搅拌时间等,尤其重要的一点,

就是要保持废水的澄清度,如果废水中悬浮物量高,则除镭效果很差。澄清的废水中加入少量氯化钡就可去除99%以上的镭,但当废水中悬浮物含量高时,除镭效率就会明显降低。试验表明,如果废水中悬浮物含量达100g∕L,当加入的氯化钡量相当于澄清废水中加入量的100倍时,除镭效率才达到95%。需要强调的是,在处理铀矿酸法堆浸废水时,必须在石灰中和之前,先加入氯化如果先加石灰中和,后加氯化钡除镭,则效果很差。 除镭的效果与氯化钡加入量,以及废水中SO42-和Ra的含量的关系如表3。由表3可知,当硫酸根加入量固定时,随氯化钡加入量的增加,废水中镭的除去率增加;当氯化钡用量固定时,随废水中硫酸根浓度的增加,废水中镭的除去率也增加;但是,除了考虑钡离子和硫酸根的浓度外,还要考虑这两者的比例,序号12试验中加入的钡离子量最多,其除镭效果反而差,主要原因是硫酸根与钡的比例不恰当。 这些污水的处理过程中,第一步基本都是磁分离处理,即先要去除污水中的大分子颗粒和杂质,目的就是为了让药剂跟污水中的镭更好的反应,我公司采用的预处理设备为自行研制生产的多功能电镀污水处理器,处理速度快,成本低,自动化程度高

7种主要气态污染物的处理技术

班级环本二班学号 1105430232 姓名蒋佳分数 第二次作业 下列7种主要气态污染物的处理技术: 一、粉尘控制技术 1.高压静电除尘技术将50赫兹、220伏交流电变成100千瓦以上直流电加到电晕极(阴极)形成不均匀高压电场,使气体电离产生大量的负离子和电子,使进入电场的气体粉尘荷电,在电场力的作用下,荷电粉尘趋向相反的电极上,一般阳极为集尘极,依靠振打落入灰斗排出,完成净化除尘过程。高压静电除尘器高效低阻可广泛用于建材、冶金、化工等行业粉尘污染场合。它处理粉尘浓度高,对001微米微细或高比电阻粉尘,除尘效果更为明显,系列产品满足不同风量的烘干设备,匹配灵活,适合烘干机废气特性的粉尘治理。 2.旋风除尘技术工作原理是在风机的作用下,含尘气流由进口以较高的速度沿切线方向进入除尘器蜗壳内,自上而下作螺旋形旋转运动,尘粒在离心力的作用下,被甩向外壁,并沿壁面下旋,随着圆锥体的收缩而转向轴心,受下部阻力而返回,沿轴心由下而上螺形旋转经芯管排出。外壁的尘粒在重力和向下运动的气流带动下,沿壁面落入灰斗,达到除尘的目的。由于旋风除尘器是依靠尘粒惯性分离,除尘效率与粒径成正比,粒径大除尘效果好;粒径小,除尘效果差,一般处理20微米以上的粉尘,除尘效率在70%~90%。 3.袋除尘技术对颗粒0.1微米含尘气体,除尘效率可高达99%,烘干机废气除尘选用袋除尘器不用考虑排放浓度超标问题。烘干机抗结露玻纤袋除尘器是目前理想的除尘净化设备。该设备采用微机控制,分室反吹,定时清灰,并装有温度检测显示,超温报警装置,采用CW300—FcA抗结露玻纤滤袋,可有效防止滤袋结露,也不会烧坏滤袋。 4.湿法除尘技术含尘气体由引风机通过风管送入除尘塔下部,由于断面变大,流速降低,并且粗颗粒粉尘先在气流中沉降,较细粉尘随气流上升,喷淋下来水珠与粉尘气流逆向运动,粉尘被湿润自重不断增加,在重力作用下,克服气流的升力而下降成泥浆水,通过下部管道进入沉淀池,达到除尘的目的。泥浆水一般经过2~3级循环沉淀变清水,用泵打入除尘塔内循环使用,不造成二次污染。 5.湿法除尘技术由沉降室和高压静电组成除尘工艺是含尘废气由引风机经风管高速送入沉降室,碰撞到墙壁上,气流走向改变,使风速迅速降低,颗粒粉尘沉降,经输送设备排出,微细粉尘随气流进入高压静电除尘器电场,在离子的连续轰击下而荷电,飞向集尘极被收集后排出,净化后的气体由风管排入大气。 6.旋风+高压静电除尘技术该除尘技术是烘干机含尘废气由风管进入前级高效旋风除尘器进行预除尘,粉尘由灰斗经排灰设备排出,气流含尘浓度降低,然后进入高压静电除尘器的二级除尘,净化后的气体出风机排入大气,使除尘效率提高,工艺灵活,安全可靠。 二、二氧化硫控制技术 1.抛弃法:将脱硫的生成物作为固体废物抛掉 2.回收法:将SO2转变成有用的物质加以回收 3.湿法脱除SO2技术 1)石灰石-石膏法脱硫技术烟气先经热交换器处理后,进入吸收塔,在吸收塔里SO2 直接与石灰浆液接触并被吸收去除。治理后烟气通过除雾器及热交换器处理后经烟囱排放。吸收产生的反应液部分循环使用,另一部分进行脱水及进一步处理后制成石膏。 2)旋流板脱硫除尘技术针对烟气成份组成的特点,采用碱液吸收法,经过旋流、喷淋、吸收、吸附、氧化、中和、还原等物理、化学过程,经过脱水、除雾,达到脱硫、除尘、除湿、净化烟气的目的。脱硫剂:石灰液法、双碱法、钠碱法。 4. 半干法脱除SO2技术

水的物化处理方法

近年来,随着工业的发展、城市化进程的加快及农用化学品种类和数量的增加,我国大部分城镇饮用水源已受到不同程度的污染。据相关报道,我国七大水系中I到III类水体占45.1%,IV类和V类水体占22.9%,劣V类水体占32.0%[1],水源污染加大了水源选择和处理的困难。饮用水水源中含有的有机污染物导致了“三致物”(致癌、致畸、致突变)的潜在威胁加大,水源水的污染问题日益严重,饮用水的安全问题得到了广泛关注和重视。 饮用水水源的氮磷污染问题也越来越受到人们的关注,氮磷过量导致湖泊等封闭水体富营养化,而水质恶化会增加给水处理的难度,在给水处理中,磷的去除主要通过混凝沉淀和过滤2个工艺阶段进行,通过与混凝剂形成沉淀以及非溶解性的磷形成矾花而被去除[2],而过量的氨氮通过常规处理难以达到饮用水卫生 +就足以使硝化细菌生长繁标准,有研究表明[3],在供水管网中,0.25mg/L的NH 4 殖,且硝化细菌在代谢过程中会释放出嗅味;过量的硝态氮会在人胃中还原为亚硝态氮,与胃中的仲胺或酞胺作用形成致癌性物质亚硝胺。因此,法国和德国规 -N)0.5mg/L;荷兰更是严格至0.2 mg/L;我国生活饮用定饮用水中的氨氮(NH 3 -N为0.5mg/L。 水卫生标准规定NH 3 微污染水源水一般是指水体受到有机物污染部分水质指标超过地表水环境 质量标准(GB3838-2002)III类水体标准的水体[4]。随着水源水体的富营养化现象不断加重,水体中有机物种类和数量激增以及藻类的大量繁殖,现有常规处理工艺(混凝→沉淀→过滤→消毒)不能有效去除微污染水源水中的有机物、氨氮等污染物,同时液氯很容易与原水中的腐殖质结合产生消毒副产物(DBPs)直接威胁饮用者的身体健康[5-6],无法满足人们对饮用水安全性的需要;同时随着生活饮用水水质标注的日益严格,微污染水源水处理不断出现新的问题。因此本文在掌握微污染水源特征以及各种处理对策之后,对其中的生物预处理方法在脱氮技术中的应用进行了探讨。 生物预处理是指在常规净水工艺之前,增设生物处理工艺,借助于微生物群体的新陈代谢活动,去除水中可生化有机物特别是低分子可溶性有机物、氨氮、亚硝酸盐、铁、锰等污染物。目前,国内开展饮用水处理中生物预处理研究和应用较深入的单位有同济大学和清华大学,如同济大学先后开展了生物滤池、生物转盘、生物接触氧化、生物流化床等生物膜法预处理技术的研究。根据相关报道,

第二章习题--水的物理化学处理方法

第二章 水的物理化学处理方法 2-1 自由沉淀、絮凝沉淀、拥挤沉淀与压缩沉淀各有什么特点?说明它们的内在区别和特点。 悬浮颗粒在水中的沉降,根据其浓度及特性,可分为四种基本类型: 自由沉淀:颗粒在沉降过程中呈离散状态,其形状、尺寸、质量均不改变,下沉速度不受干扰。 絮凝沉淀:沉降过程中各颗粒之间相互粘结,其尺寸、质量会随深度增加而逐渐增大,沉速亦随深度而增加。 拥挤沉淀:颗粒在水中的浓度较大,颗粒间相互靠得很近,在下沉过程中彼此受到周围颗粒作用力的干扰,但颗粒间相对位置不变,作为一个整体而成层下降。清水与浑水间形成明显的界面,沉降过程实际上就是该界面下沉过程。 压缩沉淀:颗粒在水中的浓度很高时会相互接触。上层颗粒的重力作用可将下层颗粒间的水挤压出界面,使颗粒群被压缩。 2-2 水中颗粒的密度s =2.6 3 /g cm ,粒径d=0.1 mm ,求它在水温10 ℃情况下的单颗粒沉 降速度。 解:6.7×10-3m/s 。 2-3 非絮凝性悬浮颗粒在静止条件下的沉降数据列于表2-22中。试确定理想式沉淀池过流率为1.8m 3/m 2h 时的悬浮颗粒去除率。试验用的沉淀柱取样口离水面120cm 和240cm 。ρ表示在时间t 时由各个取样口取出的水样中悬浮物的浓度,ρ0代表初始的悬浮物浓度。 2-4 生活污水悬浮物浓度300mg/L ,静置沉淀试验所得资料如表2-23所示。求沉淀效率为65%时的颗粒截留速度。

2-5 污水性质及沉淀试验资料同习题2-4,污水流量1 000m 3/h ,试求: (1)采用平流式、竖流式、辐流式沉淀池所需的池数及澄清区的有效尺寸; (2)污泥的含水率为96%时的每日污泥容积。 解:以平流式沉淀池为例:6座池子,长24m ,宽5m ,有效水深1.8m 。 污泥的含水率为96%时的每日污泥容积19.5m 3。 2-6 已知平流式沉淀池的长度L=20m ,池宽B=4m ,池深 H=2m 。今欲改装成斜板沉淀池,斜板水平间距10cm ,斜板长度l =1 m ,倾角60°。如不考虑斜板厚度,当废水中悬浮颗粒的截留速度0u =1 /m h 时,改装后沉淀池的处理能力与原池相比提高多少倍? 解:提高了5倍。 2-7 试叙述脱稳和凝聚的原理。 胶体脱稳的机理可归结为以下四种: A 压缩双电层:带同号电荷的胶粒之间存在着范德华引力和由ζ电位引起的静电斥力。这两种力抗衡的结果决定胶体的稳定性。一般当两胶体颗粒表面距离大于3nm 时,两个颗粒总处于相斥状态(对憎水胶体颗粒而言,两胶核之间存在两个滑动面内的离子层,使颗粒保持稳定的相斥状态;对于亲水胶体颗粒而言,其表面吸附了大量的水分子构成水壳,使彼此不能靠近而保持稳定。) 在水处理中使两胶体颗粒间距减少,发生凝聚的主要方法是在水中投加电解质。电解质在水中电离产生的离子可与胶粒的反离子交换或挤入吸附层,使胶粒带电荷数减少,降低ζ电位,并使扩散层厚度减小。 B 吸附电中和:胶粒表面对异号离子、异号胶粒或链状高分子带异号电荷的部位有强烈的吸附作用,使得胶粒表面的部位或全部电荷得以中和,减少静电斥力,致使颗粒间易于接近而相互吸附。 C 吸附架桥:如果投加的化学药剂是能吸附胶粒的链状高分子聚合物,或者两个同号胶粒吸附在同一异号胶粒上,胶粒就能连结、团聚成絮凝体而被除去。 D 网捕作用:含金属离子的化学药剂投入水中后,金属离子会发生水解和聚合,并以水中的胶粒为晶核形成胶体状沉淀物,或者沉淀物析出时吸附和网捕胶粒与之共同沉降下来。 2-8 铝盐的混凝作用表现在哪些方面? 铝盐/铁盐在水处理中发挥的三大作用: A pH 值偏低,胶体及悬浮物浓度高,投药量尚不足的反应初期,以Al 3+或Fe 3+和低聚合度高电荷的多核羟基配合物的脱稳凝聚作用为主; B pH 值和投药量适中时,以高聚合度羟基配合物的桥连絮凝作用为主; C pH 值较高,胶体及悬浮物浓度较低,投药充分时,以氢氧化物沉淀形式存在的网捕絮凝作用为主。 2-9 混合和絮凝反应主要作用是什么?对搅拌各有什么要求? 混合的目的是迅速均匀地将药剂扩散于水中,溶解并形成胶体,使之与水中的悬浮微粒等接触,生成微小的矾花。这一过程的要求:搅拌强度大,产生激烈湍流,混合时的流速应在1.5m/s 以上,混合时间短(不超过2分钟),一般为10~30s 。 反应设备的任务是使细小的矾花逐渐絮凝成较大颗粒,以便于沉淀除去。反应设备要求水流有适宜的搅拌强度,既要为细小絮体的逐渐长大创造良好的碰撞机会和吸附条件,又要防止已形成的较大矾花被碰撞打碎。因此,搅拌强度比在混合设备中要小,但时间比较长,常为10~30min 。

污水物理化学处理法

污水物理化学处理法 物理化学法(简称物化法),是利用萃取、吸附、离子交换、膜分离技术、气提等物理化学的原理,处理或回收工业废水的方法。它主要用分离废水中无机的或有机的(难以生物降解的)溶解态或胶态的污染物质,回收有用组分,并使废水得到深度净化。 因此,适合于处理杂质浓度很高的废水(用作回收利用的方法),或是浓度很低的废水(用作废水深度处理)。利用物理化学法处理工业废水前,一般要经过预处理,以减少废水中的悬浮物、油类、有害气体等杂质,或调整废水的pH值,以提高回收效率、减少损耗。 同时,浓缩的残渣要经过后处理以避免二次污染。常用的方法有萃取法、吸附法、离子交换法、膜析法(包括渗析法、电渗析法、反渗透法、超滤法等)。 (1)萃取法 萃取法是向污水中加人一种与水不相溶而密度小于水的有机溶剂,充分混合接触后使污染物重新分配,由水相转移到溶剂相中,利用溶剂与水的密度差别,将溶剂分离出来,从而使污水得到净化的方法。再利用溶质与溶剂的沸点差将溶质蒸馆回收,再生后的溶剂可循环使用。使用的溶剂叫萃取剂,提出的物质叫萃取物。萃取是一种液-液相间的传质过程,是利用污染物(溶质)在水与有机溶剂两相中的溶解度不同进行分离的。 在选择萃取剂时,应注意萃取剂对被萃取物(污染物)的选择性,即溶解能力的大小,通常溶解能力越大,萃取的效果越好;萃取剂与水的密度相差越大,萃取后与水分离就越容易。常用的萃取剂有含氧萃取剂、含磷萃取剂、含氮萃取剂等。常用的萃取设备有脉冲筛板塔、离心萃取机等。 (2)吸附法 吸附法处理废水是利用——种多孔性固体材料(吸附剂)的表面来吸附水中的一种或多种溶解污染物、有机污染物等(称为熔质或吸附质),以回收或去除它们,使废水得以净化。例如,利用活性炭可吸附废白水中的盼、隶、错、氧等剧毒物质,且具有脱色、除臭等作用。吸附法目前多用于污水的深度处理,可分为静态吸附和动态吸附两种方法,即在污水分别处于静态和流动态时进行吸附处理。常用的吸附设备有固定床、移动床和流动床等。

焦油废水物理化学处理方法

焦油废水物理化学处理方法 煤焦油是焦化工业的重要产品之一,其组成成分极其复杂,多数情况下是由煤焦油工业专门进行分离、提纯后得到并加以利用。 煤焦油精加工可得到多种化工产品,但煤焦油加工过程中会产生大量的有毒废水,该类废水含高浓度有机物、氰等剧毒物质,毒性大,成分复杂。其中有机污染物主要为单环或多环芳香族化合物以及含氮、硫、氧的杂环化合物,如高浓度的酚、萘、苯胺、吡啶、喹啉、苯并芘等。酚类化合物对所有的生物都有毒,它们可以使细胞失去活力,蛋白质凝固;多环芳烃可使人致癌,一般很难生物降解。 现在国内乃至世界都在大力研究焦化废水的处理问题,鲜有人深入研究煤焦油废水。煤焦油加工废水与传统焦化污水即酚氰污水既有相同之处又有很大区别,除都含有高的氰、氨氮外,煤焦油加工污水中挥发酚、吲哚、苯并芘(a)、萘、茚、油类等含量远大于传统焦化污水。 根据焦油加工生产工艺的特点,煤焦油废水主要来自:①焦油大槽中的焦油静置分离水,此部分污水单独收集;②焦油一段、二段蒸发器分离水,工业萘油水分离器分离水;③焦油大槽分离水与焦油加工各分离器废水送公司废水槽;④洗涤分解NaSO4污水及精酚装置污水,其中精酚高浓污水挥发酚含量在3%~10%,返回洗涤分解配碱槽,回收其中挥发酚,洗涤分解污水单独储存处理;⑤清扫管道产生的废水以及地表污水,生活污水等。目前我国焦油废水大都未经彻底处理,造成水环境严重污染,同时也威胁到人类的健康。 焦油废水的处理方式与焦化废水大致相同,通过一般的预处理、生物脱氮二次处理,最终的COD、氨氮等指标很难达标。本文中综述了近年来国内外焦油废水的处理方法,并对其中存在的问题做了分析,提出焦油废水处理技术的发展趋势。 1焦油废水难降解有机物的处理现状 1.1物理化学处理方法 1.1.1混凝法 混凝法的关键在于混凝剂,常见的混凝剂有铝盐、铁盐、聚铝等。颜家保等以硅酸钠和硫酸铁制备了一种新型的混凝剂—聚硅硫酸铁,探究了聚硅硫酸铁的Fe与Si的摩尔比、pH 以及投加量等因素对聚硅硫酸铁的混凝效果。发现当n(Fe)∶n(Si)=1.00∶1.00,水样pH 为6.52以及投加量为20mg/L时,除油率达到90.2%,COD去除率约为62.5%。该絮凝剂之所以表现突出,是因为在制备过程中加入了活性硅酸,改善了聚合物的形态结构。开发成本低、功效大的新型混凝剂有助于废水的高效处理。通过3种因素来探讨聚硅硫酸铁的性能还略显不足,例如温度等其他因素也应考虑。 1.1.2超临界氧化法

水处理当中的物理化学方法

水处理当中的物理化学方法 摘要:介绍了几种水处理过程中常用的物理化学方法,并分析了水处理中物理化学方法的发展趋势。 关键词:物理化学膜技术 水或废水中的污染物在处理过程或自然界的变化过程中通过相转移作用而达到去除的目的,这种处理或变化过程称为物理化学处理过程。污染物在物理化学过程中可以不参与化学变化或反应,直接从一相转移到另一相,也可以经过化学反应后再转移。因此在物理化学处理过程中可能伴随着化学反应,但不一定总伴随着化学反应。水处理时常用的物理化学方法有吸附法、离子交换、萃取、膜工艺等。 吸附 吸附是一种物质附着在另一种物质表面上的过程,它可以发生在气-液、气-固、液-固两相之间。吸附法的主要对象是废水中用生化法难以降解的有机物或用一般氧化法难以氧化的溶解性有机物,包括木质素、氯或硝基取代的芳香烃化合物、杂环化合物、洗涤剂、合成燃料、除莠剂、DDT等。当用活性炭对这类废水进行处理时,它不但能够吸附这些难分解的有机物,降低COD,还能使废水脱色、脱臭,把废水处理到可重复利用的程度。所以吸附法在废水的深度处理中得到广泛应用。 离子交换 离子交换是一种借助于离子交换剂上的离子和水中的离子进行交换反应而除去水中有害离子的过程,离子交换法是水处理中软化和除盐的主要方法之一。主要用于去除污水中的金属离子,回收污水中的重金属和贵稀金属,也用于放射性废水和有机废水的处理。采用离子交换过程处理污水,具有去除效率高,可浓缩回收有用物质,设备简单,操作控制容易等优点。 萃取 溶剂萃取是利用某种溶剂对废水污染物的选择作用,使一种或几种组分分离出来,以回收废水中高浓度污染物。适用于污染物浓度较高、难生物降解、污染物热敏性和与水的相对挥发度等于1或接近于1,或与水形成恒沸点、用化学氧化、还原等处理过程时药剂消耗量大等特点的工业废水。但由于溶剂往往是有机物,在水中或多或少有溶解作用,给出水中带来新的污染,因此萃取过程用于工业废水的处理时往往要跟随后续处理。 在废水处理中主要采用的是液液萃取。萃取已经成为从有机废水及重金属废水中回收及去除酚、铜、镉、汞等的一种有效的过程,在国内外得到广泛的应用。

相关主题
文本预览
相关文档 最新文档