当前位置:文档之家› 数据挖掘算法及其在股市技术分析中的应用

数据挖掘算法及其在股市技术分析中的应用

数据挖掘算法及其在股市技术分析中的应用
数据挖掘算法及其在股市技术分析中的应用

收稿日期:2004-04-09;修订日期:2004-06-15

作者简介:万国华(1966-),男,江西南昌人,副教授,博士,主要研究方向:信息系统与运筹学; 陈宇晓(1980-),男,广东深圳人,工程师,

主要研究方向:信息系统和企业信息化.

文章编号:1001-9081(2004)11-0104-03

数据挖掘算法及其在股市技术分析中的应用

万国华,陈宇晓

(深圳大学管理学院,广东深圳518060)

(gh_wan@https://www.doczj.com/doc/c616024411.html,)

摘 要:提出了一种基于动态规划和动态时间弯折函数的数据挖掘算法,并应用该算法对股市进行技术分析。基于某股市实际数据的实验结果表明该算法是有效的。

关键词:数据挖掘;股市指数;动态规划;动态时间弯折函数中图分类号:TP311.13 文献标识码:A

Data mining algorithm and its applications in technical analysis of stock market

W AN Guo hua,C HE N Yu xiao

(Colle ge of Management,Shenzhen University ,Shen z hen Guan gdong 518060,China)

Abstract:A new data mining algorithm based on dynamic programming and dynamic time warping function was proposed and applied in technical analysis of stock market.The experi ment with the data from a stock ex change showed that the algorith m is effective in technical analysis of the stock index.

Key words:data mining ;stock index;dynamic programmi ng ;dynamic time warpi ng

0 引言

证券市场的技术分析一直是一个热门的研究课题,人们提出了各种不同地方法来预测股市的走势,主要包括基于统计分析(时间序列和回归模型)的预测方法[3,4],基于人工智能(神经网络、遗传算法和模糊逻辑)的预测方法[2]。本文讨论一个基于数据挖掘技术进行证券市场的技术分析的方法。该方法应用动态时间弯折函数以寻找股市的走势模式,从而进行股市指数等有关变量的预测。

首先,证券市场的技术分析常用到一些图形型态,它们是由于股价经过一段时间的盘档后,在图上形成的一种特殊型态,可作为股价走势的基本模式。不同的型态有出不同的意义。图1中给出了技术分析中常用的一些型态(它们对应了各自的模式)。

实际的股市走势曲线中与某个型态相吻合常常蕴含着一定的规律。例如:潜伏顶的出现常与高交易量相关联;头肩顶反映了好淡双方的激烈争夺情况,是一个长期性趋势的转向型态,通常在牛市的尽头出现。事实上,当最近的一个高点的成交量较前一个高点为低时,就暗示头肩顶出现的可能性很大;当第三次回升估价无法升抵上次的高点,而成交继续下降时,有经验的投资者就会把握机会沽出。当头肩顶颈线击破时,就是一个真正的沽出讯号,虽然股价和最高点比较,已回落了相当的幅度,但跌势只是刚刚开始,未出货的投资者继续沽出。股价跌破颈线后会有短时反弹行情,在颈线附近受到压力后转向继续下跌。

在某一段时间内的股市指数走势形成了与其相对应的图表型态,可以分为反转形态、整理形态。股市走势曲线便可视为由一个个不同的形态所组成的。

图1 几种熊市的技术分析型态

由于股市走势图与人类的语音变化图类似,故引入在语音识别中有效的动态时间弯折(Dynamic Time Warping ,DTW)函数来对股市走势图进行模式匹配[1,5],寻找股市变化的内在模式,是一种可行的方法。其思想是:预先存储数个典型的型态模板,应用这些典型的型态模板对走势图进行匹配,使得匹配时的误差达到一个可接受的范围。具体地,可以应用动态规划方法,使得某个模板与实际的走势图的一段与型态模板相匹配,并使匹配误差最小。以下描述这个基于动态规划和动态时间弯折函数的数据挖掘算法,并研究了该算法在某股市指数的技术分析中的应用。

1 一个基于动态规划算法的数据挖掘算法

1.1 普通时间规范化距离和弯折函数

首先,股市指数所形成的曲线(实际走势和型态模板)可以用向量表示如下:

第24卷第11期

2004年11月

计算机应用Computer Applications

Vol.24No.11Nov.2004

曲线(或型态)A 表示为:A =a 1,a 2, ,a i , ,a I 曲线(或型态)B 表示为:B =b 1,b 2, ,b j , ,b J

假设

问题中两个曲线(型态)的时间间隔相同,在一个i -j 坐标

(图2),分别沿i 轴和j 轴画出模式A 和模式B 。因为两个模式的时间间隔相同,故它们之间在同一时点的时间差异可用一序列c(i,j )描述如下:

F =[c(1),c(2), ,c(k ), ,c(K )] 其中c(k )=(i (k ),j (k ))(2)

该序列表示的一个函数F,实现了模式A 到模式B 的映射,称之为弯折函数。

当模式之间没有时间差异的时候,弯折函数与对角线j =i 重合。而时间差异的越大,

则弯折函数越偏离对角线。

图2 一个弯折函数的例子

为叙述方便,引入如下定义:

定义 (1)两个特征向量a i 和b j 的时间差异定义为如下范数:

d(c)=d(i ,j )= a i -b j (2)弯折函数F 的时间差异分量的总和定义为:

E(F )=

!d(c(k ))*

w(k ),其中w(k )是非负权重

(4)

(3)若用最小残留距离表示模式A 和模式B 之间的距离,则模式A 和模式B 之间的时间规范化距离可定义如下:

D (A ,B )=Min F

!K

k =1

d(c(k))*

w (k )

!

K

k =1

w(k)

(5)

1.2 弯折函数中的约束

(2)式定义的弯折函数是一种曲线随时间轴变动的模型,它必须接近实际的曲线随时间轴的变动。换句话说,函数F 被视为模式A 到模式B 之间的映射时,必须保持模式A 在其时间轴中的基本结构,反之亦然。因而,在每次转换时模式必须满足如下条件:即模式在自己的时间轴中,其基本结构是连续和单调的。

1)单调条件:i(k -1) i(k ),且j (k -1) j (k )

2)连续条件:i(k )-i(k -1) 1,且j (k )-j (k -1) 1由1)和2)可得相邻的两个点之间应满足如下关系:

c(k -1)=(i(k ),j (k)-1)

(i(k )-1,j (k )-1)

(i(k )-1,j (k ))

同时,:3)边界条件:i (1)=1,j (1)=1,及i(K )=I ,j (K )=J 4)窗口调整条件:i(k )-j (k ) r (见图2)

其中r 是一个适当的正整数,称为窗宽,该条件基于一个

事实,即大多数时间轴中的波动不会引起太大的时间差异。

5)倾斜约束条件:

对于弯折函数的倾斜度不应该过于陡峭和过于缓和(即变化不应过于大和过于小),否则可能引起非期望的时间轴弯折。太陡峭的倾斜度,会引起一个很短的模式A 段和一个相对长的模式B 段不切实际的匹配。具体地说,如果点c (k)朝i(0,j )轴连续前进m 次,那么c(k )不允许在此方向走得更远,除非它在对角线方向至少走了n 次。这里,其目的是用于限制变化的幅度,让倾斜度固定在一定范围。为了能对倾斜约束的强度进行评价,引入一个量P =n/m 。当P =0时,弯折函数的倾斜度没有限制,而P =?时(即m =0),弯折函数即对角线j =i 。事实上,如果倾斜约束太严格,则时间规范化将不能有效工作。如倾斜约束太松弛,则模式间的区别将退化。根据文献[5]的实验,P 的值应适中。1.3 关于权重的讨论

由(5)式定义的是一种理想的距离,但它的最优化是一个难于处理的问题。如果(5)式中分母N =

!w (k)与弯折

函数F 无关(称为规范化系数),则(5)式可简化为:

D(A ,B)=1

N M in F [

!K

k =1

d(c(k))*

w (k )]

这个简化的问题可以用动态规划技术有效地求解。以下针对两种典型的权重形式,简化该问题。

1)对称形式:w (k)=[i(k )-i(k -1)]+[j (k )-j (k -1)],则N =I +J ,其中I ,J 分别是模式A 和B 的长度。

2)不对称形式:w(k)=[i (k )-i(k -1)],则N =I 。若假定时间轴i 和j 都是连续的,那么用对称形式,(5)式中的总和意味一个沿着临时定义的轴l(l =i+j )的合成。在不对称形式,(5)式中的总和意味着一个沿着时间轴i 的合成。从而,时间规范化距离是对称的,即D (A ,B )=D (B,A ),如图3所示。

图3 时间规范化距离

在不对称形式中,当弯折函数的点沿j 轴变化,或c(k)=c(k -1)+(0,1),权重w(k )减少到零。这意味着一些特征向量b j 有可能被不对称形式的合成排除在外。相反,在对称形式中,最小的w(k)的值等于1,不会出现排除特征向量的情形。

由于模式中的每一部分都应平等地看待,故任何特征向量被排除都应尽可能地避免,因此采用对称形式能得到比不对称形式更高的正确辨识率。然而,应注意到当弯折函数的点沿j 轴变化时,倾斜约束减少这种情形,这时,对称形式与不对称形式的差别会随倾斜约束的增强而逐渐地消失。

2 算法在某股市指数技术分析中的应用

2.1 实验数据

实验中所用的数据是随机选取的2000年1~3月份某股市指数。为了能比较好地模拟出该指数,选用了周期为60分钟的指数走势(这是目前能得到的最精确的数据),对于每个交易日我们选定了开市(9:30)、10:30、13:00、14:00和收市(15:00)五个时间的指数。这样若有M 个交易日,则数据为5*M 个(数据见附录)。对于每个型态模板,用一个一维数组

105第11期万国华等:数据挖掘算法及其在股市技术分析中的应用

表示。为了能较好地描述出一个型态模板,首先把模板分成时间差异相等的10段,每段取1个具体数字(指数轴上的高度),

这样就用10

个数字表示了一个模板。

2.2 算法的应用

要把股市数据引入到本文所述的算法中,需要做一些假设。在算法中为了能较简单地处理数据的拟合问题,采用了一种对称形式,并且不做倾斜约束的限制,故有:初始化条件为:g(1,1)=2d(1,1)

动态规划方程为:

g(i,j )=min g (i,j -1)+d (i,j )

g (i -1,j -1)+2d(i,j )

g (i -1,j )+d (i,j )

窗口调整条件为:j -r i j +r

时间规范化距离为:D (A ,B)=g(I ,J )/N ,其中N =I +J 。

上述算法的流程图见图4。

实验中,给定的型态模板作为模式A ,同时一段给定的走势曲线作为模式B 。由于股市走势是市场各方力量的综合体现,股票在单个或连续若干个交易日的某个时间段更富规律性(如在1999年的519行情中,和1999年末2000年初网络股带动股市进入牛市中的行情中,某个交易日中指数下滑并不体现指数整体在攀升的情况)。故认为形态模板与走势的拟合应以形态模板缩放到N 个交易日为准(N 为正整数),才符合现实世界的规律(当然,N 也不能很大)。把模板分成10段,同时用10个指数为一段的走势曲线与模板比较,与股市中一、两天就形成一种形态走势的客观事实相符。

为了得到模板A 和某段走势图B 的时间规范化距离,必须先求出两者每点之间的距离。在把模板缩放后与走势比较时,实际是在同一坐标(时间轴X ,指数轴Y)系中进行的,二者在时间轴X 上相同,指数轴Y 上不同。即在同一时点,仅仅

是指数高低有不同,因此把上面的度量两点之间距离的范数 a i -b j 定义为: x 模板-y 走势图 。

在实际的股市中,无法认为某个时间时的指数比另一个时间时的指数更为重要,因此认为每一时间点的权重都一样,则权重w (k )=1/点数。从而距离的总和为:E(F)=

!d(c(K ))*(1/点数),对应的时间规范化距离为:D (A ,

B)=M in {!d(c(K ))*(1/点数)}。

图4 算法的流程图

2.3 实验结果及分析

在实验中,使用了潜伏顶,箱形整理,突破,反转,潜伏底,V 形底和阴跌等形态模板。实验结果表明,在每阶段的时间规范化距离的比较中,阴跌形态中的时间规范化距离基本上

(下转第109页)

106 计算机应用

2004年

性,也许是人,也许只是一根柱子。正如前文所说,我们丢失

了红外传感器的特殊信息,温度场的信息。图2(d)是Toet 方法的融合图像,图2(e)是Zhao 方法的融合图像,图2(f)是本

文的方法。

图2 原图像、灰度融合图像和彩色融合图像

从上述仿真结果可以很明显的看出,图2(d)、(e)方法得

到的融合图像由于RGB 三通道的耦合,导致了空间分辨率的降低。而本文方法得到的融合图像保持了较好的空间分辨率,可以清晰分辨出篱笆,树木等信息,证明在进行上色过程中对灰度融合图像的信息量损失较小;同时,色彩的引入包含了灰度融合算法未能表示的热能信息,对于篱笆后面的高热物体,从几何外形和热能辐射两方面的信息可以更准确的判断其属性。

因此,本文算法得到的融合结果综合信息量更为丰富,目视效果更佳。

3 结语

本文提出了一种基于HSI 空间的异类传感器图像假彩色融合方法,结合灰度图像融合技术与彩色显示技术,综合、完备的体现多传感器的信息。该算法采用HSI 空间,既保持了灰度融合图像的空间分辨率,同时,用灵活色彩调制方法体现了特殊传感器的独有信息;其次,本算法的稳定性较强,不同于传统的假彩色融合方法要根据颜色的冷暖和实际情况选择RGB 三个通道,本算法对HSI 三个通道的输入固化,采用灵活、自适应的色彩调制方法将热红外图像的高亮区与背景明显分离,对后期的计算机目标识别十分有利;最后,本算法得到的彩色图像具有良好的可分解性,可分解得到原始的特殊传感器图像(例如热红外图像)以及灰度融合图像。参考文献:

[1] POHL C.M ultisens or Image Fus ion in Re mote Sensi ng:Concepts,M eth

ods,and Applocations [J ].Inte.J.Remote s ensing,1998,9(5):823-854.

[2] TOET A,WALRA VEN J.New false c olor mapping for i mage fusion.Op

tical engineering[J].1996,3:650-658.

[3] WAX MAN A M.Color night vision:fusion of intensified visible and ther

mal IR i magery,Synthetic Vision for Vehicle Gui dance and Control[A].Proceedi ngs of SPIE 1995[C].1995,2463.58-68.

[4] 高稚允,金伟其,徐丽芳,等.一种可实时化的多光谱图像融合系

统[J].光学技术,1995,4:13-16.

[5] 蒋晓瑜.基于假彩色的多重图像融合[J].北京理工大学学报,

1997,17(5).

[6] 赵巍,毛士艺.一种基于假彩色的象素级多传感器图像融合算法

[J].电子学报,2003,31(3).

[7] BUR T PJ.The pyramid as a structure for efficient computation[A].Mul

ti resolution Image Processi ng and Analys is [C ].Berlin,Germany:Springer Verlag,1984.6-35.

[8] B UR T PJ,ADELSON E H.The Laplacian pyrami d as a compact i mage

code[J].IEEE Trans ac tions on Communications,1983,31:532-540.[9] LI H,MANJUN ATH BS,MITR A SK.Multisens or image fusion using the

wavelet trans form[EB/OL].http://www https://www.doczj.com/doc/c616024411.html,/publi cations/94ICIPWav.htm,1995.

(上接第106页)

是最大的,潜伏顶次之,阴跌、潜伏顶的时间规范化距离较大,这是因为1~3月份股市是牛市为主,而阴跌、潜伏顶是熊市中的两种模板。在七种形态所得到的数据中,由时间规范化距离从大到小的顺序为:阴跌>潜伏顶>箱形整理>潜伏底#>突破>潜伏底?。可知潜伏底和突破较为符合数据,说明这段时间股市指数是在上升中,而不是在下跌或盘整中。

3 结语

本文研究了提出一种基于动态规划和动态时间弯折函数的数据挖掘算法,并应用该算法预测股市指数的趋势。进一步,可以研究算法中的调整窗条件、倾斜约束条件、系数权重的选取等。比如:可把调整窗条件的系数r (即窗宽)对不同的情况用不同的数值;对倾斜约束条件中的测度P =n/m 的不同大小进行各种尝试;还可以对股市中不同时间点的权重(重要性)进行深一步的研究等。

实验中的股市数据是2000年1~3月的数据,在这轮走

势中股市是以指数上升为主的,实验的结果与之相符。这说明,基于动态时间弯折技术的动态规划算法在股市技术分析中是一个有效的算法。参考文献:

[1] BER NDT DJ,CLIFFORD J.Finding Patterns in Ti me Series:A Dynamic

Programmi ng Approach[A].Advances i n Knowledge Di scovery and Data M i ning[C].Menlo Park,CA:A AAI Press,1996.229-248.

[2] KINGDON J.Intelligent Sys te ms and Fi nancial Forecasting[M ].Berlin:

Springer,1997.

[3] MURP HY JJ.Technical Analysis of the Financial Markets:A Compre

hensi ve Guide to Trading Methods and Applications [M ].Ne w Jersey:

Prentice-Hall,1999.

[4] PRING MJ.Technical Analysis Explai ned:The Successful Investor s

Guide to Spotting Inves tment Trends and Turning Points[M ].Boston:

McGra w-Hill,2002.

[5] SAKOE H,CHIBA S.D ynamic Programming Al gori thm Opti mization for

Spoken Word Recognition [A].Waibel A,Lee K Readings in Speech

Recognition[C].San Mateo,CA:Morgan Kaufman,1990.115-153.

109第11期陈玉春等:一种基于HSI 空间的异类传感器假彩色图像融合算法

数据挖掘算法综述

数据挖掘方法综述 [摘要]数据挖掘(DM,DataMining)又被称为数据库知识发现(KDD,Knowledge Discovery in Databases),它的主要挖掘方法有分类、聚类、关联规则挖掘和序列模式挖掘等。 [关键词]数据挖掘分类聚类关联规则序列模式 1、数据挖掘的基本概念 数据挖掘从技术上说是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识的过程。这个定义包括好几层含义: 数据源必须是真实的、大量的、含噪声的、发现的是用户感兴趣的知识, 发现的知识要可接受、可理解、可运用, 并不要求发现放之四海皆准的知识, 仅支持特定的发现问题, 数据挖掘技术能从中自动分析数据进行归纳性推理从中发掘出潜在的数据模式或进行预测, 建立新的业务模型帮助决策者调整策略做出正确的决策。数据挖掘是是运用统计学、人工智能、机器学习、数据库技术等方法发现数据的模型和结构、发现有价值的关系或知识的一门交叉学科。数据挖掘的主要方法有分类、聚类和关联规则挖掘等 2、分类 分类(Classification)又称监督学习(Supervised Learning)。监

督学习的定义是:给出一个数据集D,监督学习的目标是产生一个联系属性值集合A和类标(一个类属性值称为一个类标)集合C的分类/预测函数,这个函数可以用于预测新的属性集合(数据实例)的类标。这个函数就被称为分类模型(Classification Model),或者是分类器(Classifier)。分类的主要算法有:决策树算法、规则推理、朴素贝叶斯分类、支持向量机等算法。 决策树算法的核心是Divide-and-Conquer的策略,即采用自顶向下的递归方式构造决策树。在每一步中,决策树评估所有的属性然后选择一个属性把数据分为m个不相交的子集,其中m是被选中的属性的不同值的数目。一棵决策树可以被转化成一个规则集,规则集用来分类。 规则推理算法则直接产生规则集合,规则推理算法的核心是Separate-and-Conquer的策略,它评估所有的属性-值对(条件),然后选择一个。因此,在一步中,Divide-and-Conquer策略产生m条规则,而Separate-and-Conquer策略只产生1条规则,效率比决策树要高得多,但就基本的思想而言,两者是相同的。 朴素贝叶斯分类的基本思想是:分类的任务可以被看作是给定一个测试样例d后估计它的后验概率,即Pr(C=c j︱d),然后我们考察哪个类c j对应概率最大,便将那个类别赋予样例d。构造朴素贝叶斯分类器所需要的概率值可以经过一次扫描数据得到,所以算法相对训练样本的数量是线性的,效率很高,就分类的准确性而言,尽管算法做出了很强的条件独立假设,但经过实际检验证明,分类的效果还是

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1.C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV 机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面

数据挖掘原理与实践蒋盛益版期末复习

第一章 数据挖掘定义 技术层面:数据挖掘就是从大量数据中,提取潜在有用的信息和知识的过程。 商业层面:数据挖掘就是一种商业信息处理技术,其主要特点是对大量业务数据进行抽取、转换、分析和建模处理,从中提取辅助商业决策的关键性数据。 数据挖掘任务 预测任务 根据其它属性的值预测特定属性的值,如分类、回归、离群点检测。 描述任务 寻找概括数据中潜在联系的模式,如聚类分析、关联分析、演化分析、序列模式挖掘。 (1) 分类(Classification)分析 分类分析,通过分析示例数据库中的数据为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,然后用此分类规则对其它数据库中的记录进行分类。 分类分析广泛应用于用户行为分析(受众分析)、风险分析、生物科学等。 (2) 聚类(Clustering)分析 “物以类聚,人以群分”。聚类分析技术试图找出数据集中的共性和差异,并将具有共性的对象聚合在相应的类中。聚类可以帮助决定哪些组合更有意义,广泛应用于客户细分、定向营销、信息检索等等。 (3) 回归(Regression )分析 回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种分析方法。其可应用于风险分析、作文自动评分等领域。 (4) 关联(Association)分析 关联分析,发现特征之间的相互依赖关系,通常是从给定的数据集中发现频繁出现的模式知识(又称为关联规则)。关联分析广泛用于市场营销、事务分析等领域。 聚类与分类的主要区别 聚类与分类是容易混淆的两个概念,聚类是一种无指导的观察式学习,没有预先定义的类。而分类问题是有指导的示例式学习,预先定义的类。 数据挖掘过程 数据挖掘和知识发现紧密相连。知识发现是从数据中发现有用知识的整个过程 ?知识发现的主要步骤: ?数据清洗。其作用是清除数据噪声和与挖掘主题明显无关的数据。 ?数据集成。其作用是将来自多数据源中的相关数据组合到一起。 ?数据转换。其作用是将数据转换为易于进行数据挖掘的数据存储形式。 ?数据挖掘。其作用是利用智能方法挖掘数据模式或规律知识。 ?模式评估。其作用是根据一定评估标准从挖掘结果筛选出有意义的相关知识。 ?知识表示。其作用是利用可视化和知识表达技术,向用户展示所挖掘的相关知识

学习18大经典数据挖掘算法

学习18大经典数据挖掘算法 本文所有涉及到的数据挖掘代码的都放在了github上了。 地址链接: https://https://www.doczj.com/doc/c616024411.html,/linyiqun/DataMiningAlgorithm 大概花了将近2个月的时间,自己把18大数据挖掘的经典算法进行了学习并且进行了代码实现,涉及到了决策分类,聚类,链接挖掘,关联挖掘,模式挖掘等等方面。也算是对数据挖掘领域的小小入门了吧。下面就做个小小的总结,后面都是我自己相应算法的博文链接,希望能够帮助大家学习。 1.C4.5算法。C4.5算法与ID3算法一样,都是数学分类算法,C4.5算法是ID3算法的一个改进。ID3算法采用信息增益进行决策判断,而C4.5采用的是增益率。 详细介绍链接:https://www.doczj.com/doc/c616024411.html,/androidlushangderen/article/details/42395865 2.CART算法。CART算法的全称是分类回归树算法,他是一个二元分类,采用的是类似于熵的基尼指数作为分类决策,形成决策树后之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法, 详细介绍链接:https://www.doczj.com/doc/c616024411.html,/androidlushangderen/article/details/42558235 3.KNN(K最近邻)算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。 详细介绍链接:https://www.doczj.com/doc/c616024411.html,/androidlushangderen/article/details/42613011 4.Naive Bayes(朴素贝叶斯)算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。 详细介绍链接:https://www.doczj.com/doc/c616024411.html,/androidlushangderen/article/details/42680161 5.SVM(支持向量机)算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。 详细介绍链接:https://www.doczj.com/doc/c616024411.html,/androidlushangderen/article/details/42780439 6.EM(期望最大化)算法。期望最大化算法,可以拆分为2个算法,1个E-Step期望化步骤,和1个M-Step最大化步骤。他是一种算法框架,在每次计算结果之后,逼近统计模型参数的最大似然或最大后验估计。

数据挖掘原理与实践-蒋盛益-答案

习题参考答案 第1 章绪论 1.1 数据挖掘处理的对象有哪些?请从实际生活中举出至少三种。 答:数据挖掘处理的对象是某一专业领域中积累的数据,对象既可以来自社会科学,又可以来自自然科学产生的数据,还可以是卫星观测得到的数据。数据形式和结构也各不相同, 可以是传统的关系数据库,可以是面向对象的高级数据库系统,也可以是面向特殊应用的 数据库,如空间数据库、时序数据库、文本数据库和多媒体数据库等,还可以是Web 数据 信息。 实际生活的例子: ①电信行业中利用数据挖掘技术进行客户行为分析,包含客户通话记录、通话时间、所 开通的服务等,据此进行客户群体划分以及客户流失性分析。 ②天文领域中利用决策树等数据挖掘方法对上百万天体数据进行分类与分析,帮助天文 学家发现其他未知星体。 ③制造业中应用数据挖掘技术进行零部件故障诊断、资源优化、生产过程分析等。 ④市场业中应用数据挖掘技术进行市场定位、消费者分析、辅助制定市场营销策略等。 1.2 给出一个例子,说明数据挖掘对商务的成功是至关重要的。该商务需要什么样的数据挖掘功能?它们能够由数据查询处理或简单的统计分析来实现吗? 答:例如,数据挖掘在电子商务中的客户关系管理起到了非常重要的作用。随着各个电子商务网站的建立,企业纷纷地从“产品导向”转向“客户导向”,如何在保持现有的客户 同时吸引更多的客户、如何在客户群中发现潜在价值,一直都是电子商务企业重要任务。但是,传统的数据分析处理,如数据查询处理或简单的统计分析,只能在数据库中进行 一些简单的数据查询和更新以及一些简单的数据计算操作,却无法从现有的大量数据中 挖掘潜在的价值。而数据挖掘技术却能使用如聚类、关联分析、决策树和神经网络等多 种方法,对数据库中庞大的数据进行挖掘分析,然后可以进行客户细分而提供个性化服务、可以利用挖掘到的历史流失客户的特征来防止客户流失、可以进行产品捆绑推荐等,从而使电子商务更好地进行客户关系管理,提高客户的忠诚度和满意度。 1.3 假定你是Big-University 的软件工程师,任务是设计一个数据挖掘系统,分析学校课程数据库。该数据库包括如下信息:每个学生的姓名、地址和状态(例如,本科生或研究生)、所修课程,以及他们的GPA。描述你要选取的结构,该结构的每个成分的作用是什么?答:任务目的是分析课程数据库,那么首先需要有包含信息的关系型数据库系统,以便查找、提取每个属性的值;在取得数据后,需要有特征选择模块,通过特征选择,找出要分析 的属性;接下来需要一个数据挖掘算法,或者数据挖掘软件,它应该包含像分类、聚类、关联分析这样的分析模块,对选择出来的特征值进行分析处理;在得到结果后,可以用 可视化软件进行显示。 1.4 假定你作为一个数据挖掘顾问,受雇于一家因特网搜索引擎公司。通过特定的例子说明,数据挖掘可以为公司提供哪些帮助,如何使用聚类、分类、关联规则挖掘和离群点检测 等技术为企业服务。 答: (1) 使用聚类发现互联网中的不同群体,用于网络社区发现; 第2 页共27 页 (2) 使用分类对客户进行等级划分,从而实施不同的服务; (3) 使用关联规则发现大型数据集中间存在的关系,用于推荐搜索。如大部分搜索了“广外”的人都会继续搜索“信息学院”,那么在搜索“广外”后会提示是否进进一步搜 索“信息学院”。

数据挖掘十大待解决问题

数据挖掘领域10大挑战性问题与十大经典算法 2010-04-21 20:05:51| 分类:技术编程| 标签:|字号大中小订阅 作为一个数据挖掘工作者,点可以唔知呢。 数据挖掘领域10大挑战性问题: 1.Developing a Unifying Theory of Data Mining 2.Scaling Up for High Dimensional Data/High Speed Streams 3.Mining Sequence Data and Time Series Data 4.Mining Complex Knowledge from Complex Data 5.Data Mining in a Network Setting 6.Distributed Data Mining and Mining Multi-agent Data 7.Data Mining for Biological and Environmental Problems 8.Data-Mining-Process Related Problems 9.Security, Privacy and Data Integrity 10.Dealing with Non-static, Unbalanced and Cost-sensitive Data 数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

十 大 经 典 排 序 算 法 总 结 超 详 细

数据挖掘十大经典算法,你都知道哪些? 当前时代大数据炙手可热,数据挖掘也是人人有所耳闻,但是关于数据挖掘更具体的算法,外行人了解的就少之甚少了。 数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。而今天,小编就给大家介绍下数据挖掘中最经典的十大算法,希望它对你有所帮助。 一、分类决策树算法C4.5 C4.5,是机器学习算法中的一种分类决策树算法,它是决策树(决策树,就是做决策的节点间的组织方式像一棵倒栽树)核心算法ID3的改进算法,C4.5相比于ID3改进的地方有: 1、用信息增益率选择属性 ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(shang),一种不纯度度量准则,也就是熵的变化值,而 C4.5用的是信息增益率。区别就在于一个是信息增益,一个是信息增益率。 2、在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致过拟。 3、能对非离散数据和不完整数据进行处理。 该算法适用于临床决策、生产制造、文档分析、生物信息学、空间数据建模等领域。 二、K平均算法

K平均算法(k-means algorithm)是一个聚类算法,把n个分类对象根据它们的属性分为k类(kn)。它与处理混合正态分布的最大期望算法相似,因为他们都试图找到数据中的自然聚类中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。 k-Means 算法常用于图片分割、归类商品和分析客户。 三、支持向量机算法 支持向量机(Support Vector Machine)算法,简记为SVM,是一种监督式学习的方法,广泛用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点: (1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分; (2)它基于结构风险最小化理论之上,在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段“频繁项集”思想的递推算法。其涉及到的关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支

数据挖掘分类算法介绍

数据挖掘分类算法介绍 ----------------------------------------------------------------------------------------------------------------------------- 分类是用于识别什么样的事务属于哪一类的方法,可用于分类的算法有决策树、bayes分类、神经网络、支持向量机等等。 决策树 例1 一个自行车厂商想要通过广告宣传来吸引顾客。他们从各地的超市获得超市会员的信息,计划将广告册和礼品投递给这些会员。 但是投递广告册是需要成本的,不可能投递给所有的超市会员。而这些会员中有的人会响应广告宣传,有的人就算得到广告册不会购买。 所以最好是将广告投递给那些对广告册感兴趣从而购买自行车的会员。分类模型的作用就是识别出什么样的会员可能购买自行车。 自行车厂商首先从所有会员中抽取了1000个会员,向这些会员投递广告册,然后记录这些收到广告册的会员是否购买了自行车。 数据如下:

在分类模型中,每个会员作为一个事例,居民的婚姻状况、性别、年龄等特征作为输入列,所需预测的分类是客户是否购买了自行车。 使用1000个会员事例训练模型后得到的决策树分类如下:

※图中矩形表示一个拆分节点,矩形中文字是拆分条件。 ※矩形颜色深浅代表此节点包含事例的数量,颜色越深包含的事例越多,如全部节点包含所有的1000个事例,颜色最深。经过第一次基于年龄的拆分后,年龄大于67岁的包含36个事例,年龄小于32岁的133个事例,年龄在39和67岁之间的602个事例,年龄32和39岁之间的229个事例。所以第一次拆分后,年龄在39和67岁的节点颜色最深,年龄大于67岁的节点颜色最浅。 ※节点中的条包含两种颜色,红色和蓝色,分别表示此节点中的事例购买和不购买自行车的比例。如节点“年龄>=67”节点中,包含36个事例,其中28个没有购买自行车,8个购买了自行车,所以蓝色的条比红色的要长。表示年龄大于67的会员有74.62%的概率不购买自行车,有23.01%的概率购买自行车。 在图中,可以找出几个有用的节点: 1. 年龄小于32岁,居住在太平洋地区的会员有7 2.75%的概率购买自行车; 2. 年龄在32和39岁之间的会员有68.42%的概率购买自行车; 3. 年龄在39和67岁之间,上班距离不大于10公里,只有1辆汽车的会员有66.08%的概率购买自行车;

数据挖掘中十大经典算法

数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。 5. 最大期望(EM)算法 在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。 6. PageRank PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里?佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个

数据挖掘案例分析--啤酒与尿布讲课稿

前言 “啤酒与尿布”的故事是营销届的神话,“啤酒”和“尿布”两个看上去没有关系的商品摆放在一起进行销售、并获得了很好的销售收益,这种现象就是卖场中商品之间的关联性,研究“啤酒与尿布”关联的方法就是购物篮分析,购物篮分析曾经是沃尔玛秘而不宣的独门武器,购物篮分析可以帮助我们在门店的销售过程中找到具有关联关系的商品,并以此获得销售收益的增长! 商品相关性分析是购物篮分析中最重要的部分,购物篮分析英文名为market basket analysis(简称MBA,当然这可不是那个可以用来吓人的学位名称)。在数据分析行业,将购物篮的商品相关性分析称为“数据挖掘算法之王”,可见购物篮商品相关性算法吸引人的地方,这也正是我们小组乐此不疲的围绕着购物篮分析进行着研究和探索的根本原因。 购物篮分析的算法很多,比较常用的有A prior/ ?’ p r i ?/算法、FP-tree结构和相应的FP-growth算法等等,上次课我们组的邓斌同学已经详细的演示了购物篮分析的操作流程,因此在这里我不介绍具体的购物篮分析算法,而是在已经获得的结果的基础上剖析一下数据身后潜藏的商业信息。目前购物篮分析的计算方法都很成熟,在进入20世纪90年代后,很多分析软件均将一些成熟的购物篮分析算法打包在自己的软件产品中,成为了软件产品的组成部分,客户购买了这些软件产品后就等于有了购物篮分析的工具,比如我们正在使用的Clementine。 缘起 “啤酒与尿布”的故事可以说是营销界的经典段子,在打开Google搜索一下,你会发现很多人都在津津乐道于“啤酒与尿布”,可以说100个人就有100个版本的“啤酒与尿布”的故事。故事的时间跨度从上个世纪80年代到本世纪初,甚至连故事的主角和地点都会发生变化——从美国跨越到欧洲。认真地查了一下资料,我们发现沃尔玛的“啤酒与尿布”案例是正式刊登在1998年的《哈佛商业评论》上面的,这应该算是目前发现的最权威报道。 “啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。 在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布”故事的由来。 当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal (个人翻译--艾格拉沃)提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提出了商品关联关系的计算方法——A prior算法。沃尔玛从上个世纪90年代尝试将A prior算法引入到POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。 “啤酒和尿布”的故事为什么产生于沃尔玛超市的卖场中

数据挖掘主要算法

朴素贝叶斯: 有以下几个地方需要注意: 1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。 2. 计算公式如下: 其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是的计算方法,而由朴素贝叶斯的前提假设可知, = ,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本的总和;第二种方法是类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本中所有特征出现次数的总和。 3. 如果中的某一项为0,则其联合概率的乘积也可能为0,即2中公式的分子为0,为了避免这种现象出现,一般情况下会将这一项初始化为1,当然为了保证概率相等,分母应对应初始化为2(这里因为是2类,所以加2,如果是k类就需要加k,术语上叫做laplace 光滑, 分母加k的原因是使之满足全概率公式)。 朴素贝叶斯的优点: 对小规模的数据表现很好,适合多分类任务,适合增量式训练。 缺点: 对输入数据的表达形式很敏感。 决策树: 决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。 信息熵的计算公式如下:

其中的n代表有n个分类类别(比如假设是2类问题,那么n=2)。分别计算这2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分枝前的信息熵。 现在选中一个属性xi用来进行分枝,此时分枝规则是:如果xi=vx的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’=p1*H1+p2*H2.,则此时的信息增益ΔH=H-H’。以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。 决策树的优点: 计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征; 缺点: 容易过拟合(后续出现了随机森林,减小了过拟合现象); Logistic回归: Logistic是用来分类的,是一种线性分类器,需要注意的地方有: 1. logistic函数表达式为: 其导数形式为: 2. logsitc回归方法主要是用最大似然估计来学习的,所以单个样本的后验概率为: 到整个样本的后验概率:

数据挖掘算法

数据挖掘的10大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在 构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

大数据挖掘商业案例

1.前言 随着中国加入WTO,国金融市场正在逐步对外开放,外资金融企业的进入在带来先进经营理念的同时,无疑也加剧了中国金融市场的竞争。金融业正在快速发生变化。合并、收购和相关法规的变化带来了空前的机会,也为金融用户提供了更多的选择。节约资金、更完善的服务诱使客户转投到竞争对手那里。即便是网上银行也面临着吸引客户的问题,最有价值的客户可能正离您而去,而您甚至还没有觉察。在这样一种复杂、激烈的竞争环境下,如何才能吸引、增加并保持最好的客户呢? 数据挖掘、模式(Patterns>等形式。用统计分析和数据挖掘解决商务问题。 金融业分析方案可以帮助银行和保险业客户进行交叉销售来增加销售收入、对客户进行细分和细致的行为描述来有效挽留有价值客户、提高市场活动的响应效果、降低市场推广成本、达到有效增加客户数量的目的等。 客户细分―使客户收益最大化的同时最大程度降低风险 市场全球化和购并浪潮使市场竞争日趋激烈,新的管理需求迫切要求金融机构实现业务革新。为在激烈的竞争中脱颖而出,业界领先的金融服务机构正纷纷采用成熟的统计分析和数据挖掘技术,来获取有价值的客户,提高利润率。他们在分析客户特征和产品特征的同时,实现客户细分和市场细分。 数据挖掘实现客户价值的最大化和风险最小化。SPSS预测分析技术能够适应用于各种金融服务,采用实时的预测分析技术,分析来自各种不同数据源-来自ATM、交易、呼叫中心以及相关分支机构的客户数据。采用各种分析技术,发现数据中的潜在价值,使营销活动更具有针对性,提高营销活动的市场回应率,使营销费用优化配置。 客户流失―挽留有价值的客户 在银行业和保险业,客户流失也是一个很大的问题。例如,抵押放款公司希望知道,自己的哪些客户会因为竞争对手采用低息和较宽松条款的手段而流失;保险公司则希望知道如何才能减少取消保单的情况,降低承包成本。 为了留住最有价值的客户,您需要开展有效的保留活动。然而,首先您需要找出最有价值的客户,理解他们的行为。可以在整个客户群的很小一部分中尽可能多地找出潜在的流失者,从而进行有效的保留活动并降低成本。接着按照客户的价值和流失倾向给客户排序,找出最有价值的客户。 交叉销售 在客户关系管理中,交叉销售是一种有助于形成客户对企业忠诚关系的重要工具,有助于企业避开“挤奶式”的饱和竞争市场。由于客户从企业那里获得更多的产品和服务,客户与企业的接触点也就越多,企业就越有机会更深入地了解客户的偏好和购买行为,因此,企业提高满足客户需求的能力就比竞争对手更有效。 研究表明,银行客户关系的年限与其使用的服务数目、银行每个账户的利润率之间,存在着较强的正相关性。企业通过对现有客户进行交叉销售,客户使用企业的服务数目就会增多,客户使用银行服务的年限就会增大,每个客户的利润率也随着增大。 从客户的交易数据和客户的自然属性中寻找、选择最有可能捆绑在一起销售的产品和服务,发现有价值的产品和服务组合,从而有效地向客户提供额外的服务,提高活期收入并提升客户的收益率。

数据挖掘经典案例

数据挖掘经典案例 当前,市场竞争异常激烈,各商家企业为了能在竞争中占据优势,费劲心思。使用过OLAP技术的企业都知道,OLAP技术能给企业带来新的生机和活力。OLAP技术把企业大量的数据变成了客户需要的信息,把这些信息变成了价值,提高了企业的产值和效益,增强了客户自身的竞争实力。 “啤酒与尿布”的故事家喻户晓,在IT界里,几乎是数据挖掘的代名词,那么各商家企业受了多少启发,数据挖掘又给他们带来了多少价值呢? 客户需求 客户面对大量的信息,用OLAP进行多维分析。如:一个网上书店,用OLAP技术可以浏览到什么时间,那个类别的客户买了多少书等信息,如果想动态的获得深层次的信息,比如:哪些书籍可以打包推荐,哪些书籍可以在销售中关联推出等等,就要用到数据挖掘技术了。 当客户在使用OLAP技术进行数据的多维分析的时候,联想到“啤酒与尿布”的故事,客户不禁会有疑问,能不能通过数据挖掘来对数据进行深层次的分析呢,能不能将数据挖掘和OLAP结合起来进行分析呢? SQL Server 2005 数据挖掘: SQL Server 2005的Data Mining是SQL Server2005分析服务(Analysis Services)中的一部分。数据挖掘通常被称为“从大型数据库提取有效、可信和可行信息的过程”。换言之,数据挖掘派生数据中存在的模式和趋势。这些模式和趋势可以被收集在一起并定义为挖掘模型。挖掘模型可以应用于特定的业务方案,例如:预测销售额、向特定客户发送邮件、确定可能需要搭售的产品、查找客户将产品放入购物车的顺序序列。 Microsoft 决策树算法、Microsoft Naive Bayes 算法、Microsoft 聚类分析算法、Microsoft 神经网络算法 (SSAS),可以预测离散属性,例如,预测目标邮件活动的收件人是否会购买某个产品。 Microsoft 决策树算法、Microsoft 时序算法可以预测连续属性,预测连续属性,例如,预测下一年的销量。 Microsoft 顺序分析和聚类分析算法预测顺序,例如,执行公司网站的点击流分析。 Microsoft 关联算法、Microsoft 决策树算法查找交易中的常见项的组,例如,使用市场篮分析来建议客户购买其他产品。 Microsoft 聚类分析算法、Microsoft 顺序分析和聚类分析算法,查找相似项的组,例如,将人口统计数据分割为组以便更好地理解属性之间的关系。 巅峰之旅之案例一:网上书店关联销售 提出问题 网上书店现在有了很强的市场和比较固定的大量的客户。为了促进网上书店的销售量的增长,各网上书店采取了各种方式,给客户提供更多更丰富的书籍,提供更优质服务,等方式吸引更多的读者。

大数据应用案例

四大经典大数据应用案例解析 什么是数据挖掘(Data Mining)?简而言之,就是有组织有目的地收集数据,通过分析数据使之成为信息,从而在大量数据中寻找潜在规律以形成规则或知识的技术。在本文中,我们从数据挖掘的实例出发,并以数据挖掘中比较经典的分类算法入手,给读者介绍我们怎样利用数据挖掘的技术解决现实中出现的问题。 数据挖掘是如何解决问题的? 本节通过几个数据挖掘实际案例来诠释如何通过数据挖掘解决商业中遇到的问题。下面关于“啤酒和尿不湿”的故事是数据挖掘中最经典的案例。而Target 公司通过“怀孕预测指数”来预测女顾客是否怀孕的案例也是近来为数据挖掘学者最津津乐道的一个话题。

一、尿不湿和啤酒 很多人会问,究竟数据挖掘能够为企业做些什么?下面我们通过一个在数据挖掘中最经典的案例来解释这个问题——一个关于尿不湿与啤酒的故事。超级商业零售连锁巨无霸沃尔玛公司(Wal Mart)拥有世上最大的数据仓库系统之一。为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行了购物篮关联规则分析,从而知道顾客经常一起购买的商品有哪些。在沃尔玛庞大的数据仓库里集合了其所有门店的详细原始交易数据,在这些原始交易数据的基础上,沃尔玛利用数据挖掘工具对这些数据进行分析和挖掘。一个令人惊奇和意外的结果出现了:“跟尿不湿一起购买最多的商品竟是啤酒”!这是数据挖掘技术对历史数据进行分析的结果,反映的是数据的内在规律。那么这个结果符合现实情况吗?是否是一个有用的知识?是否有利用价值? 为了验证这一结果,沃尔玛派出市场调查人员和分析师对这一结果进行调查分析。经过大量实际调查和分析,他们揭示了一个隐藏在“尿不湿与啤酒”背后的美国消费者的一种行为模式: 在美国,到超市去买婴儿尿不湿是一些年轻的父亲下班后的日常工作,而他们中有30%~40%的人同时也会为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫不要忘了下班后为小孩买尿不湿,而丈夫们在买尿不湿后又随手带回了他们喜欢的啤酒。另一种情况是丈夫们在买啤酒时突然记起他们的责任,又去买了尿不湿。既然尿不湿与啤酒一起被购买的机会很多,那么沃尔玛就在他们所有的门店里将尿不湿与啤酒并排摆放在一起,结果是得到了尿不湿与啤酒的销售量双双增长。按常规思维,尿不湿与啤酒风马牛不相及,若不是

数据挖掘算法摘要

国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了

相关主题
文本预览
相关文档 最新文档