当前位置:文档之家› 数学分析中的构造性方法

数学分析中的构造性方法

数学分析中的构造性方法
数学分析中的构造性方法

构造性数学及其哲学意义

构造性数学及其哲学意义 摘要:本文在介绍了构造性数学的产生和发展的基础上,重点阐述了它的数学原则和数学基础,表明了可构造性的数学底蕴。最后通过对构造性数学产生的原因和其所要达到的目的的分析,论述了构造性数学的重大意义,同时评析了我国学术界对它的一些认识。 关键词:构造性数学递归函数可靠性 一,构造性数学的产生与发展 构造性数学是现代数学研究的一个重要领域。它的根本特征就是对可构造性的强调。所谓可构造性是指能具体地给出某一对象或者能给出某一对象的计算方法。即当我们把能证实“存在一个X满足性质A”的证明称为构造性的,是指能从这个证明中具体地给出满足性质A的一个x;或者能从此证明中得到一个机械的方法,使其经有限步骤后即能确定满足性质A的这个x来。反之,经典数学(非构造性数学)中的纯存在性证明被称之为非构造的。非构造性证明主要是通过使用反证法来实现的。人们一般把这种强调可构造性的数学称为构造性数学。 构造性数学最早起源于一种构造性哲学思想,这种思想可以追溯到康德那里。康德认为,数学的最终真理性在于数学概念可以通过人的智慧构造出来。他说:“数学必须根据纯粹直观,在纯直观里它才能够具体地,然而却是先天地把它的一切概念提供出来,或者像人们所说的那样,把这些概念构造出来”。又说“数学知识是从概念的构造得出来的理性知识。构造一个概念,意即先天地提供出来与概念相对应的直观。”(〔1〕,第39页)后来,19世纪德国的克罗内克进一步指出:“上帝创造了整数,其余都是人做的工作。”主张自然数与数学归纳法是数学最根本的和直观上最可信的出发点,其它一切数学对象都必须能在有限步骤内从自然数中构造出来,否则就不能作为数学对象。由此克罗内克把许多数学成果划到不合法的行列里,如无限集合、纯存在性证明等。但由于他批判的多建设的少,故其思想在当时并未产生很大影响。另外,彭加勒、勒贝格等大数学家也都是倡导构造性数学研究的有名人物。但是,所有这些人提倡的大都只是一种数学哲学的思想,他们实际的数学工作并未严格地遵循自己的哲学思想。因此,现代意义的构造性数学应以布劳威尔的直觉主义数学为开端,迄今,在构造性数学的研究领域里,由于宗旨、观点和方法的不同,已经形成了一些不同的学派。最着名的除了布劳威尔的直觉主义数学以外,还有希尔伯特的元数学、毕晓普等人的构造性数学以及马尔科夫的算法论等。布劳威尔的直觉主义数学和希尔伯特的元数学,我国数学哲学界普遍比较熟悉,故本文不再表述。这里我们仅就后来发展起来的毕晓普、马尔科夫的构造性数学作些简述。(〔2〕、〔3〕第101—109页) 以毕晓普、迈希尔等人为代表的构造性数学是一个与早先直觉主义数学齐名但又不同于它的新的构造性数学。他们的构造性数学研究是在数学领域中,用普通逻辑于可编码的对象和递归函数。他们所关心的不是数学的奠基问题,而是要用构造性方法来研究数学。他们把构造性数学看成古典数学的一个分支,在这个分支中所讨论的对象都要求是可计算的。以毕晓普

初中教师数学教学方法1

初中教师数学教学方法1 初中教师数学教学方法1 结合初中数学大纲 就初中数学教材进行数学思想方法的教学研究,要通过对教材完整的分析和研究,理清和把握教材的体系和脉络,统揽教材全局,高屋建瓴。然后,建立各类概念、知识点或知识单元之间的界面关系,归纳和揭示其特殊性质和内在的一般规律。例如,在“因式分解”这一章中,我们接触到许多数学方法—提公因式法、运用公式法、分组分解法、十字相乘法等。这是学习这一章知识的重点,只要我们学会了这些方法,按知识──方法──思想的顺序提炼数学思想方法,就能运用它们去解决成千上万分解多项式因式的问题。又如:结合初中代数的消元、降次、配方、换元方法,以及分类、变换、归纳、抽象和数形结合等方法性思想,进一步确定数学知识与其思想方法之间的结合点,建立一整套丰富的教学范例或模型,最终形成一个活动的知识与思想互联网络。 初中教师数学教学方法2 以数学知识为载体 将数学思想方法有机地渗透入教学计划和教案内容之中教学计划的制订应体现数学思想方法教学的综合考虑,要明确每一阶段的载体内容、教学目标、展开步骤、教学程序和操作要点。数学教案则要就每一节课的概念、命题、公式、法则以至单元结构等教学过程进行渗透思想方法的具体设计。要求通过目标设计、

创设情境、程序演化、归纳总结等关键环节,在知识的发生和运用过程中贯彻数学思想方法,形成数学知识、方法和思想的一体化。 应充分利用数学的现实原型作为反映数学思想方法的基础。数学思想方法是对数学问题解决或构建所做的整体性考虑,它来源于现实原型又高于现实原型,往往借助现实原型使数学思想方法得以生动地表现,有利于对其深人理解和把握。例如:分类讨论的思想方法始终贯穿于整个数学教学中。在教学中要引导学生对所讨论的对象进行合理分类(分类时要做到不重复、不遗漏、标准统一、分层不越级),然后逐类讨论(即对各类问题详细讨论、逐步解决),最后归纳总结。教师要帮助学生掌握好分类的方法原则,形成分类思想。 数学思想方法的渗透应根据教学计划有步骤地进行。一般在知识的概念形成阶段导入概念型数学思想,如方程思想、相似思想、已知与未知互相转化的思想、特殊与一般互相转化的思想等等。在知识的结论、公式、法则等规律的推导阶段,要强调和灌输思维方法,如解方程的如何消元降次、函数的数与形的转化、判定两个三角形相似有哪些常用思路等。在知识的总结阶段或新旧知识结合部分,要选配结构型的数学思想,如函数与方程思想体现了函数、方程、不等式间的相互转化,分数讨论思想体现了局部与整体的相互转化。在所有数学建构及问题的处理方面,注意体现其根本思想,如运用同解原理解一元一次方程,应注意为简便而采取的移项法则。 初中教师数学教学方法3 重视课堂教学实践

初中数学常用几何模型及构造方法大全

初中数学常用几何模型及构造方法大全几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间… 全等变换 平移:平行等线段(平行四边形) 对称:角平分线或垂直或半角 旋转:相邻等线段绕公共顶点旋转 对称全等模型 角分线模型 往角两边作垂线 往角两边截取等线段 过角分线某点作垂线 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。

对称半角模型 说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。 旋转全等模型 半角:有一个角含1/2角及相邻线段 自旋转:有一对相邻等线段,需要构造旋转全等 共旋转:有两对相邻等线段,直接寻找旋转全等 中点旋转:倍长中点相关线段转换成旋转全等问题 旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型 构造方法: 遇60度旋60度,造等边三角形 遇90度旋90度,造等腰直角 遇等腰旋顶点,造旋转全等 遇中点旋180度,造中心对称 共旋转模型 说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。通过“8”字模型可以证明。

模型变换 说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。 当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

初中数学方法大全之构造法

初中数学方法大全之构造法 构造法是数学中重要的解题方法,对于一些较繁难的数学问题时,用常规解法,或是无从下手,或是解题过程异常繁杂,这时,若能根据问题的特点,进行巧妙的换元,往往可以化繁为简,化难为易,收到事半功倍的功效。 一、以概念为框架构造 【例1】已知方程 20(0)ax bx c a ++=≠的两根之和为1S ,两根平方和为2S ,两根立方和为 2)x + 90 ,. ac bd B D Rt ABC Rt CDA AC CA Rt ABC Rt CDA a d b c =? ?∠=∠=???????=? ????==∽≌

三、从公式特征构造 【例3】已知x 、y 、z 、r 都为正数,且满足2222,x y z z x +==。 求证:xy=rz 。 【思路分析】此题中,题设222x y z +=与勾股定理的结论非常相似,故可以从构造勾股定理入手进行本题的研究。 证明:如图,构造Rt △ABC ,使AC =x ,BC =y ,斜边AB =z 。作CD ⊥AB 于D 。 由射影定理可知:2AC AD AB =?,则有: 性解决周长与面积的最大值,但这样一来,本题的计算量就很大,而且也较麻烦。换一个思路,以矩形的一组邻边所在的直线为坐标轴,利用函数思想来解决本题,会有意料之外的效果。 解:以AB 、AD 所在的直线为坐标轴,建立平面直 角坐标系xOy 。 根据题意有:(24,0),(0,12)P Q ,易得PQ 所在的直线解 析式为:1122 y x =-+。

设1(,12)(024)2M m m m - +≤≤,则136,602 MF m ME m =-=-。 ∴周长12()2(3660)1922 MF ME m m m =+=++-=-+ 面积211(36)(60)(6)217822MF ME m m m =?=+-=-++ ∴当m =0时,周长最大等于192m ; 当m =0时,面积最大等于2160m 2。 六、其它构造 【例6】在锐角三角形ABC 中,求作一个正方形DEFG ,使D 、E 都落在BC 边上,F 、G 分别落在AC 、AB 边上。 【思路分析】要想作出这样的正方形,确实有些困 难,我们可以把条件放宽:求作一个正方形,使其有三个 顶点落在两边上,这样的正方形就比较好作了,我们可以 马上作出一个这样的正方形1111D E FG 。 这个正方形可以成为本题的一个跳板吗?实际上,我们得到的这个正方形,可以利用位似去作出需要的正方形DEFG 。 解:(略) 在学习数学的过程中,我们会遇到很多这样的题:有些题目有着深厚的“几何背景”,这样的题我们可以恰当地构造出几何图形,以形助数;有些题目有着浓厚的“代数氛围”,我们可以适时地构造出代数模型,以数解形;有些题目有着深刻的“函数味道”,我们可以合理地以函数为框架进行构造。这样不但能够达到另辟蹊径,巧思妙解的目的,而且对培养创造性思维也有很大的帮助。

小学数学教材的分析方法(三)

小学数学教材的分析方法(三) (2)题目结构分析 教材的题目结构就是题目的分类与作用。从编排的角度来看,小学数学教材中题目有三类:准备题、例题和习题。准备题的作用是为了引入新知识,使新识与旧知建立联系;例题的作用是为了阐明新知,使学生理解与掌握新知,习题的作用是巩固新知,使学生形成技能技巧,并发展学生的智能。教材中的习题又有三个层次:练习题、复习题、总复习题。从知识的含量来看,练习题一般是针对一个或几个知识点而设计的问题,它解决一个一个“点”的问题;单元复习题一般是针对一个单元知识而设计的问题,它解决把一个一个“点”串成一条“线”的问题;总复习题是针对一册教材中几个单元知识而设计的习题,它解决把几条“线”织成一个“面”的问题。各个层次的习题中,一般又有几个台阶。如练习题这个层次中就有三个台阶:1)基础性练习题,其作用是巩固新授的知识;2)综合性练习题,其作用是加深对概念、规律、方法及其系统的理解;3)思考性练习题,其作用是培养学生独立分析问题和解决问题的能力。 对题目进行结构分析,主要从两个方面进行:一是每道题是属于何种类型,它处于哪个层次,是属于哪级台阶:二是与每道题目同步的数学知识是什么,也就是说,要解答这道题目需要哪些数学知识。 (3)解说结构分析 用来说明和解释各知识点(概念或命题)的发生过程的所有语句组成的结构,就是教材的解说结构。教材的解说结构由下列语句组成。 ①引语,即引入新知识(包括新概念、新规律和新方法)的语句。或者从旧知的发展引入,或者从新知的作用引入。 ②解说语,即解释和说明新知的语句,解说语包括举例、说明、解释和推断。举例就是举出能概括或归纳出新知的例子:说明就是指出新知的内涵、意义或作用;解释就是叙述新知的来源或根据;推断就是从新知直接推出另一些新知。 ③启示语,即启发学生思考的语句。它不象解说语那样直接说出新知的内涵或根据,而是对学生提出要求或问题,或提供接近答案的提示,启发学生自己思考。 ④结语,即叙述新知内容的语句。用它描述或定义一个概念,或者叙述一条

不等式数学归纳法

1. 设实数122018,,..,x x x 满足任意的12018i j ≤<≤,均有(1)i j i j x x ++≥-,求2018 1 i i ix =∑ 求2018 1i i ix =∑最小值. 2. 设正实数12,,..,n x x x 满足12..1n x x x =,求证:{}{}{}1221 ...2 n n x x x -+++≤ ,其中 {}x 表示x 的小数部分.

3. 设互不相等正整数12,,..,(2)n x x x n ≥,求证: (1)2221212231.......23n n x x x x x x x x x n +++≥++++-, (2) 222121221 ...(...)3 n n n x x x x x x ++++≥+++ 4.设[]2,(1),0,1i n i i n x ≥?≤≤∈,求证: 11 13n k l k k l n k n kx x kx ≤<≤=-≤∑∑,

5.设1233,...n n x x x x ≥<<<<,证明:111 (1) ()(1)2n n i j i j i j n i j n n x x n i x j x ≤<≤==->--∑∑∑ 6. 求证:12 n i π =

7.设函数211 ()1.....2!n n f x x x x n =++++,证明: (1) 当0x >,(),x n e f x n N +>∈; (2)当0x >,存在实数y,使得11 ()(1)! x n y n e f x x e n +=++,证明:0y x << 8.设()f n n =+,定义数列{}n a ,11,,()n n a m m N a f a ++=∈=,证明:对于每一个正整数m,数列{}n a 必有无穷多个完全平方数. ,

新型的初中数学教学模式

新型的初中数学教学模式—— “课前预习—巩固预习—自学讨论—拓展延伸—当堂训练” 薛秋萍 摘要数学教师的任务是在传授数学知识的过程中培养学生的学习能力、持续学习和创造的能力,以适应时代的要求。“课前预习—巩固预习—自学讨论—拓展延伸—当堂训练”课堂教学模式使学生带着明确的学习任务目标,主动地进行学习,在执行任务过程中,通过独立思考、实践、讨论、交流与合作,培养学生良好的学习习惯和学习方法,充分发挥学生在学习中的积极性和主动性,提高自身的学习能力,这充分体现了以学生发展为本的新的教学理念。具体操作步骤:一、课前预习,发现疑难。二、巩固预习,再现疑难。 三、自学讨论,合作交流。四、拓展延伸,教师点拨。五、当堂训练,及时反馈。 关键词新型教学模式课前预习巩固预习自学讨论拓展延伸当堂训练 布鲁纳说过:“学习者不应是信息的被动接受者,而应该是知识获取过程中的主动参与者。”因此,数学教师的任务是在传授数学知识的过程中培养学生的学习能力、持续学习和创造的能力,以适应时代的要求。“先学后教”教学模式就是以优化数学教学过程、

提高数学教学质量、培养学生创新精神与实践能力为目标而设计的。这种教学模式使学生带着明确的学习任务目标,主动地进行学习,在执行任务过程中,通过独立思考、实践、讨论、交流与合作,培养学生良好的学习习惯和学习方法,充分发挥学生在学习中的积极性和主动性,提高自身的学习能力,这充分体现了以学生发展为本的新的教学理念。因此,近几年来,我大胆地进行了“课前预习—巩固预习—自学讨论—拓展延伸—当堂训练”课堂教学模式的尝试,卓有成效。 一、课前预习,发现疑难。 教师积极地引导学生主动地进行课前预习,这是“课前预习—巩固预习—自学讨论—拓展延伸—当堂训练”教学模式的基础,有助于更好地培养学生自学能力。对于相当一部分学生来说,在刚开始预习时有一定的盲目性,不能准确地找出预习内容的重点和关键,教师可以在课前为学生准备一份预习提纲和预习作业,并设置不同难度的问题。在预习提纲中,有的问题学生可能回答出来,有的问题可能还不太明白;同时在预习作业中,有些类型的题目学生会解决,有些类型的题目学生无法解决,要求学生在不懂之处做上标记,有待课上解决。 例如:在学习《有理数乘方》的一节时,我是这样指导学生预习的:在上课的前一天,给学生们留下如下预习任务:

中考数学构造法解题技巧

构造法在初中数学中的应用 所谓构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面介绍几种数学中的构造法: 一、构造方程 构造方程是初中数学的基本方法之一。在解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。 1、某些题目根据条件、仔细观察其特点,构造一个"一元一次方程" 求解,从而获得问题解决。 例1:如果关于x的方程ax+b=2(2x+7)+1有无数多个解,那么a、b的值分别是多少? 解:原方程整理得(a-4)x=15-b ∵此方程有无数多解,∴a-4=0且15-b=0 分别解得a=4,b=15 2、有些问题,直接求解比较困难,但如果根据问题的特征,通过转化,构造"一元二次方程",再用根与系数的关系求解,使问题得到解决。此方法简明、功能独特,应用比较广泛,特别在数学竞赛中的应用。

3、有时可根据题目的条件和结论的特征,构造出方程组,从而可找到解题途径。 例3:已知3,5,2x,3y的平均数是4。 20,18,5x,-6y的平均数是1。求 的值。 分析:这道题考查了平均数概念,根据题目的特征构造二元一次方程组,从而解出x、y的值,再求出的值。 二、构造几何图形 1、对于条件和结论之间联系较隐蔽问题,要善于发掘题设条件中的几何意义,可以通过构造适当的图形把其两者联系起来,从而构造出几何图形,把代数问题转化为几何问题来解决.增强问题的直观性,使问题的解答事半功倍。 例4:已知,则x 的取值范围是()

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

数学中各种回归分析方法总结

1、稳健回归 其主要思路是将对异常值十分敏感的经典最小二乘回归中的目标函数进行修改。经典最小二乘回归以使误差平方和达到最小为其目标函数。因为方差为一不稳健统计量,故最小二乘 回归是一种不稳健的方法。为减少异常点的作用,对不同的点施加不同的权重,残差小的点权重大,残差大的店权重小。 2、变系数回归 地理位置加权 3、偏最小二乘回归 长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。而偏最小二乘法则把它 们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。偏最小二乘法在统计应用 中的重要性体现在以下几个方面:偏最小二乘法是一种多因变量对多自变量的回归建模方法。偏最小二乘法可以较好的解决许多以往用普通多兀回归无法解决的问题。偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。能够消除自变量选取时可能存在的多重共线性问题。普通最小二乘回归方法在自变量间存在严重的多 重共线性时会失效。自变量的样本数与自变量个数相比过少时仍可进行预测。 4、支持向量回归 能较好地解决小样本、非线性、高维数和局部极小点等实际问题。 传统的化学计量学算法处理回归建模问题在拟合训练样本时,要求残差平方和”最小,这样将有限样本数据中的误差也拟合进了数学模型,易产生过拟合”问题,针对传统方法这一不足之处,SVR采用“不敏感函数”来解决过拟合”问题,即f(x)用拟合目标值yk时,取:f(x) =E SVs( a a *i)K(xi,x) 上式中a和a许为支持向量对应的拉格朗日待定系数,K(xi,x)是采用的核函数[18],X为未 知样本的特征矢量,xi为支持向量(拟合函数周围的&管壁"上的特征矢量),SVs 为支持向量的数目?目标值yk拟合在yk-刀SVs(a-ia *i)K(xi,xk) 时?即认为进一步拟合是无意 义的。 5、核回归 核函数回归的最初始想法是用非参数方法来估计离散观测情况下的概率密度函数(pdf)。为了避免高维空间中的内积运算由Mercer条件,存在映射函数a和核函数K(?,?),使 得: =K(xi ,x) 采用不同的函数作为SVM的核函数K (x i,x),可以实现多种从输入空间到特征空间的非线 性映射形式 6、岭回归 岭回归分析是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归 系数更为符合实际、更可靠的回归方法,对病态数据的耐受性远远强于最小二乘法。 7、半参数回归 模型既含有参数分量又含有非参数分量,其参数部分用来解释函数关系已知的部分,它是观测值中的主要成分,而其非参数部分则描述函数关系未知,无法表达为待定参数的函数部分。 8 自回归 例1. Yt = a + 3 OXt + 3 11X+ ........ + 3 sX-s + ut, 例2. Yt = f (Yt-1, Yt- 2,…,X2t, X3t, ??,?滞后的因变量(内生变量)作为解释变量出现在方程的右端。这种包含了内生变量滞后项的模型称为自回归模型。

初中数学教学方法之10大环节教学法

初中数学教学方法之10大环节教学法 教学有法,但无定法。“无定法”是说数学教学没有永恒的一成不变的教学方法,即使人们公认的某种行之有效的教学法,教师在实践中也必须因校因人(指教师)、因时、因学生、因教材而异,这就是所谓“无定法”。下面是我在教学中常采用的环节教学法。不过并不是说在每一节数学课中每个环节都要用到。一节课抓住几个环节也就够了。所有环节中每一环节所占时间,哪一环节需强化或减弱,则须因内容、因学生而定,不可强求一律。 数学教学的环节是预、题、读、听、思、问、记、议、练、结。 1.预 即预习。在有些同学中,有忽视预习的现象。他们说,光复习已学过的东西时间就不够,哪来的时间预习。其实,如果课前预习好,准备充分,增加了不听课的效率,课后复习时间大大减少了。预习有什么作用?其一,课前准备充分,为课堂专心听讲奠定基础。其二,熟悉将要学习的内容,找出新内容的重点、难点、趣点,及不理解的内容。明确了这些之后,听课的目的就更清楚了。由于找出了“趣点”,对听课的兴趣也就更浓厚了。明确了重点难点,可避免“45分钟”平均使用注意力,以免过早产生疲劳。课堂上,大脑处于高度兴奋状态,思维敏捷、记忆力强学习效劳就高。其三,预习可以在新旧知识间架立桥梁。因为新旧知识之间联系越紧,学习起来就更容易。常说的“温故而知新”就是这个道理。 2.题 题有两层意思,即解题,有些题目需教师引导学生梳理、细解。题另一层含义是教师课前向学生出几个自学题或思考题,目的是为学生学习新课指路。 3.读 数学教学中常常是重讲轻读,重练轻读。其实“读”也是数学教学中特别重要的一环节,一个题目读通了,读懂了,自然也就理解了,会做了。常有学生在做题时,漏掉关键字而做错了,如就有板有眼30%的同学拿着这样一道题来问我:“-1×2×(-3)×4×(-5)×6×(-7)×......×(-2003)=?”我咋一看,这题目确实太难了,特别又是七年级的习题,我糊涂了。细一看题目,只需判断这题的符号,学生和我都把题目的前半句甩了,没读。 4.听 现代数学课堂重练,重讨论,重交流,重探索,而淡化了讲,即要求精讲。精讲不等于不讲,既有讲便有听。当然有时学生不爱听,教师也得进行一点反省。如由于教师备课不充分,讲得缺乏条理性、艺术性,一类问题重复啰嗦,激不起学生听课的兴趣。 怎样听课呢?一是会神专心(即不分心、不打花杂,专心致志的听课)。二是连绵思活,即保证思路的连绵而不间断。思路,包括教材内容的思路和教师讲课的思路。三是抓住关键,即讲课时要抓住所讲内容的重点、难点、趣点,让学生听得轻松,学得愉快。

数学建模各种分析报告方法

现代统计学 1.因子分析(Factor Analysis) 因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。 运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。 2.主成分分析 主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。 主成分分析和因子分析的区别 1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。 2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。 和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。 总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,

数学人教版九年级上册旋转法构造全等三角形

典型例题: 已知:AC 是正方形ABCD 的对角线,∠EMF 的顶点在线段AC 上运动,∠EMF 绕点M 旋转,角的两边与CD 、BC 交于点F 、E.(点F 不与C 、D 重合). (1)当∠EMF=90°时,试探究ME 与MF 的数量关系并说明理由.探究CE 、CM 、CF 之间的数量关系,并说明理由. 变式1: (2)当点M 在直线AC 上运动,∠EMF 绕点M 旋转,当角的两边交CD 、CB 的延长线于点F 、E,其余条件不变,结论是否成立? 探究CE 、CM 、CF 之间的数量关系,并说明理由.. A A A 变式3: (4)当点M 在直线AC 上,当∠FME=∠ABC,其他条件不变,结论是否成立?并说明理由. 旋转法构造全等 学习目标: 题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形. 活动一: 变式2: (3)将正方形ABCD 改为∠ABC=120°的菱形,当∠FME=120°结论是否成立?并说明理由.

分层练习: (A 层) 1. 把含15°角的三角板ABC ,绕点B 逆时针旋转90°到三角板DBE 位置(如图所示),则sin ∠ADE=_______。 (第1题) (第2题) (第3题) 2. 点p 是等边△ABC 内一点,若PA=13,PB=5,PC=12,∠BPA=_________. 3. 如图所示,把正方形ABCD 绕点A,按顺时针方向旋转得到正方形AEFG ,边FG 与 BC 交于点 H.(1)线段HG 与线段HB 相等吗?证明你的猜想.(2)若旋转角为30,HG 的长. (B 层) 1.如图,若把△ABC 绕点A 旋转一定角度得到△ADE ,那么对应边AB=___,BC=___,对应角∠CAB=____,∠B=____. (第1题) (第2题) (第3题) 2.已知:如图,在正方形ABCD 中,点E 在BC 上,将△DCE 绕点D 按顺时针方向旋转,与△DAF 重合,那么旋转角等于____度. 3. 在Rt △ABC 中,∠BAC=90°,如果将该三角形绕点A 按顺时针方向旋转到△ A ’ B ’ C ’的位置,点B ’恰好落在边BC 的中点处,则旋转角_____度.

初中数学不等式知识点

初中数学不等式知识点 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

不等式 性质 ①如果x>y,那么yy;() ②如果x>y,y>z,那么x>z;() ③如果x>y,而z为任意实数或,那么x+z>y+z;(,或叫同向不等式可加性) ④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xzy,m>n,那么x+m>y+n;() ⑥如果x>y>0,m>n>0,那么xm>yn; ⑦如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n 次幂

不等式两边相加或相减同一个数或式子,不等号的方向不变。(移项要变号) 不等式两边相乘或相除同一个正数,不等号的方向不变。 不等式两边乘或除以同一个负数,不等号的方向改变。(×÷负数要变号) 解集 确定: ①比两个值都大,就比大的还大(同大取大); ②比两个值都小,就比小的还小(同小取小); ③比大的大,比小的小,无解(大大小小取不了); ④比小的大,比大的小,有解在中间(小大大小取中间)。 三个或三个以上成的不等式组,可以类推。 数轴法 把每个不等式的解集在上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个就要几个。注意实点与空点的区别。 在确定一元二次不等式时,a>0,Δ=b2-4ac>0时,不等式解集可用"大于取两边,小于取中间"求出。 证明方法 比较法 1.作差比较法:根据a-b>0a>b,欲证a>b,只需证a-b>0;

初中几何反证法专题(编辑)

初中几何反证法专题 学习要求 了解反证法的意义,懂得什么是反证法。 理解反证法的基本思路,并掌握反证法的一般证题步骤。 知识讲解 对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。 1.反证法的概念: 不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。 2.反证法的基本思路: 首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。 3.反证法的一般步骤: (1)假设命题的结论不成立;

(2)从这个假设出发,经过推理论证得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论正 确 简而言之就是“反设-归谬-结论”三步曲。 例题: 例1.已知:AB、CD是⊙O内非直径的两弦(如图1),求证AB与CD不能互相平分。证明: 假设AB与CD互相平分于点M、则由已知条件AB、CD均非⊙O直径,可判定M不是圆心O,连结OA、OB、OM。 ∵OA=OB,M是AB中点 (1) ∴OM⊥AB (等腰三角形底边上的中线垂直于底边) 同理可得: OM⊥CD,从而过点M有两条直线AB、CD都垂直于OM 这与已知的定理相矛盾。 故AB与CD不能互相平分。 例2.已知:在四边形ABCD中,M、N分别是AB、DC的 中点,且MN=(AD+BC)。 求证:AD∥BC

数学思想方法构造法

构造法 构造法,顾名思义是指当解决某些数学问题使用通常方法按照定向思维难以解决问题时,应根据题设条件和结论的特征、性质,从新的角度,用新的观点去观察、分析、理解对象,牢牢抓住反映问题的条件与结论之间的内在联系,运用问题的数据、外形、坐标等特征,使用题中的已知条件为原材料,运用已知数学关系式和理论为工具,在思维中构造出满足条件或结论的数学对象,从而,使原问题中隐含的关系和性质在新构造的数学对象中清晰地展现出来,并借助该数学对象方便快捷地解决数学问题的方法。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特点,以便依据特点确定方案,实现构造。 下面,我们通过几个例题,来简单看一下高中阶段几种常见的构造法。 例1.(构造函数)已知三角形的三边长分别为,,a b c ,且m 为正数,求证:a b c a m b m c m +>+++ 解:构造函数()1x m f x x m x m ==-++,则()f x 在()0+∞,上是增函数。 0a b c +>> ,()()f a b f c ∴+>。 ()()()()a b a b a b f a f b f a b f c a m b m a b m a b m a b m ++= +>+==+>++++++++ a b c a m b m c m ∴+>+++ 例2.(构造距离)求函数()f x =的最小值。

浙教版八年级数学下册反证法作业练习

4.6 反证法 ◆基础练习 1.“ab C.a=b D.a=b或a>b 2.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设() A.a不垂直于c B.a,b都不垂直于c C.a⊥b D.a与b相交 3.用反证法证明命题“在一个三角形中,如果两条边不相等,那么它们所对的角也不相等” 时,应假设___________. 4.用反证法证明“若│a│<2,则a<4”时,应假设__________. 5.请说出下列结论的反面:(1)d是正数; (2)a≥0; (3)a<5. 6.如下左图,直线AB,CD相交,求证:AB,CD只有一个交点. 证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点_______”矛盾,所以假设不成立,则________. 7.完成下列证明. 如上右图,在△ABC中,若∠C是直角,那么∠B一定是锐角. 证明:假设结论不成立,则∠B是______或______. 当∠B是____时,则_________,这与________矛盾; 当∠B是____时,则_________,这与________矛盾. 综上所述,假设不成立. ∴∠B一定是锐角.

8.如图,已知AB∥CD,求证:∠B+∠D+∠E=360°. 9.请举一个在日常生活中应用反证法的实际例子. ◆综合提高 10.用反证法证明“三角形中至少有一个内角不小于60°”,?应先假设这个三角形中( ) A .有一个内角小于60° B.每一个内角都小于60° C .有一个内角大于60° D.每一个内角都大于60° 11.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45 °”时,应假设______________. 12.用反证法证明:两直线平行,同旁内角互补. 132是一个无理数.(说明:任何一个有理数均可表示成 b a 的形式,且a ,b 互质) 14、试写出下列命题的反面: (1)a 大于2 _____________;(2)a⊥b _______________. 15、用反证法证明“若22a b ≠,则a b ≠”的第一步是______________. 16、填空:在△ABC 中,若∠C 是直角,那么∠B 一定是锐角. 证明:假设结论不成立的,则∠B 是__________或_________. ①当∠B 是_______时,则__________,这与____________________矛盾; ②当∠B 是_______时,则__________,这与____________________矛盾.

(完整版)人教版初中数学知识结构

【人教版初中数学知识结构图】 1、有理数(正数与负数) 2、数轴 6、有理数的概念3、相反数 4、绝对值 5、有理数从大到小的比较 7、有理数的加法、加法运算律 17、有理数8、有理数的减法 9、有理数的加减混合运算 10、有理数的乘法、乘法运算律 16、有理数的运算11、有理数的除法、倒数 12、有理数的乘方 13、有理数的混合运算 21、代数式14、科学记数法、近似数与有效数字 22、列代数式15、用计算器进行简单的数的运算 23、代数式的值18、单项式 27、整式的加减20、整式的概念19、多项式 24、合并同类项 25、去括号与添括号 26、整式的加减法 28、等式及其基本性质 29、方程和方程的解、解方程 198 32、一元一次方程30、一元一次方程及其解法 初31、一元一次方程的应用33、代入(消元)法 中35、二元一次方程组的解法34、加减(消元)法 数193 36、相关概念及性质 学数39、二元一次方程组37、三元一次方程组及其解法举例 与38、一元方程组的应用40、一元一次不等式及其解法 代45、一元一次不等式43、一元一次不等式41、不等式的解集 数和一元一次不等式组44、一元一次不等式组42、不等式和它的基本性质 46、同底数幂的乘法、单项式的乘法 47、幂的乘方、积的乘方 51、整式的乘法48、单项式与多项式相乘 49、多项式的乘法 56、整式的乘除50、平方差与完全平方公式 52、多项式除以单项式 55、整式的除法53、单项式除以单项式 54、同底数幂的除法 57、提取公因式法 61、方法58、运用公式法 63、因式分解59、分组分解法 62、意义60、其他分解法66、含字母系数的一元 65、分式的乘除法——64、分式的乘除运算一次方程 72、分式69、可化为一元一次方程的分式方程及其应用67、分式方程解法、 70、分式的意义和性质增根 71、分式的加减法68、分式方程的应用 75、数的开方73、平方根与立方根 74、实数 86、二次根式的意义76、最简二次根式 79、二次根式的乘除法77、二次根式的除法

相关主题
文本预览
相关文档 最新文档