当前位置:文档之家› 电磁场与微波测量实验—实验四迈克尔逊干涉实验

电磁场与微波测量实验—实验四迈克尔逊干涉实验

电磁场与微波测量实验—实验四迈克尔逊干涉实验
电磁场与微波测量实验—实验四迈克尔逊干涉实验

电磁场与微波测量实验报告

学院:电子工程学院

专业:光电信息科学与工程

班级:2013211212

成员:

实验四迈克尔逊干涉实验

一、实验目的

掌握平面波长的测量方法

二、实验设备

S426型分光仪

三、实验原理

如图所示,在平面电磁波前进的方向放置一块与传播方向成450夹角的半透射板(实验中用玻璃板),由于该板的作用,将入射的电磁波分成为两束,一束穿透玻璃板继续

前进,向反射板B

方向传播,另外一

束被玻璃板反射后,

向反射板A方向传

播。到达可移动反

射板B的波,被反

射板B反射后,又

到达玻璃板,其中一部分被玻璃板反射后到达接收喇叭;而到达反射板A的波,被反射板A反射后,又到达玻璃板,其中一部分穿过玻璃板也到达接收喇叭,因此接收喇叭接收到的是这两束电磁波的和,当两束电磁波的传播路程相同,或相差波长的整数倍时,接收喇叭接收的信号最强,当他们传播的路程相差为半个波长的奇数倍时,接收喇叭接收到的信号最弱。通过移动反射板B,可以改变这两束电磁波的传播路程,使得接收喇叭接收到的信号由弱变强,或由强变弱,测得两个相邻最强或最弱时反射板所移动的距离L,就可以得到电磁波的波长,即=2L。实验中直接观察电压表的读数,为当表头指示从一次极小变到又一次极小时,则

的距离,由此距离就可求得平面波的波长。

B处的反射板就移动了

2

四、实验内容及步骤

1、如图,连接仪器。

2、使两喇叭口面互成900。

3、半透射板与两喇叭轴线互成450。

4、将读数机构通过它本身上带有的两个螺钉旋入底座上,使其固定在底座上,再插上反射扳,使固定反射板的法线与接受喇叭的轴线一致,可移反射板的法钱与发射喇叭轴线一致。

5、按信号源操作规程接通电源,调节衰减器使信号电平读数指示合适值。

图5.2 迈克尔逊干涉实验系统

6、将可移反射板移到读数机构的一端,在此附近测出一个极小的位置,然后旋转读数机构上的手柄使反射板移动,从表头上测出(n +1)个极小值,并同时从读数机构上得到相应的位移读数,从而求得可移反射板的移动距离L ,则波长

n

L

2=

λ。 五、实验数据及分析

传播常数k=2π/λ=0.205/mm

六、思考题

测量波长时,介质板位置如果旋转90度,将出现什么现象?能否准确测量波长?为什么?

答:一束光线直接反射进入接收喇叭,另一束光线透过介质板到 B板在反射到介质板上在反射到A板,在透过介质板进入接收喇叭,所以缓慢移动B板,表头指示从一个极小值变到另一个极小值,只是较上个实验,极小值更小,B移动的距离也是λ/2,也能较准确测量波长。

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

北邮电磁场与微波测量实验实验七无线信号场强特性

电磁场与微波测量实验报告 学院:电子工程学院 班级:2011211204 执笔人: 学号:2011210986 组员:

实验目的 1. 掌握在移动环境下阴影衰落的概念以及正确的测试方法; 2. 研究校园内各种不同环境下阴影衰落的分布规律; 3. 掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念; 4. 通过实地测量,分析建筑物穿透损耗随频率的变化关系; 5. 研究建筑物穿透损耗与建筑材料的关系。 实验原理 1. 电磁波的传播方式 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等 于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。 电磁场在空间中的传输方式主要有反射、绕射、散射三种模式。当电磁波传播遇到比波长大 很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当 电波传播空间中存在物理尺寸小于电波波长的物体、且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体、树叶、街道、标志、灯柱。 2. 尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗: 用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间 的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功 率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离,大尺度平均路径损耗 表示为: PL d dB PL dO 10nlog d/d0 即平均接收功率为: Pr d dBm Pt dBm PL dO 10nlog d/dO Pr dO dBm 10nlog d /dO 其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,dO为近地参考距离, d为发射机与接收机之间的距离。公式中的横杠表示给定值d的所有可能路径损耗的综合平均。坐标为对数-对数时,平均路径损耗或平均接收功率可以表示为斜率1OndB /1O倍程的 直线。n依赖于特定的传播环境,例如在自由空间,n为2;当有阻挡物时,n比2大。 决定路径损耗大小的首要因素是距离,此外,它与接受点的电波传播条件密切相关。为此,我们引进路径损耗中值的概念,中值是使实验数据中一半大于它而另一半小于它的一个数值 (对于正态分布中值就是均值)。 人们根据不同放入地形地貌条件,归纳总结出各种电波传播模型。下边介绍几种常用的 描述大尺度衰落的模型。常用的电波传播模型:

北邮电磁场与微波技术实验实验一

实验一网络分析仪测量振子天线输入阻抗 一,实验目的 1.掌握网络分析仪矫正方法; 2.学习网络分析仪测量振子天线输入阻抗的方法; 3.研究振子天线输入阻抗随振子电径变化的情况。 二,实验步骤 1.设置仪表为频域模式的回损连接模式后,矫正网络分析仪; 2.设置参数并加载被测天线,开始测量输入阻抗; 3.调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4.更换不同电径(Φ1,Φ3,Φ9)的天线,分析两个谐振点的阻抗变化情况。 三,实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 由于使用坡印廷矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一半。当h<<λ时,可认为 R≈40(πh)2 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一λ ?1] 倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为W=60[ln2h a 四,实验数据 试验参数:BF=600,ΔF=25,EF=2600,n=81 1.短路时矫正,阻抗点分布:

2.开路时矫正,阻抗点分布: 3.选择电径为Φ1=1mm的天线,阻抗点分布:

由图及数据表可知其谐振点频率约为1225MHz,第二谐振点频率约为2450MHz,即第二次谐振时频率约为第一次两倍。 4.选择电径为Φ3=3mm的天线,阻抗点分布:

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

电磁场与微波技术实验天线部分实验二

信息与通信工程学院 电磁场与微波实验天线部分报告 XXX班 XXXX 学号:XXXXX 实验二 网络分析仪测试八木天线方向图 一、实验目的: 1.掌握网络分析仪辅助测试方法 2.学习测量八木天线方向图方法 3.研究在不同频率下的八木天线方向图特性 二、实验步骤: (1)调整分析仪到轨迹(方向图)模式 (2)调整云台起点位置270° (3)寻找归一化点(最大值点) (4)旋转云台一周并读取图形参数 (5)坐标变换、变换频率(F=600MHz、900MHZ、1200MHZ),分析八木天线方向图三、实验原理 实验中用的是七单元八木天线,包括一个有源振子,一个反射器,五个引向器(在此图中再加2个引向器即可) 八木天线原理图

引向器略短于二分之一波长,主振子等于二分之一波长,反射器略长于二分之一波长,两振子间距四分之一波长。此时,引向器对感应信号呈“容性”,电流超前电压90°;引向器感应的电磁波会向主振子辐射,辐射信号经过四分之一波长的路程使其滞后于从空中直接到达主振子的信号90°,恰好抵消了前面引起的“超前”,两者相位相同,于是信号叠加,得到加强。反射器略长于二分之一波长,呈感性,电流滞后90°,再加上辐射到主振子过程中又滞后90°,与从反射器方向直接加到主振子上的信号正好相差了180°,起到了抵消作用,一个方向加强,一个方向削弱,便有了强方向性。发射状态作用过程亦然。 3.实验步骤 四、实验测量图 不同频率下的测量图如下: 600MHz: 最大增益方向:73度,幅度:1 3dB点:55度,幅度:0.715 3dB点:97度,幅度:0.703 主瓣宽度: 97-55=42度

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

北邮电磁场与微波技术实验天线部分实验一

北邮电磁场与微波技术实验天线部分实验一最新

————————————————————————————————作者:————————————————————————————————日期:

信息与通信工程学院 电磁场与微波实验报告 实验题目:网络分析仪测量振子天线输入阻抗 班级:2011211106 姓名:吴淳 学号:2011210180 日期:2014年3月

实验一网络分析仪测量阵子天线 输入阻抗 一、实验目的 1. 掌握网络分析仪校正方法; 2. 学习网络分析仪测量振子天线输入阻抗的方法; 3. 研究振子天线输入阻抗随阵子电径变化的情况。 注:重点观察谐振点与天线电径的关系。 二、实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 图1 实验原理图

由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一 半。当h<<λ时,可认为R≈40 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为=60[ln(2h/a)-1]。 三、实验步骤: 1. 设置仪表为频域模式的回损连接模式后,校正网络分析仪; 2. 设置参数并加载被测天线,开始测量输入阻抗; 3. 调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4. 更换不同的电径(对应1mm, 3mm, 9mm)的天线,分析两个谐振点的阻抗 变化情况; 5. 设置参数如下: BF=600MHz,△F=25MHz,EF=2600MHz,n=81. 6. 记录数据:在smith圆图上的输入阻抗曲线上,曲线的左端输入阻抗虚部 为0的点为二分之一波长谐振点,曲线的右端输入阻抗虚部为0的点为四分之一波长谐振点。记录1mm,3mm,9mm天线的半波长和四分之一波长的谐振点。 四、实验数据: 1. 直径=1mm时: 第一谐振点处频率约为(取最接近点)F=1250MHz,电阻R=41.88ohm, SWR=1.193, RL=-20.0dB。 第二谐振点处频率约为(取最接近点)F=2450MHz,电阻R=626.8ohm, SWR=12.54,

北邮电磁场与微波实验天线部分实验报告二

北邮电磁场与微波实验天线部分实验报告二

信息与通信工程学院电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz:

四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 五、实验总结

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验 2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题 目录 一、电磁场仿真软件——Matlab的使用入门……………............................................... .4 二、单电荷的场分

布 (10) 三、点电荷电场线的图像 (12) 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17) 实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、 ^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是 一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6) y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2; plot(x,y1,x, y2,x, y3) (二)几个绘图命令 1. doc命令:显示在线帮助主题 调用格式:doc 函数名 例如:doc plot,则调用在线帮助,显示plot函数的使用方法。 2. plot函数:用来绘制线形图形 plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y 坐标数据。 plot(x,y,s)

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

五、实验数据 I(uA) θ° 0 10 20 30 40 50 60 70 80 90 理论值90 87. 3 79. 5 67. 5 52. 8 37. 2 22. 5 10. 5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11. 1 14. 3 25. 9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许围,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候,由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 A1

电磁场与电磁波实验报告

实验一 静电场仿真 1.实验目的 建立静电场中电场及电位空间分布的直观概念。 2.实验仪器 计算机一台 3.基本原理 当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。 点电荷q 在无限大真空中产生的电场强度E 的数学表达式为 204q E r r πε= (r 是单位向量) (1-1) 真空中点电荷产生的电位为 04q r ?πε= (1-2) 其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为 1221014n i n i i i q E E E E r r πε==+++=∑ (i r 是单位向量)(1-3) 电位为 121014n i n i i q r ????πε==+++=∑ (1-4) 本章模拟的就是基本的电位图形。 4.实验内容及步骤 (1) 点电荷静电场仿真 题目:真空中有一个点电荷-q ,求其电场分布图。

程序1: 负点电荷电场示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; E=(-q./m1).*r; surfc(x,y,E);

负点电荷电势示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; z=-q./m1 surfc(x,y,z); xlabel('x','fontsize',16) ylabel('y','fontsize',16) title('负点电荷电势示意图','fontsize',10)

考研专业介绍:电磁场与微波技术

非统考专业介绍:电磁场与微波技术 一、专业介绍 电磁场与微波技术隶属于电子科学与技术一级学科。 1、研究方向 目前,各大院校与电磁场与微波技术专业相关的研究方向都略有不同的侧重点。以西安电子科技大学为例,该专业研究方向有: 01电磁兼容、电磁逆问题、计算微波与计算电磁学 04计算电磁学、智能天线、射频识别 07宽带天线、电磁散射与隐身技术 08卫星通信、无线通信、智能天线、信号处理 09天线理论与工程及测量、新型天线 10电磁散射与微波成像 11天线CAD、工程与测量 13移动卫星通信天线 14天线理论与工程 16电磁散射与隐身技术 17电磁兼容、微波测量、信号完整性分析 20移动通信中的相控阵、共形相控阵天线技术 21计算微波与计算电磁学、微波通信、天线工程、电磁兼容 22电阻抗成像、电磁兼容、非线性电磁学 23天线工程与CAD、微波射频识别技术、微波电路与器件 24电磁场、微波技术与天线电磁兼容 25天线测量技术与伺服控制 26天线理论与工程技术 27天线近远场测试技术及应用、无线网络通讯技术 28天线工程及数值计算 29微波电路与微波工程 30近场辐射及散射测量理论与技术 31微波系统和器件设计、电磁场数值计算 32电磁新材料、计算电磁学、电磁兼容 33计算电磁学、电磁兼容、人工合成新材料 34计算电磁学 35电磁隐身技术、天线理论与工程 36宽带小型化天线及电磁场数值计算 37射频识别、多天线技术 38天线和微波器件的宽带设计、小型化设计 2、培养目标 本专业培养德、智、体全面发展,在电磁信号(高频、微波、光波等)的产生、交换、发射、传输、传播、散射及接收等有关的理论与技术和信息(图像、语音、数据等)的获取、处理及传输的理论与技术两大方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研究工作能力的高层次人才。 3、专业特色

电磁场与电磁波实验报告 2

电磁场与电磁波实验报告

实验一 电磁场参量的测量 一、 实验目的 1、 在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。 2、 熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波 的相位常数β和波速υ。 二、 实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反) 方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长λ的值,再由 λ πβ2=,βωλν==f 得到电磁波的主要参量:β和ν等。 本实验采取了如下的实验装置 设入射波为φj i i e E E -=0,当入射波以入射角1θ向介质板斜投射时,则在 分界面上产生反射波r E 和折射波t E 。设介质板的反射系数为R ,由空气进入介质板的折射系数为0T ,由介质板进入空气的折射系数为c T ,另外,可动板 2r P 和固定板1r P 都是金属板,其电场反射系数都为-1。在一次近似的条件下, 接收喇叭处的相干波分别为1001Φ--=j i c r e E T RT E ,2002Φ--=j i c r e E T RT E

这里 ()13112r r r L L L ββφ=+=;()()231322222L L L L L L r r r r βββφ=+?+=+=; 其中12L L L -=?。 又因为1L 为定值,2L 则随可动板位移而变化。当2r P 移动L ?值,使3r P 有零指示输出时,必有1r E 与2r E 反相。故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。从而测出电磁波的波长λ和相位常数β。下面用数学式来表达测定波长的关系式。 在3r P 处的相干波合成为()210021φφj j i c r r r e e E T RT E E E --+-=+= 或写成 () ?? ? ??+-?Φ-=200212cos 2φφj i c r e E T RT E (1-2) 式中L ?=-=?Φβφφ221 为了测量准确,一般采用3r P 零指示法,即02cos =?φ 或 π)12(+=?Φn ,n=0,1,2...... 这里n 表示相干波合成驻波场的波节点(0=r E )数。同时,除n=0以外的n 值,又表示相干波合成驻波的半波长数。故把n=0时0=r E 驻波节点为参考节点的位置0L 又因 L ??? ? ??=?λπφ22 (1-3) 故 ()L n ??? ? ??=+λππ2212 或 λ)12(4+=?n L (1-4) 由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的 值。当n=0的节点处0L 作为第一个波节点,对其他N 值则有: n=1,()λ24401=-=?L L L ,对应第二个波节点,或第一个半波长数。 n=1,()λ24412=-=?L L L ,对应第三个波节点,或第二个半波长数。

电磁场与微波技术实验指导书(新)

电磁场与微波技术实验指导书 XXXXXXXXXXXXXXXXXXX XXXXX

注意事项 一、实验前应完成各项预习任务。 二、开启仪器前先熟悉实验仪器的使用方法。 三、实验过程中应仔细观察实验现象,认真做好实验结果记录。 四、培养踏实、严谨、实事求是的科学作风。自主完成实验和报告。 五、爱护公共财产,当发生仪器设备损坏时,必须认真检查原因并按规 定处理。 六、保持实验室内安静、整洁和良好的秩序,实验后应切断所用仪器的 电源 ,并将仪器整理好。协助保持实验室清洁卫生, 带出自己所产生的赃物。 七、不迟到,不早退,不无故缺席。按时交实验报告。 八、实验报告中应包括: 1、实验名称。 2、实验目的。 3、实验内容、步骤,实验数据记录和处理。 4、实验中实际使用的仪器型号、数量等。 5、实验结果与讨论,并得出结论,也可提出存在问题。 6、思考题。

实验仪器 JMX-JY-002电磁波综合实验仪 一、概述 电磁波综合实验仪,提供了一种融验证与设计为一体的电磁波实验的新方法和装置。它能使学生通过应用本发明方法和装置进行电磁场与电磁波实验,透彻地了解法拉第电磁感应定律、电偶极子、天线基本结构及其特性等重要知识点,使学生直观形象地认识时谐电磁场,深刻理解电磁感应的原理和作用,深刻理解电偶极子和电磁波辐射原理,掌握电磁场和电磁波测量技术的原理和方法,帮助学生建立电磁波的形象化思维方式,加深和加强学生对电磁波产生、发射、传输和接收过程及相关特性的认识,培养学生对电磁波分析和电磁波应用的创新能力。《JMX-JY-002电磁波综合实验仪》在001型基础上,添加了对天线不同极化角度的测量,学生通过测量,可绘制不同极化天线的方向图,使得学生对电磁波的感受更加深刻。 二、特点 1、理论与实践结合性强 2、直接面向《电磁场与波》的课程建设与改革需要,紧密配合教学大纲,使课堂环节与实验环节紧密结合。 3、针对重要知识点“电磁场与电磁波”课堂教学环节长期存在难于直观表达的困难,形象地体验抽象的知识。 4、实验内容的设置,融综合性、设计性与验证性与一体,帮助学生建立一套电磁波的形象化思维方式,加深和加强对电磁波产生、发射、传输、接收过程及相关特性的认识。 5、培养学生对电磁波分析和电磁波应用的创新能力。 三、系统配置及工作原理 (1)系统配置 1、JMX-JY-002电磁波教学综合实验仪主机控制系统:通过常规控制仪表与微波功率信号发生器、功率信号放大器构成电磁波教学综合实验仪主机控制系统,实现了对被控电磁场与波信号发射控制。 2、测试支架平台:包括支撑臂、测试滑动导轨、测量尺、天线连接杆件、感应器连接杆件、反射板连接杆件、微安表等组件。 3、测试套件:包括多极化天线(垂直极化、水平极化、左右螺旋极化)、射频连接电缆套件、感应器、感应器连接电缆、极化尺、标准测试天线板、反射板等构成测试套件。 (2)工作原理 实验仪主机控制系统的微波信号源产生微波信号,经由微波功率放大器放大后输出至OUTPUT端口,通过射频电缆将输出信号传送给发射天线向空间发射电磁波信号作为实验测试

电磁场与微波实验指导书实验一

电磁场与微波实验指导 书实验一 Revised as of 23 November 2020

实验一微波基础计算器与MWO软件熟悉 一、实验目的 1.掌握传输线(长线)基本理论; 2.熟练掌握Smith圆图的工作原理; 3.熟练使用微波技术基础计算器计算单枝节线匹配。 4.熟悉MWO软件界面和基本操作。 二、实验原理 微波技术基础计算器是以微波计算为基础的进行专业计算的工具。实现了微波技术基础理论中长线(传输线)理论、Smith圆图、网络理论等部分的计算。此计数器共包括:长线上任意点输入阻抗、反射系数、行波系数、驻波比的计算;smith圆图的绘制;任意长线和负载的单枝节匹配;双口网络S、Z、Y、A参数的相互转换。 1、长线理论 基础知识回顾:--微波传输线(长线)理论 (Q1: 传输线理论中基本物理量是什么) 电压波与电流波(入射与反射)关系: 理想(无耗)均匀传输线的传输特性归结为两个实数:传播常数和特性阻抗。传输线理论三套参量:输入阻抗in,反射系数,驻波参量(驻波系数和最小距离l min) 三套参量间的换算关系: 三套参量同时一个单位圆内表示

1)由横坐标表示反射系数实部,纵坐标表示反射系数虚部,构成反射系数复平面; 2)对于一个无耗均匀传输线,其反射系数的模是不变的,变化的是位相(位置)构成反射系数同心圆;以负载为参考面向源移动时,位相角减少,顺时针转动 3)驻波系数在反射系数复平面上也是同心圆, 4) 阻抗在反射系数复平上表示时要归一化;某一点的阻抗由经过该点的等电阻圆与等电抗弧线确定。 2、并联单枝节传输线匹配 1) 终端短路传输线相当于一个纯电抗 2) 在主传输线上并联一个短路面位置可调的支路传输线,相当并联一个可变电抗。 3) 由于并联枝节,进行匹配设计时用导纳方法表示更为方便。 三、 微波基础计算器的使用 有了这些基本概念之后,我们就可以学习微波计算器的使用方法。这个计算器实际上就是利用以上的公式,编成、作图完成的,国内外也还有很多类似的软件。微波计算器的主界面如图1所示。 图1 微波计算器主界面 选择图1中所示的“长线”工具。出现如图2所示的窗口。 开路 匹配

北邮电磁场与电磁波演示试验

. 频谱特性测量演示实验 1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz 2.ESPI 测试接收机的RF输入端口 最大射频信号: +30dbm,最大直流:50v 3.是否直观的观测到电磁波的存在?(回答是/否) 否 4.演示实验可以测到的空间信号有哪些,频段分别为: 广播:531K~1602KHz GSM900:上行:890~915 MHz 下行:935~960 MHz GSM1800:上行:1710~1755 MHz 下行:1805~1850 MHz WCDMA:上行:1920~1980MHz 下行:2110~2170MHz CDMA2000:上行:1920~1980MHz 下行:2110~2170MHz TD-SCDMA:2010~2025MHz 5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视? 模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。 数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。 6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图: GSM900上行: '. .

GSM900下行: '. . CDMA下行:

3G下行: '. . 7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请分别说明,并指出其频率) 可以 该频谱仪能检测的频谱范围为9KHz—3GHz 所以,能够观察到:WIFI:2.4G

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

A1 五、实验数据 I(uA ) 0 10 20 30 40 50 60 70 80 90 θ° 理论值90 87.3 79.5 67.5 52.8 37.2 22.5 10.5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11.1 14.3 25.9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许 范围内,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但 是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候, 由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。 所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 垂直极化波入射在两种媒质的分界面上,反射系数和折射系数分别为:

相关主题
文本预览
相关文档 最新文档