当前位置:文档之家› 交换机的分类及功能

交换机的分类及功能

交换机的分类及功能
交换机的分类及功能

交换机的分类及工作原理

交换机的分类及工作原理

交换机拥有一条很高带宽的背部总线和内部交换矩阵。交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC 若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部MAC地址表中。使用交换机也可以把网络“分段”,通过对照MAC地址表,交换机只允许必要的网络流量通过交换机。通过交换机的过滤和转发,可以有效的隔离广播风暴,减少误包和错包的出现,避免共享冲突。交换机在同一时刻可进行多个端口对之间的数据传输。每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。当节点A向节点D发送数据时,节点B可同时向节点C发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。假使这里使用的是10Mbps的以太网交换机,那么该交换机这时的总流通量就等于2×10Mbps=20Mbps,而使用10Mbps的共享式HUB时,一个HUB的总流通量也不会超出10Mbps。总之,交换机是一种基于MAC地址识别,能完成封装转发数据包功能的网络设备。交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。

从层次上分类交换机可分为二层交换机、三层交换机、四层交换机等:(一)二层交换技术

二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。具体的工作流程如下:

(1)当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的;

(2)再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;

(3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;

(4)如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。

(二)三层交换技术

使用IP的设备B,比如A要给B发送数据,已知目的IP,那么A就用子网掩码取得网络地址,判断目的IP是否与自己在同一网段。如果在同一网段,但不知道转发数据所需的MAC地址,A就发送一个ARP请求,B返回其MAC地址,A用此MAC封装数据包并发送给交换机,交换机起用二层交换模块,查找MAC地址表,将数据包转发到相应的端口。如果目的IP地址显示不是同一网段的,那么A要实现和B的通讯,在流缓存条目中没有对应MAC 地址条目,就将第一个正常数据包发送向一个缺省网关,这个缺省网关一般在操作系统中已经设好,对应第三层路由模块,所以可见对于不是同一子网的数据,最先在MAC表中放的是缺省网关的MAC地址;然后就由三层模块接收到此数据包,查询路由表以确定到达B的路由,将构造一个新的帧头,其中以缺省网关的MAC地址为源MAC地址,以主机B的MAC地址为目的MAC地址。通过一定的识别触发机制,确立主机A与B的MAC地址及转发端口的对应关系,并记录进流缓存条目表,以后的A到B的数据,就直接交由二层交换模块完成。这就通常所说的一次路由多次转发。

三层交换机的最重要的功能是加快大型局域网络内部的数据的快速转发,加入路由功能也是为这个目的服务的。如果把大型网络按照部门,地域等等因素划分成一个个小局域网,这将导致大量的网际互访,单纯的使用二层交换机不能实现网际互访;如单纯的使用路由器,由于接口数量有限和路由转发速度慢,将限制网络的速度和网络规模,采用具有路由功能的快速转发的三层交换机就成为首选。一般来说,在内网数据流量大,要求快速转发响应的网络中,如全部由三层交换机来做这个工作,会造成三层交换机负

担过重,响应速度受影响,将网间的路由交由路由器去完成,充分发挥不同设备的优点,不失为一种好的组网策略,当然,前提是客户的腰包很鼓,不然就退而求其次,让三层交换机也兼为网际互连。

(三)四层交换技术

第四层交换的一个简单定义是:它是一种功能,它决定传输不仅仅依据MAC地址(第二层网桥)或源/目标IP地址(第三层路由),而且依据TCP/UDP(第四层) 应用端口号。第四层交换功能就象是虚IP,指向物理服务器。它传输的业务服从的协议多种多样,有HTTP、FTP、NFS、Telnet或其他协议。这些业务在物理服务器基础上,需要复杂的载量平衡算法。在IP 世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP和UDP端口共同决定。在第四层交换中为每个供搜寻使用的服务器组设立虚IP地址(VIP),每组服务器支持某种应用。在域名服务器(DNS)中存储的每个应用服务器地址是VIP,而不是真实的服务器地址。当某用户申请应用时,一个带有目标服务器组的VIP连接请求(例如一个TCP SYN包)发给服务器交换机。服务器交换机在组中选取最好的服务器,将终端地址中的VIP用实际服务器的IP取代,并将连接请求传给服务器。这样,同一区间所有的包由服务器交换机进行映射,在用户和同一服务器间进行传输。第四层交换的原理:OSI模型的第四层是传输层。传输层负责端对端通信,即在网络源和目标系统之间协调通信。在IP协议栈中这是TCP(一种传输协议)和UDP(用户数据包协议)所在的协议层。

在第四层中,TCP和UDP标题包含端口号(portnumber),它们可以唯一区分每个数据包包含哪些应用协议(例如HTTP、FTP等)。端点系统利用这种信息来区分包中的数据,尤其是端口号使一个接收端计算机系统能够确定它所收到的IP包类型,并把它交给合适的高层软件。端口号和设备IP地址的组合通常称作"插口(socket)"。1和255之间的端口号被保留,他们称为"熟知"端口,也就是说,在所有主机TCP/I P协议栈实现中,这些端口号是相同的。除了"熟知"端口外,标准UNIX服务分配在256到1024端口范围,定制的应用一般在1024以上分配端口号。分配端口号的最近清单可以在RFc1700"Assigned Numbers"上找到。TCP/UDP端口号提供的附加信息可以

为网络交换机所利用,这是第4层交换的基础。

每台第四层交换机都保存一个与被选择的服务器相配的源IP地址以及源TCP 端口相关联的连接表。然后第四层交换机向这台服务器转发连接请求。所有后续包在客户机与服务器之间重新影射和转发,直到交换机发现会话为止。在使用第四层交换的情况下,接入可以与真正的服务器连接在一起来满足用户制定的规则,诸如使每台服务器上有相等数量的接入或根据不同服务器的容量来分配传输流。

从广义上来看,交换机分为两种:广域网交换机和局域网交换机。广域网交换机主要应用于电信领域,提供通信用的基础平台。而局域网交换机则应用于局域网络,用于连接终端设备,如PC机及网络打印机等。从传输介质和传输速度上可分为以太网交换机、快速以太网交换机、千兆以太网交换机、FDDI交换机、ATM交换机和令牌环交换机等。从规模应用上又可分为企业级交换机、部门级交换机和工作组交换机等。各厂商划分的尺度并不是完全一致的,一般来讲,企业级交换机都是机架式,部门级交换机可以是机架式(插槽数较少),也可以是固定配置式,而工作组级交换机为固定配置式(功能较为简单)。另一方面,从应用的规模来看,作为骨干交换机时,支持500个信息点以上大型企业应用的交换机为企业级交换机,支持300个信息点以下中型企业的交换机为部门级交换机,而支持100个信息点以内的交换机为工作组级交换机。

作为局域网的主要连接设备,以太网交换机成为应用普及最快的网络设备之一。随着交换技术的不断发展,以太网交换机的价格急剧下降,交换到桌面已是大势所趋。如果以太网络上拥有大量的用户、繁忙的应用程序和各式各样的服务器,而且还未对网络结构做出任何调整,那么整个网络的性能可能会非常低。解决方法之一是在以太网上添加一个10/100Mbps的交换机,它不仅可以处理10Mbps的常规以太网数据流,而且还可以支持100Mbps的快速以太网连接。如果网络的利用率超过了40%,并且碰撞率大于10%,交换机可以帮你解决一点问题。带有100Mbps快速以太网和10Mbps以太网端口的交换机可以全双工方式运行,可以建立起专用的20Mbps到200Mbps 连接。不仅不同网络环境下交换机的作用各不相同,在同一网络环境下添加

新的交换机和增加现有交换机的交换端口对网络的影响也不尽相同。充分了解和掌握网络的流量模式是能否发挥交换机作用的一个非常重要的因素。因为使用交换机的目的就是尽可能的减少和过滤网络中的数据流量,所以如果网络中的某台交换机由于安装位置设置不当,几乎需要转发接收到的所有数据包的话,交换机就无法发挥其优化网络性能的作用,反而降低了数据的传输速度,增加了网络延迟。除安装位置之外,如果在那些负载较小,信息量较低的网络中也盲目添加交换机的话,同样也可能起到负面影响。受数据包的处理时间、交换机的缓冲区大小以及需要重新生成新数据包等因素的影响,在这种情况下使用简单的HUB要比交换机更为理想。因此,我们不能一概认为交换机就比HUB有优势,尤其当用户的网络并不拥挤,尚有很大的可利用空间时,使用HUB更能够充分利用网络的现有资源。

(完整版)交换机的分类及功能

交换机的分类及工作原理

交换机的分类及工作原理 交换机拥有一条很高带宽的背部总线和内部交换矩阵。交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC 若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部MAC地址表中。使用交换机也可以把网络“分段”,通过对照MAC地址表,交换机只允许必要的网络流量通过交换机。通过交换机的过滤和转发,可以有效的隔离广播风暴,减少误包和错包的出现,避免共享冲突。交换机在同一时刻可进行多个端口对之间的数据传输。每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。当节点A向节点D发送数据时,节点B可同时向节点C发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。假使这里使用的是10Mbps的以太网交换机,那么该交换机这时的总流通量就等于2×10Mbps=20Mbps,而使用10Mbps的共享式HUB时,一个HUB的总流通量也不会超出10Mbps。总之,交换机是一种基于MAC地址识别,能完成封装转发数据包功能的网络设备。交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。 从层次上分类交换机可分为二层交换机、三层交换机、四层交换机等:(一)二层交换技术 二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。具体的工作流程如下: (1)当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的; (2)再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;

服务器交换机分类、定义

1.应用服务器是指通过各种协议把商业逻辑曝露给客户端的程序。它提供了访 问商业逻辑的途径以供客户端应用程序使用。应用服务器使用此商业逻辑就像调用对象的一个方法一样。简单的说能实现动态网页技术的服务器叫做应用服务器。应用服务器和WEB服务器的区别——通俗的讲,Web服务器传送(serves)页面使浏览器可以浏览,然而应用程序服务器提供的是客户端应用程序可以调用(call)的方法(methods)。确切一点,你可以说:Web服务器专门处理HTTP请求(request),但是应用程序服务器是通过很多协议来为应用程序提供(serves)商业逻辑(business logic)。 2.接入层交换机:通常将网络中直接面向用户连接或访问网络的部分称为 接入层,将位于接入层和核心层之间的部分称为分布层或汇聚层。接入交换机一般用于直接连接电脑,汇聚交换机一般用于楼宇间。汇聚相对于一个局部或重要的中转站,核心相当于一个出口或总汇总。原来定义的汇聚层的目的是为了减少核心的负担,将本地数据交换机流量在本地的汇聚交换机上交换,减少核心层的工作负担,使核心层只处理到本地区域外的数据交换。 1)接入层:接入层目的是允许终端用户连接到网络,因此接入层交换 机具有低成本和高端口密度特性。接入交换机是最常见的交换机, 它直接与外网联系,使用最广泛,尤其是在一般办公室、小型机房 和业务受理较为集中的业务部门、多媒体制作中心、网站管理中心 等部门。在传输速度上,现代接入交换机大都提供多个具有 10M/100M/1000M自适应能力的端口。 2)汇聚层:汇聚层交换层是多台接入层交换机的汇聚点,它必须能够 处理来自接入层设备的所有通信量,并提供到核心层的上行链路, 因此汇聚层交换机与接入层交换机比较,需要更高的性能,更少的 接口和更高的交换速率。 3)核心层:而将网络主干部分称为核心层,核心层的主要目的在于通过高速转发通 信,提供优化,可靠的骨干传输结构,因此核心层交换机应拥有更高的可靠性,性 能和吞吐量。

网络交换机作用

目录 网络交换机的概述 网络交换机的性能 网络交换机的分类 网络交换机的选择 网络交换机的概述 随着电子技术的飞速发展,计算机及其应用日益普及,计算机网络也迅速发展起来。凡是将地理位置不同,具备独立功能的多台计算机、终端及其附属设备,用通信设备和线路连接起来,并配以相应的网络软件实现计算机通信信息网的资源共享与数据通信,都称为计算机通信网。当网络规模扩大时,单纯靠延长网线已变得不现实。并且对于不同的局域网,要实现互相之间的数据传送,共享网络的资源,需要有专门的连接设备实现网络扩展。同时,网络中站点的增加,地理范围的扩大,业务量的增长,促使网络互联迅速向前发展。 网络互联的高速发展,导致网络交换技术的出现,网络交换机也随之应运而生。广义的交换机就是一种在

通信系统中完成信息交换功能的设备。网络交换机的主要功能包括物理编址、网络拓扑结构、错误校验、帧序列以及流量控制。 随着交换技术的发展,交换机由原来工作在OSI承M 的第二层,发展到现在有可以工作在第四层的交换机出现,所以根据工作的协议层交换机可分第二层交换机、第三层交换机和第四层交换机。由于第四层交换机交换技术尚未真正成熟且价格昂贵,第四层交换机在实际应用中目前还较少见。 网络交换机的性能 网络交换机是一种连接网络分段的网络设备。从技术角度看,网络交换机运行在 OSI 模型的第2层(数据链路层)。网络交换机源于电子集线器(HUB),其中 HUB 是为星型网络提供的一种中心结点设备。在共享 HUB 中,所有星型网络连接都接收同一个广播帧。交换机类似于集线器,它也支持单个广播域,但不同的是交换机上的每个端口同时也是它自己的冲突域(Collision Domain)。通常情况下,交换机比集线器更加智能化,网络交换机能监测到所接收的数据包,并能判断出该数据包的源和目的地设备,从而实现正确的转发过程。网络交换机只对连接设备传送信

交换机分类

交换机的分类标准多种多样,常见的有以下几种: (一)根据网络覆盖范围分 局域网交换机和广域网交换机。 (二)根据传输介质和传输速度划分 以太网交换机、快速以太网交换机、千兆以太网交换机、10千兆以太网交换机、ATM交换机、FDDI交换机和令牌环交换机。 (三)根据交换机应用网络层次划分 企业级交换机、校园网交换机、部门级交换机和工作组交换机、桌机型交换机。 (四)根据交换机端口结构划分 固定端口交换机和模块化交换机。 (五)根据工作协议层划分 第二层交换机、第三层交换机和第四层交换机。 (六)根据是否支持网管功能划分 网管型交换机和非网管理型交换机。................................................................................ .................. 由于交换机所具有许多优越性,所以它的应用和发展速度远远高于集线器,出现了各种类型的交换机,主要是为了满足各种不同应用环境需求。本篇就要为大家介绍当前交换机的一些主流分类。 一、从网络覆盖范围划分 1。广域网交换机 广域网交换机主要是应用于电信城域网互联、互联网接入等领域的广域网中,提供通信用的基础平台, 2、局域网交换机 这种交换机就是我们常见的交换机了,也是我们学习的重点。局域网交换机应用于局域网络,用于连接终端设备,如服务器、工作站、集线器、路由器、网络打印机等网络设备,提供高速独立通信通道。 其实在局域网交换机中又可以划分为多种不同类型的交换机。下面继续介绍局域网交换机的主要分类标准、 二、根据传输介质和传输速度划分

根据交换机使用的网络传输介质及传输速度的不同我们一般可以将局域网交换机分为以太网交换机、快速以太网交换机、千兆(G位)以太网交换机、10千兆(10G位)以太网交换机、FDDI交换机、ATM交换机和令牌环交换机等。 1、以太网交换机 首先要说明的一点是,这里所指的“以太网交换机”是指带宽在100Mbps以下的以太网所用交换机,其实下面我们还会要讲到一种“快速以太网交换机”、“千兆以太网交换机”和“10千兆以太网交换机”其实也是以太网交换机,只不过它们所采用的协议标准、或者传输介质不一样,当然其接口形式也可能不一样。 以太网交换机是最普遍和便宜的,它的档次比较齐全,应用领域也非常广泛,在大大小小的局域网都可以见到它们的踪影。以太网包括三种网络接口:RJ-45、BNC和AUI,所用的传输介质分别为:双绞线、细同轴电缆和粗同轴电缆。不要以为一讲以太网就都是RJ-45接口的,只不过双绞线类型的RJ-45接口在网络设备中非常普遍而已。当然现在的交换机通常不可能全是BNC或AUI接口的,因为目前采用同轴电缆作为传输介质的网络现在已经很少见了,而一般是在RJ-45接口的基础上为了兼顾同轴电缆介质的网络连接,配上BNC或AUI接口。 二层交换机是对应于OSI/RM的第二协议层来定义的,因为它只能工作在OSI/RM开放体系模型的第二层--数据链路层。二层交换机依赖于链路层中的信息(如MAC地址)完成不同端口数据间的线速交换,一般应用于小型企业或中型以上企业网络的桌面层次。 三层同样是对应于OSI/RM开放体系模型的第三层--网络层来定义的,也就是说这类交换机可以工作在网络层,它比第二层交换机更加高档,功能更加强。三层交换机因为工作于OSI /RM模型的网络层,所以它具有路由功能,它是将IP地址信息提供给网络路径选择,并实现不同网段间数据的线速交换。当网络规模较大时,可以根据特殊应用需求划分为小面独立的VLAN网段,以减小广播所造成的影响时。通常这类交换机是采用模块化结构,以适应灵活配置的需要。 所谓“路由”,是指把数据从一个地方传送到另一个地方的行为和动作,而路由器,正是执行这种行为动作的机器,它的英文名称为Router,是一种连接多个网络或网段的网络设备,它能将不同网络或网段之间的数据信息进行“翻译”,以使它们能够相互“读懂”对方的数据,从而构成一个更大的网络。路由器主要有以下几种功能:第一,网络互连;第二,数据处理;第三,网络管理。 二层交换机工作在第二层(即数据链路层),对它来说,网络上的数据就是MAC地址的集合,它能分辨出帧中的源MAC地址和目的MAC地址,因此可以在任意两个端口间建立联系,但是交换机并不懂得IP地址,它只知道MAC地址。 三层交换机、路由器工作在第三层(即网络层),它能理解数据中的IP地址,如果它接收到一个数据包,就检查其中的IP地址,如果目标地址是本地网络的就不理会,如果是其他网络的,就将数据包转发出本地网络。 在技术领域中把TRUNK翻译为中文是“主干、干线、中继线、长途线”,不过一般不翻译,

交换机分类

机全部采用机箱式模块化设计,已经基本上都设计了与之相配备的1000Base-T模块。接入层支持1000Base-T的以太网交换机基本上是固定端口式交换机,以10/100M端口为主,并且以固定端口或扩展槽方式提供1000Base-T的上联端口。汇聚层1000Base-T交换机同时存在机箱式和固定端口式两种设计,可以提供多个1000Base-T端口,一般也可以提供1000Base-X等其他形式的端口。接入层和汇聚层交换机共同构成完整的中小型局域网解决方案。 按架构特点分 根据架构特点,人们还将局域网交换机分为机架式、带扩展槽固定配置式、不带扩展槽固定配置式三种产品。机架式交换机是一种插槽式的交换机,这种交换机扩展性较好,可支持不同的网络类型,如以太网、快速以太网、千兆以太网、ATM、令牌环及FDDI等,但价格较贵。不少高端交换机都采用机架式结构。带扩展槽固定配置式交换机是一种有固定端口并带少量扩展槽的交换机,这种交换机在支持固定端口类型网络的基础上,还可以通过扩展其他网络类型模块来支持其他类型网络,这类交换机的价格居中。不带扩展槽固定配置式交换机仅支持一种类型的网络(一般是以太网),可应用于小型企业或办公室环境下的局域网,价格最便宜,应用也最广泛。 按网络模型分 按照OSI的七层网络模型,交换机又可以分为第二层交换机、第三层交换机、第四层交换机等,一直到第七层交换机。基于MAC地址工作的第二层交换机最为普遍,用于网络接入层和汇聚层。基于IP地址和协议进行交换的第三层交换机普遍应用于网络的核心层,也少量应用于汇聚层。部分第三层交换机也同时具有第四层交换功能,可以根据数据帧的协议端口信息进行目标端口判断。第四层以上的交换机称之为内容型交换机,主要用于互联网数据中心。 按可管理型分 按照交换机的可管理性,又可把交换机分为可管理型交换机和不可管理型交换机,它们的区别在于对SNMP、RMON等网管协议的支持。可管理型交换机便于网络监控、流量分析,但成本也相对较高。大中型网络在汇聚层应该选择可管理型交换机,在接入层视应用需要而定,核心层交换机则全部是可管理型交换机。

模块化交换机适用场所及端口分类

模块化交换机适用场所及端口分类 模块化交换机还是比较常用的,于是我研究了一下模块化交换机适用场所及端口分类,在这里拿出来和大家分享一下,希望对大家有用。随着经济发展的逐步深入,中国企业面临的变化更加复杂。企业只有推动变化,驾驭变化,才能避免危机,抓住商机。而在当今中国网络与企业业务发展更加的紧密。对网络而言,灵活的架构和灵活的产品是关键。 在千兆交换机的家族中,固定端口交换机由于所有端口都是固化在设备上的,因此常常难以应对网络调整。针对经常变更、弹性较强的网络环境,曾有专业人士建议“选择模块化交换机,因为而模块化交换机配备了额外的开放性插槽,用户可以自行选择不同速率、不同功能和不同接口类型的模块以适应不同的网络环境。”作为交换机发展趋势的模块化交换机而言:灵活的模块化设计为用户提供了堆叠接口、1000BASE-SX,1000BASE-LX、1000BASE-T、GBIC等一系列不同类型的端口选择,便于用户因地制宜,根据网络架构随时更换模块以扩展功能或提升性能,实现灵活组网。模块化交换机尽管价格上要比固定端口交换机昂贵一些,但是拥有出色的灵活性、扩充性和未来的升级性,从长远角度来看,具有更佳的投资回报率。 模块化交换机的适用场所 几乎所有网络都会遇到扩展和增容的问题,如何合理的、低成本的进行网络基础设施的购入、改造和更新是摆在很多用户面前的难题。建网初期,如若一味选择高端主流设备,势必会造成前期应用时设备的空余或闲置,造成投资的极大浪费;如若考虑前期购置成本而选择仅仅满足当前规模应用的网络设备,当未来需要继续增加工作站数量的时候,实现起来将会十分困难,采用级联或连入HUB集线器的方式拓展端口数量,将会产生传输瓶颈,严重影响网络的使用效率。这种情况下,初期的网络构建使用户处于两难的尴尬境地。而模块化交换机很好的解决了这个问题。 对于网络规模随时增长或工作站接入数量巨大的网络环境特别是政府部门、高校等,模块化交换机将是首选。模块化交换机具有灵活性、可扩展性和易于管理等优点,便于网络升级扩容,能够有效保护用户投资,实现“按需扩展”,物尽其用。可以根据部门规模的增长速度随时增加设备的堆叠数量,有效的避免了超前投资和资源浪费,而超强的背板带宽充分保证了在实现高层堆叠的同时,所有端口均能够保持线速转发能力,不会影响网络运行的效率。 模块化交换机也经常被用于连接用户到高速的园区网骨干。通常,它们有一些所谓的高速“用户”端口,并且具有很强的可扩展性。当数据从这些端口汇总上来时,会从更高速的数据上联通路传递出去,以实现和中心服务器、IP PBX等设备的数据交互。模块化交换机通常会放置在企业的配线间或者机房中,它能适应增长中的网络。如果有新的用户加入到网络中,管理员只需简单地在原来的设备上面放置一台新的设备,然后通过一个外部的“堆叠”接口将所有的交换机连接起来。事实上,这就像您自己又开发了一台新的、更大的交换机一样,可以方便地和原先的交换机一起管理,只是容量增大了。 一般在大型网络的核心层、汇聚层采用模块化交换机,具有很好的灵活性。按照需求灵

交换机的作用

交换机的作用 交换”和“交换机”最早起源于电话通讯系统(PSTN)。我们以前经常在电影或电视中看到一些老的影片时常看到有人在电话机旁狂摇几下(注意不是拨号),然后就说:跟我接XXX,话务接线员接到要求后就会把相应端线头插在要接的端子上,即可通话。其实这就是最原始的电话交换机系统,只不过它是一种人工电话交换系统,不是自动的,也不是我们今天要谈的程控交换机,但是我们现在要讲的程控交换机也就是在这个电话交换机技术上发展而来的。自1876年美国贝尔发明电话以来,随着社会需求的日益增长和科技水平的不断提高,电话交换技术处于迅速的变革和发展之中。其历程可分为三个阶段:人工交换、机电交换和电子交换。早在1878年就出现了人工交换机,它是借助话务员进行话务接续,显然其效率是很低的。15年后步进制的交换机问世,它标志着交换技术从人工时代迈入机电交换时代。这种交换机属于“直接控制”方式,即用户可以通过话机拨号脉冲直接控制步进接续器做升降和旋转动作。从而自动完成用户间的接续。这种交换机虽然实现了自动接续,但存在着速度慢、效率低、杂音大与机械磨损严重等缺点。直到1938年发明了纵横制(cross bar)交换机才部分解决了上述问题,相对于步进制交换机,它有两方面重要改进:1.利用继电器控制的压接触接线阵列代替大幅度动作的步进接线器,从而减少了磨损和杂音,提高了可靠性和接续速度;2.由直接控制过渡到间接控制方式,这样用户的拨号脉冲不在直接控制接线器动作,而先由记发器接收,存 储,然后通过标志器驱动接线器,以完成用户间接续。这种间接控制方式将控制部分与话路部分分开,提高了灵活性和控制效率,加快了速度。由于纵横制交换机具有一系列优点,因而它在电话交换发展上占有重要的地位,得到了广泛的应用,直到现在,世界上相当多的国家和我国少数地区的公用电话通信网仍在使用纵横交换机

交换机的5种攻击类型

交换机的5种攻击类型 IDC报告显示,交换机市场近年来一直保持着较高的增长势头,到2009年市场规模有望达到15.1亿美元。交换机在企业网中占有重要的地位,通常是整个网络的核心所在,这一地位使它成为黑客**和病毒肆虐的重点对象,为保障自身网络安全,企业有必要对局域网上的交换机漏洞进行全面了解。以下是利用交换机漏洞的五种攻击手段。 VLAN跳跃攻击 虚拟局域网(VLAN)是对广播域进行分段的方法。VLAN还经常用于为网络提供额外的安全,因为一个VL AN上的计算机无法与没有明确访问权的另一个VLAN上的用户进行对话。不过VLAN本身不足以保护环境的安全,恶意黑客通过VLAN跳跃攻击,即使未经授权,也可以从一个VLAN跳到另一个VLAN。VLAN跳跃攻击(VLAN hopping)依靠的是动态中继协议(DTP)。如果有两个相互连接的交换机,DTP就能够对两者进行协商,确定它们要不要成为802.1Q中继,洽商过程是通过检查端口的配置状态来完成的。VLAN跳跃攻击充分利用了DTP,在VLAN跳跃攻击中,黑客可以欺骗计算机,冒充成另一个交换机发送虚假的DTP协商消息,宣布他想成为中继; 真实的交换机收到这个DTP消息后,以为它应当启用802.1Q 中继功能,而一旦中继功能被启用,通过所有VLAN的信息流就会发送到黑客的计算机上。图1表明了这个过程。 中继建立起来后,黑客可以继续探测信息流,也可以通过给帧添加802.1Q信息,指定想把攻击流量发送给哪个VLAN。 生成树攻击 生成树协议(STP)可以防止冗余的交换环境出现回路。要是网络有回路,就会变得拥塞不堪,从而出现广播风暴,引起MAC表不一致,最终使网络崩溃。 使用STP的所有交换机都通过网桥协议数据单元(BPDU)来共享信息,BPDU每两秒就发送一次。交换机发送BPDU时,里面含有名为网桥ID的标号,这个网桥ID结合了可配置的优先数(默认值是32768)和交换机的基本MAC地址。交换机可以发送并接收这些BPDU,以确定哪个交换机拥有最低的网桥ID,拥有最低网桥ID的那个交换机成为根网桥(root bridge)。 根网桥好比是小镇上的社区杂货店,每个小镇都需要一家杂货店,而每个市民也需要确定到达杂货店的最佳路线。比最佳路线来得长的路线不会被使用,除非主通道出现阻塞。

交换机的分类

交换机的分类 交换机的分类如同人的属性一样,我们都会有不同的角色,在家庭环境下一个女子可能是女儿、妈妈、妻子,在工作环境中,她可能是同事、领导,不同的场景下身份不一样,这些都是一个人身上的标签,交换机在不同的场景下也会有不同的标签,根据划分依据的不同,突出的重点也不一样,如下图所示 在以上7种场景下,可以扩展出多种交换机的类型,其实这些分类下并不冲突,一台核心交换机是一台三层交换机,具有可堆叠、可管理的功能,那么不管是称它为核心交换机还是三层交换机、可堆叠交换机,说的其实都是一个设备。

虽然说交换机的叫法很多,不过现在常见的是按照网络构成划分,也就是说一般比较接入层交换机、汇聚层交换机、核心层交换机的人更常见,接下来重点分析一下这三种类型的交换机该如何选择。 接入层、汇聚层、核心层为三层网络架构,其中核心层为主干网络,汇聚层提供基于策略的连接,接入层主要连接设备,就像是公司的组织结构一样,高层管理、中层管理和基层员工,各司其职,共同保证公司的正常运转。 接入层交换机的特点 1、接入层交换机的特点: 接入层交换机主要是解决相邻用户之间的访问需求,我们办公常常用到的共享地址就是接入层交换机的功劳,使得在同一局域网内的用户可以访问指定路径下的文件,大大的方便了日常的工作。同时,在一些大型的网络中,接入层的交换机还具有用户管理和用户信息收集的功能,比如用户认证,识别用户i p等等。 2、接入层交换机选择建议: 接入层交换机的需求量是最大的,在终端连接的交换机需要满足多端口低成本的特性,因此主要考虑性价比因素,在功能上要求不是很高。 汇聚层交换机的特点:

1、汇聚层交换机的特点: 汇聚层交换机从名字上看就是多台接入层交换机的汇聚部分,用来传递核心层交换机和接入层交换机的信息,汇聚层交换机可以实现策略,根据编辑好的程序实现V L A N之间的路由、工作组接入、地址过滤等功能。 2、汇聚层交换机的选择建议: 由于它所处的地位它的性能必须必接入层更高才、交换速度更快才能满足上传下递的需要。 那么有人会有疑问了,倘若是核心层的交换机端口数足够多,性能足够好,应用环境传输距离近,汇聚层交换机是不是可以省略了,直接将核心交换机与接入层交换机连接。 答案是可以的,这就像有些小公司只有一个经理具有领导权一样,其他人都是平起平坐,这样的话可以省去很多中间成本,而且网络线路检查维护起来也更方便。 核心层交换机的特点 1、核心层交换机的特点: 核心层交换机需要满足的条件就更多了,作为骨干传输网络需要高可靠性、高效性、可管理性、低延时性等等。

交换机的分类

交换机的分类 由于交换机所具有许多优越性,所以它的应用和发展速度远远高于集线器,出现了各种类型的交换机,主要是为了满足各种不同应用环境需求。本篇就要为大家介绍当前交换机的一些主流分类。 一、从网络覆盖范围划分 1。广域网交换机 广域网交换机主要是应用于电信城域网互联、互联网接入等领域的广域网中,提供通信用的基础平台, 2、局域网交换机 这种交换机就是我们常见的交换机了,也是我们学习的重点。局域网交换机应用于局域网络,用于连接终端设备,如服务器、工作站、集线器、路由器、网络打印机等网络设备,提供高速独立通信通道。 其实在局域网交换机中又可以划分为多种不同类型的交换机。下面继续介绍局域网交换机的主要分类标准、 二、根据传输介质和传输速度划分 根据交换机使用的网络传输介质及传输速度的不同我们一般可以将局域网交换机分为以太网交换机、快速以太网交换机、千兆(G位)以太网交换机、10千兆(10G位)以太网交换机、FDDI交换机、ATM交换机和令牌环交换机等。 1、以太网交换机 首先要说明的一点是,这里所指的“以太网交换机”是指带宽在100Mbps以下的以太网所用交换机,其实下面我们还会要讲到一种“快速以太网交换机”、“千兆以太网交换机”和“10千兆以太网交换机”其实也是以太网交换机,只不过它们所采用的协议标准、或者传输介质不一样,当然其接口形式也可能不一样。 以太网交换机是最普遍和便宜的,它的档次比较齐全,应用领域也非常广泛,在大大小小的局域网都可以见到它们的踪影。以太网包括三种网络接口:RJ-45、BNC和AUI,所用的传输介质分别为:双绞线、细同轴电缆和粗同轴电缆。不要以为一讲以太网就都是RJ -45接口的,只不过双绞线类型的RJ-45接口在网络设备中非常普遍而已。当然现在的交换机通常不可能全是BNC或AUI接口的,因为目前采用同轴电缆作为传输介质的网络现在已经很少见了,而一般是在RJ-45接口的基础上为了兼顾同轴电缆介质的网络连接,配上BNC或AUI接口。如图1所示的是一款带有RJ-45和AUI接口的以太网交换机产品示意图。

网络交换机原理及选择

网络交换机原理及选择 欧祥云201214801107 摘要:随着计算机网络的发展,网络交换机应用越来越广泛,技术不断发展,文章简单介绍了网络交换机工作原理。交换机的不同分类方法及如何根据实际情况为局域网选择合适的网络交换机。 关键词:网络交换机;分类;选择 引言:网络互联的高速发展,导致网络交换技术的出现,网络交换机也随之应运而生。广义的交换机就是一种在通信系统中完成信息交换功能的设备。网络交换机的主要功能包括物理编址、网络拓扑结构、错误校验、帧序列以及流量控制。 随着交换技术的发展,交换机由原来工作在0SI很M 的第二层,发展到现在有可以工作在第四层的交换机出现,所以根据工作的协议层交换机可分第二层交换机、第三层交换机和第四层交换机。由于第四层交换机交换技术尚未真正成熟且价格昂贵,第四层交换机在实际应用中目前还较少见。 一、二层交换与第三层交换以及路由器的区别 第二层交换技术工作于数据链路层。它按所接收到数据包的目的MAC地址在内部地址表中对应端口进行转发,将本数据包MAC地址与对应端口记录在内部地址表中,MAC 地址不在表内的就进行广播等待回应。因而二层交换机对MAC地址具有学习功能,对于网络层或高层协议来说是透明的,数据交换靠专用处理数据包转发的ASIC (应用专用集成芯片组)实现速度很快。但它不能处理三层及三层以上的协议,不能处理不同IP子网间的数据交换。 第三层交换工作于OSI七层模型中的第三层,是利用三层协议中的IP包包头信息对后续数据流进行标记,进行帧头重组,将具有同一标记的数据流的报文交换到数据链路层,即提供一条目标地址与源地址之问的一条数据通道。因此,三层交换机不必拆包便可判断路由,从而将数据包直接转发,进行数据交换。从而可以实现不同子网IP包交换。另外三层路由模块不是简单的二层交换机与路由器的简单叠加,它是由三层路由模块叠)Jl-层交换高速背板总线速率可达10Gbit/s,其中大部分必需的路由软件处理的数据转发为三层转发外,其余均为二层高速转发。 路由器工作于OSI第三层网络层,工作模式与二层相似。路由器主要决定最佳路由并转发数据包。路由器内有一个路由表,其中记录各种链路信息,供路由算法计算出到目的地的最佳路由。据此路由器再进行数据转发。如不能知道目的路由,则将包丢弃,并向源地址

交换机类型

交换机类型 交换机的分类标准多种多样,常见的有以下几种: (一)局域网交换机和广域网交换机。 (二)以太网交换机、快速以太网交换机、千兆以太网交换机、10千兆以太网交换机、ATM交换机、FDDI交换机和令牌环交换机。 (三) 企业级交换机、校园网交换机、部门级交换机和工作组交换机、桌机型交换机。 (四) 固定端口交换机和模块化交换机。 (五) 第二层交换机、第三层交换机和第四层交换机。 (六)网管型交换机和非网管理型交换机。 交换机类型1 从网络覆盖范围划分交换机可以分为以下两类: 1、广域网交换机 广域网交换机主要是应用于电信城域网互联、互联网接入等领域的广域网中,提供通信用的基础平台。 2、局域网交换机 这种交换机就是我们常见的交换机了。局域网交换机应用于局域网络,用于连接终端设备,如服务器、工作站、集线器、路由器、网络打印机等网络设备,提供高速独立通信通道。 交换机类型2 根据交换机使用的网络传输介质及传输速度的不同我们一般可以将局域网交换机分为以太网交换机、快速以太网交换机、千兆(G位)以太网交换机、10千兆(10G位)以太网交换机、FDDI交换机、ATM交换机和令牌环交换机等。 1、以太网交换机 首先要说明的一点是,这里所指的“以太网交换机”是指带宽在100Mbps以下的以太网所用交换机。 以太网交换机是最普遍和便宜的,它的档次比较齐全,应用领域也非常广泛,在大大小小的局域网都可以见到它们的踪影。以太网包括三种网络接口:RJ-45、BNC和AUI,所用的传输介质分别为:双绞线、细同轴电缆和粗同轴电缆。不要以为一讲以太网就都是RJ -45接口的,只不过双绞线类型的RJ-45接口在网络设备中非常普遍而已。当然现在的交换机通常不可能全是BNC或AUI接口的,因为目前采用同轴电缆作为传输介质的网络现在已经很少见了,而一般是在RJ-45接口的基础上为了兼顾同轴电缆介质的网络连接,配上BNC或AUI接口。 2、快速以太网交换机 这种交换机是用于100Mbps快速以太网。快速以太网是一种在普通双绞线或者光纤上实现100Mbps传输带宽的网络技术。要注意的是,一讲到快速以太网就认为全都是纯正100Mps 带宽的端口,事实上目前基本上还是10/100Mbps自适应型的为主。同样一般来说这种快速以太网交换机通常所采用的介质也是双绞线,有的快速以太网交换机为了兼顾与其它光传输介质的网络互联,或许会留有少数的光纤接口“SC”。 3、千兆以太网交换机 千兆以太网交换机是用于目前较新的一种网络--千兆以太网中,也有人把这种网络称之为“吉比特(GB)以太网”,那是因为它的带宽可以达到1000Mbps。它一般用于一个大型网

信息网络中交换机的分类和功能

信息网络中交换机的分类和功能 摘要信息网络的发展成为当今社会的主流发展方向,服务终端设备的不断更新与发展更为网络信息系统的发展提供了强大的支持,而交换机作为信息网络设备的一部分则发挥着重要的结构性作用。通过针对交换机的不同种类,将其大致归纳为广域网和局域网交换机,着重阐述了两者的异同,而对于交换机的功能也作出了更为详细的解释,这些都会为我国信息网络的进一步飞速发展奠定基础。 关键词信息网络交换机分类功能 交换(switching)是用人工或者设备自动完成,按照两端传输信息的通信需要,把需要传输的信息传送到相应的符合要求的路由上的技术统称。从广义上说交换机就是能够在通信系统中完成信息交换的一种设备。 要说交换器我们不得不说集线器,集线器是作为第一类网络集线设备而出现的,当时它被广泛的应用在各大局域网络中。但随着互联网络传输的内容越来越丰富,人们对网络的传输速度和传输的性能要求越来越高。集线器由于自身的局限性无法满足人们的需求,这时交换机出现了,交换概念的出现改进了工作的共享模式。我们以前知道的HUB集线器就是这样一种共享设备,HUB本身是不能够识别目的地址,比如当同一局域网中的A主机要向B主机传输数据,数据包就会以HUB为架构以广播形式在网络上传输,由每一台终端来验证数据包的地址信息并去确定是否接收。交换机克服了集线器的种种不足,普遍得到了业界的认可和应用。随着交换技术的飞速发展,交换机的传输速度也是越来越快,最快可达10Gbps,因此交换机在各大网络中得到广泛的应用。 交换机的分类 从广义上讲,交换机分为两种类型:广域网交换机和局域网交换机。广域网交换机经常被应用于电信领域,为通信提供基础平台。而局域网交换机主要被应用于局域网络,常常用来连接终端设备,如网络打印机以及PC机等等。 如果从传输的介质和传输的速度上来分类的话,交换机可分为FDDI交换机、干兆位以太网交换机、以太网交换机、ATM交换机、快速以太网交换机和令牌环交换机等等。 从规模应用上分类,交换机可分为工作组交换机、部门级交换机和企业级交换机等。一般来说各厂商划分的尺度并不完全一致,工作组级主要是以交换机作为固定配置式(功能一般较为简单);部门级交换机一般主要是机架式的(插槽数量较少);而企业级交换机一般大多数是机架式的,但也有固定配置式的。

交换机的种类

一、交换机的工作原理以及种类的区分 许多新型的Client/Server应用程序以及多媒体技术的出现,导致了传统的共享式网络远远不能满足要求,这也就推动了交换机的出现。 1、交换机的定义 局域网交换机拥有许多端口,每个端口有自己的专用带宽,并且可以连接不同的网段。交换机各个端口之间的通信是同时的、并行的,这就大大提高了信息吞吐量。为了进一步提高性能,每个端口还可以只连接一个设备。 为了实现交换机之间的互连或与高档服务器的连接,局域网交换机一般拥有一个或几个高速端口,如100MB以太网端口、FDDI端口或155MB ATM端口,从而保证整个网络的传输性能。 2、交换机的特性 通过集线器共享局域网的用户不仅是共享带宽,而且是竞争带宽。可能由于个别用户需要更多的带宽而导致其他用户的可用带宽相对减少,甚至被迫等待,因而也就耽误了通信和信息处理。利用交换机的网络微分段技术,可以将一个大型的共享式局域网的用户分成许多独立的网段,减少竞争带宽的用户数量,增加每个用户的可用带宽,从而缓解共享网络的拥挤状况。由于交换机可以将信息迅速而直接地送到目的地能大大提高速度和带宽,能保护用户以前在介质方面的投资,并提供良好的可扩展性,因此交换机不但是网桥的理想替代物,而且是集线器的理想替代物。 与网桥和集线器相比,交换机从下面几方面改进了性能: (1)通过支持并行通信,提高了交换机的信息吞吐量。 (2)将传统的一个大局域网上的用户分成若干工作组,每个端口连接一台设备或连接一个工作组,有效地解决拥挤现像。这种方法人们称之为网络微分段(Micro一segmentation)技术。 (3)虚拟网(VirtuaI LAN)技术的出现,给交换机的使用和管理带来了更大的灵活性。我们将在后面专门介绍虚拟网。 (4)端口密度可以与集线器相媲美,一般的网络系统都是有一个或几个服务器,而绝大部分都是普通的客户机。客户机都需要访问服务器,这样就导致服务器的通信和事务处理能力成为整个网络性能好坏的关键。 交换机就主要从提高连接服务器的端口的速率以及相应的帧缓冲区的大小,来提高整个网络的性能,从而满足用户的要求。一些高档的交换机还采用全双工技术进一步提高端口的带宽。以前的网络设备基本上都是采用半双工的工作方式,即当一台主机发送数据包的时候,它就不能接收数据包,当接收数据包的时候,就不能发送数据包。由于采用全双工技术,即主

交换机分类

由于交换机所具有许多优越性,所以它的应用和发展速度远远高于集线器,出现了各种类型的交换机,主要是为了满足各种不同应用环境需求。本篇就要为大家介绍当前交换机的一些主流分类。 一、从网络覆盖范围划分 1。广域网交换机 广域网交换机主要是应用于电信城域网互联、互联网接入等领域的广域网中,提供通信用的基础平台, 2、局域网交换机 这种交换机就是我们常见的交换机了,也是我们学习的重点。局域网交换机应用于局域网络,用于连接终端设备,如服务器、工作站、集线器、路由器、网络打印机等网络设备,提供高速独立通信通道。 其实在局域网交换机中又可以划分为多种不同类型的交换机。下面继续介绍局域网交换机的主要分类标准、 二、根据传输介质和传输速度划分 根据交换机使用的网络传输介质及传输速度的不同我们一般可以将局域网交换机分为以太网交换机、快速以太网交换机、千兆(G位)以太网交换机、10千兆(10G位)以太网交换机、FDDI交换机、ATM交换机和令牌环交换机等。 1、以太网交换机 首先要说明的一点是,这里所指的“以太网交换机”是指带宽在100Mbps 以下的以太网所用交换机,其实下面我们还会要讲到一种“快速以太网交换机”、“千兆以太网交换机”和“10千兆以太网交换机”其实也是以太网交换机,只不过它们所采用的协议标准、或者传输介质不一样,当然其接口形式也可能不一样。 以太网交换机是最普遍和便宜的,它的档次比较齐全,应用领域也非常广泛,在大大小小的局域网都可以见到它们的踪影。以太网包括三种网络接口:RJ-45、BNC和AUI,所用的传输介质分别为:双绞线、细同轴电缆和粗同轴电缆。不要以为一讲以太网就都是RJ-45接口的,只不过双绞线类型的RJ-45接口在网络设备中非常普遍而已。当然现在的交换机通常不可能全是BNC或AUI接口的,因为目前采用同轴电缆作为传输介质的网络现在已经很少见了,而一般是在RJ-45接口的基础上为了兼顾同轴电缆介质的网络连接,配上BNC或AUI接口。如图1所示的是一款带有RJ-45和AUI接口的以太网交换机产品示意图。

交换机的分类标准

交换机的分类标准 交换机的分类标准多种多样,常见的有以下几种: (一)根据网络覆盖范围分 局域网交换机和广域网交换机。 1、广域网交换机 广域网交换机主要是应用于电信城域网互联、互联网接入等领域的广域网中,提供通信用的基础平台。2、局域网交换机 这种交换机就是我们常见的交换机了。局域网交换机应用于局域网络,用于连接终端设备,如服务器、工作站、集线器、路由器、网络打印机等网络设备,提供高速独立通信通道。 (二)根据传输介质和传输速度划分 以太网交换机、快速以太网交换机、千兆以太网交换机、10千兆以太网交换机、ATM交换机、FDDI交换机和令牌环交换机。 1、以太网交换机 首先要说明的一点是,这里所指的“以太网交换机”是指带宽在100Mbps以下的以太网所用交换机。 以太网交换机是最普遍和便宜的,它的档次比较齐全,应用领域也非常广泛,在大大小小的局域网都可以见到它们的踪影。以太网包括三种网络接口:RJ-45、BNC和AUI,所用的传输介质分别为:双绞线、细同轴电缆和粗同轴电缆。不要以为一讲以太网就都是RJ-45接口的,只不过双绞线类型的RJ-45接口在网络设备中非常普遍而已。当然现在的交换机通常不可能全是BNC或AUI接口的,因为目前采用同轴电缆作为传输介质的网络现在已经很少见了,而一般是在RJ-45接口的基础上为了兼顾同轴电缆介质的网络连接,配上BNC或AUI接口。 2、快速以太网交换机 这种交换机是用于100Mbps快速以太网。快速以太网是一种在普通双绞线或者光纤上实现100Mbps传输带宽的网络技术。要注意的是,一讲到快速以太网就认为全都是纯正100Mps带宽的端口,事实上目前基本上还是10/100Mbps自适应型的为主。同样一般来说这种快速以太网交换机通常所采用的介质也是双绞线,有的快速以太网交换机为了兼顾与其它光传输介质的网络互联,或许会留有少数的光纤接口“SC”。 3、千兆以太网交换机 千兆以太网交换机是用于目前较新的一种网络--千兆以太网中,也有人把这种网络称之为“吉比特(GB)以太网”,那是因为它的带宽可以达到1000Mbps。它一般用于一个大型网络的骨干网段,所采用的传输介质有光纤、双绞线两种,对应的接口为“SC”和“RJ-45”接口两种。 4、10千兆以太网交换机 10千兆以太网交换机主要是为了适应当今10千兆以太网络的接入,它一般是用于骨干网段上,采用的传输介质为光纤,其接口方式也就相应为光纤接口。同样这种交换机也称之为“10G以太网交换机”。 5、ATM交换机 ATM交换机是用于ATM网络的交换机产品。ATM网络由于其独特的技术特性,现在还只用于电信、邮政网的主干网段,因此其交换机产品在市场上很少看到。比在ADSL宽带接入方式中如果采用PPPoA协议的话,在局端(NSP端)就需要配置ATM交换机,有线电视的Cable Modem互联网接入法在局端也采用

第1章交换机的结构与基本功能

本章提要: 交换机用做网络集中设备,其端口连接网络中的主机。在转发数据帧时,端口带宽能够独享。 交换机按其工作在OSI参考模型的对应层次,有第二层、第三层和第四层交换机。可管理的交换机内置了操作系统软件。 第二层交换机采用帧交换转发数据,帧交换方式有三种,分别为存储转发、伺机通过和自由分段。 使用备份连接是提高网络可靠性的常用方法,但所形成的环路可能会导致广播风暴和引起多帧副本问题。 STP协议的应用则可消除环路问题,使冗余备份得以实现。 1.1交换机的作用与组成 在以太网络中,交换机起的是信息中转站的作用。它把从某个端口接收到的数据从其他端口转发出去。以下介绍交换机的外观与内部组成。不同厂家、不同型号的以太网交换机,其外观和内部组成都有一定的个性差异,但其共性是主要的。 1. 交换机的外观 前面板上的多个RJ45接口是以太网口,用来连接计算机或其他交换机。 后面板或前面板上的串口是交换机的配置口,用串口线缆将其与计算机的串口连接起来,可实现对交换机的配置操作。也有的交换机的配置口位于前面板上。 面板上有若干指示灯,其亮、灭或闪烁可以反映交换机的工作状态是否正常。 此外还有电源插口、电源开关等。 可上机架(柜)式交换机的标准长度为48.26cm(19in)。 如图1.1所示的是Cisco Catalyst3550和Cisco Catalyst 2900交换机的外观图。 2. 交换机的内部组成 交换机的内部组成为: CPU (中央处理器):交换机使用特殊用途集成电路芯片ASIC,以实现高速的数据传输。 RAM/DRAM:主存储器,存储运行配置。 NVRAM(非易失性RAM):存储备份配置文件等。

数字程控交换机的构成及分类

数字程控交换机的构成及分类 1 程控电话交换机的基本构成程控电话交换机的主要任务是实现用户间通话的接续。基本划分为两大部分:话路设备和控制设备。话路设备主要包括各种接口电路(如用户线接口和中继线接口电路等)和交换(或接续)网络;控制设备在纵横制交换机中主要包括标志器与记发器,而在程控交换机中,控制设备则为电子计算机,包括中央处理器(CPU、存储器和输入/输出设备。程控交换机实质上是采用计算机进行“存储程序控制”的交换机,它将各种控制功能与方法编成程序,存入存储器,利用对外部状态的扫描数据和存储程序来控制,管理整个交换系统的工作。 1.1交换网络交换网络的基本功能是根据用户的呼叫要求,通过 控制部分 的接续命令,建立主叫与被叫用户间的连接通路。在纵横制交换机中它采用各种机电式接线器(如纵横接线器、编码接线器、笛簧接线器等),在程控交换机中目前主要采用由电子开关阵列构成的空分交换网络、由存储器等电路构成的时分接续网络。 1.2用户电路用户电路的作用是实现各种用户线与交换之间的连 接,通常 又称为用户线接口电路(SLIC,Subscriber Line Interface Circuit )。根据交换机制式和应用环境的不同,用户电路也有 多种类型,对于程控数字交换机来说,目前主要有与模拟话机连

接的模拟用户线电路(ALC及与数字话机、数据终端(或终端适配器)连接的数字用户线电路(DLC)。 1.3 出入中继器出入中继器是中继线与交换网络间的接口电路,用于交换机中继线的连接。它的功能和电路与所用的交换系统的制式及局间中继线信号方式有密切的关系。对模拟中继接口单元(ATU),其作用是实现模拟中继线与交换网络的接口供给通话电源和信 口左 号音。 向控制设备提供所接收的线路信号。 数字中继线接口单元(DTU的作用是实现数字中继线与数字交换网络之间的接口,它通过PCM有关时隙传送中继线信令,完成类似于模拟中继器所应承担的基本功能。 数字中继接口单位的基本功能包括帧与复帧同步码产生、帧调整、连零抑制、码型变换、告警处理、时钟恢复、帧同步搜索及局间信令插入与提取等,如同模拟用户电路的BORSCHT也可 将数字中继单元的上述8种功能概括为GAZPACHO 1.4 控制设备 控制部分是程控交换机的核心,其主要任务是根据外部用户与内部维护管理的要求,执行存储程序和各种命令,以控制相应硬件实现交换及管理功能。 程控交换机控制设备的主体是微处理器,通常按其配置与控制工作方式的不同,可分为集中控制和分散控制两类。为了更好的适应软硬件模块化的要求,提高处理能力及增强系统的灵活性与可靠性,目前程控交换系统的分散控制程度日趋提高,已广泛采用部分或完全分布

相关主题
文本预览
相关文档 最新文档