当前位置:文档之家› 《运筹学》习题线性规划部分练习题及答案整理版

《运筹学》习题线性规划部分练习题及答案整理版

《运筹学》习题线性规划部分练习题及答案整理版
《运筹学》习题线性规划部分练习题及答案整理版

《运筹学》线性规划部分练习题

一、思考题

1.什么是线性规划模型,在模型中各系数的经济意义是什么?

2 .线性规划问题的一般形式有何特征?

3.建立一个实际问题的数学模型一般要几步?

4.两个变量的线性规划问题的图解法的一般步骤是什么?

5.求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误?

6.什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。

7?试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。

8?试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。

9.在什么样的情况下采用人工变量法,人工变量法包括哪两种解法?

10.大M法中,M的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问

题呢?

11 ?什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继

续第二阶段?

二、判断下列说法是否正确。

1.线性规划问题的最优解一定在可行域的顶点达到。

2.线性规划的可行解集是凸集。

3.如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。

4.线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的

范围一般将扩大。

5 .线性规划问题的每一个基本解对应可行域的一个顶点。

6.如果一个线性规划问题有可行解,那么它必有最优解。

7.用单纯形法求解标准形式(求最小值)的线性规划问题时,与j' 0对应的变量都可

以被选作换入变量。

8 .单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一

个基变量的值是负的。

9.单纯形法计算中,选取最大正检验数二k对应的变量x

k作为换入变量,可使目

标函数值得到最快的减少。

10 . 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形

表中删除,而不影响计算结果。

三、建立下面问题的数学模型

1.某公司计划在三年的计划期内,有四个建设项目可以投资:项目I从第一年到

第三年年初都可以投资。预计每年年初投资,年末可收回本利120%,每年又可以重新将所获本利纳入投资计划;项目n需要在第一年初投资,经过两年可收回本利150% , 又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目川需要在第二年年初投资,经过两年可收回本利160%,但用于该项目的最大投资额

不得超过15万元;项目"需要在第三年年初投资,年末可收回本利140%,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有

30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润?

2.某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、

100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单

价如下表2—1所示:

表2—1

要求确定既满足动物生长的营养要求,又使费用最省的选择饲料的方案。

设有某种原料的三个产地为A1,A2,A3,把这种原料经过加工制成成品,再运往销售地。

假设用4吨原料可制成1吨成品,产地A1年产原料30万吨,同时需要成品7万吨;产地A2年产原料26万吨,同时需要成品13万吨;产地A3年产原料24万吨,不需要成品。又知A1与A2间距离为150公里,A1与A3间距离为100公里,A2与A3间距离为200公里。原料运费为3千元/万吨公里,成品运费为2.5千元/万吨公里;在A1开设工厂加工费为5.5千元/万吨,在A2开设工厂加工费为4千元/万吨,在A3 开设工厂加工费为3千元/万吨;又因条件限制,在A2设厂规模不能超过年产成品 5 万吨,A1与A3可以不限制(见表2―― 2),问应在何地设厂,生产多少成品,才使生产费用(包括原料运费、成品运费和加工费)最少?

表2 —2

4某旅馆每日至少需要下列数量的服务员. (见表—)每班服务员从开始上班到下班连续

工作八小时,为满足每班所需要的最少服务员数,这个旅馆至少需要多少服务员。

5.某农场有100公顷土地及15000元资金可用于发展生产。农场劳动力情况为秋冬季

3500人日;春夏季4000人日。如劳动力本身用不了时可外出打工,春秋季收入为25元/人日,秋冬季收入为20元/人日。该农场种植三种作物:大豆、玉米、小麦,并饲

养奶牛和鸡。种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3 元。养奶牛时每头需拨出 1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季

为50人日,年净收入900元/每头奶牛。养鸡时不占用土地,需人工为每只鸡秋冬季

0.6人日,春夏季为0.3人日,年净收入2元/每只鸡。农场现有鸡舍允许最多养 1500 只鸡,牛栏允许最多养 200头。三种作物每年需要的人工及收入情况如表 2 — 4所示

表2 — 4

6.

市场对I 、n 两种产品的需求量为:产品I

1 — 4月份每月需1万件,5—9月份 每月需3万件,10 — 12月份每月需10万0件;产品H 在3 — 9月份每月需1.5万件, 其它每

月需5万件。某厂生产这两种产品的成本为:

产品I 在1 — 5月份内生产时每件

5元,6 — 12月份内生产时每件 4.50元;产品H 在在1 — 5月份内生产时每件 8元, 6 — 12月份内生产时每件 7元;该厂每月生产两种产品能力总和不超过 12万件。产品 I 容积每件0.2立方米,产品n 容积每件 0.4立方米。该厂仓库容积为1万5千立方米, 要求:(1)说明上述问题无可行解; (2)若该厂仓库不足时,可从外厂租借。若占用本 厂仓库每月每立方米需 1元,而租用外厂仓库时上述费用增加为 1.5元,试问在满足市

场需求情况下,该厂应如何安排生产,使总的生产加库存费用最少?(建立模型,不求 解) 7. 某工厂I 、n 、川三种产品在下一年个季度的合同预定数如表 2 —5所示,该三种产品 第一季度初无库存,要求在在第四季度末每种产品的库存为 150件。已知该厂每季度生产工 时为15000小时,生产产品I 、n 、川每件需 3, 4, 3小时。因更换工艺装备,产品I 在第 二季度无法生产。规定当产品不能按期交货时, 产品I 、n 每件每迟交一个季度赔偿 20元, 产品川赔偿15元,又生产出来的产品不在本季度交货的,每件每季度的库存费为 5元。问

应如何安排生产,使总的赔偿加库存费用最小。

&某玩具厂生产I 、n 、川三种玩具,这三种玩具需在A 、E 、C 三种机器上加工,每 60 个为一箱。每箱玩具在不同的机器上加工所需的时间(天)如表 2 — 6所示,本月可供使

用的机器的时间为:A 为

15天,E 为20天,C 为2 4天。每箱玩具的价格为I:

1500元;

n : 1700元;川:2400元。问怎样安排生产,使总的产值最大。

表2 一 6

9 ?某线带厂生产A 、E 两种纱线和C 、D 两种纱带,纱带由纱线加工而成。这四种产品的 产值,可变成本(即材料、人工等随产品数量变化的直接费用) ,加工工时等由表2 — 7给

出,工厂有供纺纱的总工时 7200h ,织带的总工时 1200h

(1) 列出线性规划模型,以便确定产品数量,使总的利润最大。

(2)如果组织这次生产的固定成本(即与产品数量无关的间接费用)为20万元,线性规划模型有何变化?

10.某制衣厂生产4种规格的出

口服装,有三种制衣机可以加工这4种服装,他们的生产效率(每天制作的服装件数)等有关数据如表2—8所示,试确定各种服装的生产数量,使总的加工费用最小。

表—

11.某制衣厂生产两种服装,现有100名熟练工人。已知一名熟练工人每小时生产10件服装I或6件服装n。据销售部门消息,从本周开始,这两种服装的需求量将持续上升。见表2 —9,为此,该厂决定到第8周末需培训出100名新工人,两班生产。已知一名工人一周工作40小时,一名熟练工人每周时间可培训出不多余5名的新工人(培训期间熟练工人和

培训人员不参加生产)熟练工人每周工资400元,新工人在培训期间工资每周80元,培训

合格后参加生产每周工资260元,生产效率同熟练工人。在培训期间,为按期交货,工厂安

排部分工人加班生产每周工作50小时,工资每周600元。又若所定的服装不能按期交货,

每推迟交货一周的赔偿费为:服装I每件10元,服装n每件20元。工厂应如何安排生产,

使各项费用总和最少。

12?某家具制造厂生产五种不同规格的家具。每种家具都要经过机械成型、打磨、上漆几种主要工序。每种家具的每道工序所用时间及每道工序的可用时间,每种家具的利润由表 2 —10给出。问工厂应如何安排生产,使总的利润最大?

表—

3.3.2简单的线性规划问题导学案(1)

3.3.2简单的线性规划问题导学案(1) 班级 姓名 【学习目标】 1、了解线性规划的意义及线性约束条件、线性目标函数、可行解、可行域、最 优解等概念; 2、能根据条件,建立线性目标函数; 3、了解线性规划问题的图解法,并会用图解法求线性目标函数的最大(小)值。 【学习过程】 一、自主学习 (1)目标函数: (2)线性目标函数: (3)线性规划问题: (4)可行解: (5)可行域: (6) 最优解: 二、合作探究 在约束条件???????≥≥≤+≥+0 0221y x y x y x 下所表示的平面区域内, 探索:目标函数2P x y =+的最值? (1)约束条件所表示的平面区域称为 (2)猜想在可行域内哪个点的坐标00(,)x y 能使P 取到最大(小)值? (3)目标函数2P x y =+可变形为y= ,p 的几何意义: (4)直线2y x p =-+与直线2y x =-的位置关系 (5)直线2y x p =-+平移到什么位置时,在y 轴上的截距P 最大? (6)直线2y x p =-+平移到什么位置时,在y 轴上的截距P 最小? 三、交流展示 1、已知变量,x y 满足约束条件?? ???≥≤+-≤-1255334x y x y x ,求2t x y =-的最值。

规律总结:用图解法解决简单的线性规划问题的基本步骤? 四、达标检测 A 组:1.下列目标函数中,Z 表示在y 轴上截距的是( ) A.y x z -= B.y x z -=2 C.y x z += D.y x z 2+= 2.不等式组 x –y+5≥0 x + y ≥0 x ≤3表示的平面区域的面积等于( ) A 、32 B 、1214 C 、1154 D 、632 3.若?? ???≤+≥≥100y x y x ,则y x z -=的最大值为( ) A.-1 B.1 C.2 D.-2 4.已知x ,y 满足约束条件5003x y x y x -+??+??? ≥≥≤,则24z x y =+的最小值为( ) A .5 B .6- C .10 D .10- 5.若?? ???≥≤+≤--0101x y x y x ,则目标函数y x z +=10的最优解为( ) A .(0,1),(1,0) B.(0,1),(0,-1) C.(0,-1),(0,0) D.(0,-1),(1,0) 6. 若222x y x y ????+? ≤≤≥,则目标函数2z x y =+的取值范围是( ) A .[26], B .[25], C .[36], D .[35], 7.若A(x, y)是不等式组 –1<x <2 –1<y <2)表示的平面区域内的点,则2x –y 的取值范围是( ) A 、(–4, 4) B 、(–4, –3) C 、(–4, 5) D 、(–3, 5) B 组:1.在不等式组 x >0 y >0 x+y –3<0表示的区域内,整数点的坐标是 。 2.若y x ,都是非负整数,则满足5≤+y x 的点共有________个。

线性规划题及答案

线性规划题型及解法 一、已知线性约束条件,探求线性目标关系最值问题 2x -y _2 例1、设变量x、y满足约束条件x 一y _ _1,则z =2x ? 3y的最大值为__________ 。 x y _1 二、已知线性约束条件,探求非线性目标关系最值问题 \ >1, 例2、已知」x-y+1兰0,则x2+y2的最小值是_」“(x-1)2+(y+2『”值域? 2x - y - 2 <0 三、约束条件设计参数形式,考查目标函数最值范围问题。 Zf x _0 例3、在约束条件y_0 下,当3乞s乞5时,目标函数Z=3x?2y的最大值的变化范围是() |y x _s y 2x^4 A. [6,15] B. [7,15] C. [6,8] D. [7,8] 四、已知平面区域,逆向考查约束条件。 例4、已知双曲线x2-y2 =4的两条渐近线与直线x=3围成一个三角形区域,表示该区域的不等式组是() fx-yZ0 「x-yX0 『x-y^0 "x-y 兰0 (A) x y _ 0 (B) x y 乞0 (C) x y 乞0 (D) x y _ 0 0 _x _3 0 _x _3 0 _x _3 0 _x _3 五、已知最优解成立条件,探求目标函数参数范围问题。 (1 ::: x :「v ‘::4 例5已知变量x,y满足约束条件若目标函数ax y (其中a 0)仅在 [―2 兰x—y 兰2 点(3,1)处取得最大值,则a的取值范围为 __________ 。 六、设计线性规划,探求平面区域的面积问题 丄x y _ 2 _ 0 _ 例6在平面直角坐标系中,不等式组x_y,2_0表示的平面区域的面积是()(A)4、、2 (B)4 [八0 (C) 2.2 (D)2 七、研究线性规划中的整点最优解问题 ”5x-11y —22, 例7、某公司招收男职员x名,女职员y名,x和y须满足约束条件<2x+3yX9, 则 、2x 兰11. z =10x 10y 的最大值是(A)80 (B) 85 (C) 90 (D)95 八、比值问题 当目标函数形如z =-—a时,可把z看作是动点P x, y与定点Q b, a连线的斜率,这样目 x —b 标函数的最值就转化为PQ连线斜率的最值。 x—y+ 2W 0,V

线性规划典型例题

例1:生产计划问题 某工厂明年根据合同,每个季度末向销售公司提供产品,有关信息如下表。若当季生产的产品过多,季末有积余,则一个季度每积压一吨产品需支付存贮费O.2万元。现该厂考虑明年的最佳生产方案,使该厂在完成合同的情况下,全年的生产费用最低。试建立模型。 解: 法1 设每个季度分别生产x1,x2,x3,x4 则要满足每个季度的需求x4≥26 x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 考虑到每个季度的生产能力 0≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10 每个季度的费用为:此季度生产费用+上季度储存费用 第一季度15.0x1 第二季度14 x2 0.2(x1-20) 第三季度15.3x3+0.2(x1+ x2-40) 第四季度14.8x4+0.2(x1+ x2+ x3-70)

工厂一年的费用即为这四个季度费用之和, 得目标函数;minf=15.6 x1+14.4 x2+15.5 x3+14.8 x4-26 s.t.x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 20≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10。 法2:设第i季度生产而用于第j季度末交货的产品数量为xij吨 根据合同要求有: xll=20 x12+x22=20 x13+x23+x33=30 x14+x24+x34+x44=10 又根据每季度的生产能力有: xll+x12+x13+x14≤30 x22+x23+x24≤40 x33+x34≤20 x44≤10 第i季度生产的用于第j季度交货的每吨产品的费用cij=dj+0.2(j-i),于是,有线性规划模型。 minf=15.Oxll+15.2x12+15.4xl3+15.6xl4+14x22+14.2x23+14.4x24+15.3 x33+15.5x34+14.8x44 s.t. xll=20, x12+x22=20, x13+x23+x13=30, x14+x24+x34+x44=10, x1l+x12+x13+x14≤30, x22+x23+x24≤40, x33+x34≤20,

简单的线性规划问题学案

3.3.2简单的线性规划问题学案(一) 预习案(限时20分钟) 学习目标:1.了解线性规划的意义,了解线性规划的基本概念;2.掌握线性规划问题的图解法.3.能用线性规划的方法解决一些简单的实际问题,提高学生解决实际问题的能力. 学习重点,难点: 会画二元一次不等式(组)所表示的平面区域及理解数形结合思想,求目标函数的值。 预习指导:预习课本P87-91 1.如果两个变量y x ,满足一组一次不等式组,则称不等式组是变量y x ,的约束条件,这组约束条件都是关于y x ,的 次不等式,故又称 条件. 2.关于y x ,的一次式),(y x f z =是达到最大值或最小值所涉及的变量y x ,的解析式,叫线性目标函数. 3.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为 规划问题. 4.可行解、可行域和最优解:在线性规划问题中, ①满足线性约束条件的解(,)x y 叫 ;②由所有可行解组成的集合叫做 ; ③使目标函数取得最大或最小值的可行解叫线性规划问题的 解. 线性规划问题,就是求线性目标函数在线性约束条件下的最大值或最小值的问题. 预习检测 1.设变量y x ,满足约束条件?? ???≥+≤+≥-12102y x y x y x ,则目标函数y x z +=2的最大值为 ( ) A .。34 B .2 C .23 D .2 3- 2.若变量y x ,满足约束条件?? ???-≥≤+≤1,1y y x x y 且y x z +=2的最大值和最小值分别为m 和n ,则n m -=( ) A .5 B . 6 C . 7 D . 8 3.若y x ,满足约束条件103030x y x y x -+≥??+-≥??-≤? ,则目标函数2z x y =-的最小值为__________ 4.求35z x y =+的最大值和最小值,使式中的y x ,满足约束条件5315153x y y x x y +≤??≤+??-≥? .

线性规划习题附答案模板

习题 2-1 判断下列说法是否正确: (1)任何线性规划问题存在并具有惟一的对偶问题; (2)对偶问题的对偶问题一定是原问题; (3)根据对偶问题的性质, 当原问题为无界解时, 其对偶问题无可行解, 反之, 当对偶问题无可行解时, 其原问题具有无界解; (4)若线性规划的原问题有无穷多最优解, 则其对偶问题也一定具有无穷多最优解; (5)若线性规划问题中的b i, c j值同时发生变化, 反映到最终单纯形表中, 不会出现原问题与对偶问题均为非可行解的情况; (6)应用对偶单纯形法计算时, 若单纯形表中某一基变量x i<0, 又x i所在行的元素全部大于或等于零, 则能够判断其对偶问题具有无界解。 (7)若某种资源的影子价格等于k, 在其它条件不变的情况下, 当该种资源增加5个单位时, 相应的目标函数值将增大5k;

(8) 已知y i 为线性规划的对偶问题的最优解, 若y i >0, 说明在最优生产计划中第i 种资源已经完全耗尽; 若y i =0, 说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z ()??? ??≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 解: (1)令'''444x x x =-, 增加松弛变量5x , 剩余变量6x , 则该问题的标准形式如下所示: ''' 12344''' 12344''' 123445''' 123446'''1234456max 342554222214..232 ,,,,,,0 z x x x x x x x x x x x x x x x x s t x x x x x x x x x x x x x =-+-+-?-+-+-=?+-+-+=??-++-+-=??≥? (2)令'z z =-, '11x x =-, '''333x x x =-, 增加松弛变量4x , 则该问题的标准形式如下所示: ''''' 1233'''' 1233'''' 12334''''12334 max 22334 ..26,,,,0z x x x x x x x x s t x x x x x x x x x x =+-+?++-=?+-++=??≥? 2-3分别用图解法和单纯形法求解下述线性规划问题, 并对照

128499-管理运筹学-第二章线性规划-习题

11(2),12,14,18 习题 2-1 判断下列说法是否正确: (1) 任何线性规划问题存在并具有惟一的对偶问题; T (2) 对偶问题的对偶问题一定是原问题;T (3) 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之, 当对偶问题无可行解时,其原问题具有无界解;F (4) 若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优 解; (5) 若线性规划问题中的b i ,c j 值同时发生变化,反映到最终单纯形表中,不会出 现原问题与对偶问题均为非可行解的情况; (6) 应用对偶单纯形法计算时,若单纯形表中某一基变量x i <0,又x i 所在行的元素全 部大于或等于零,则可以判断其对偶问题具有无界解。 (7) 若某种资源的影子价格等于k ,在其他条件不变的情况下,当该种资源增加 5个单位时,相应的目标函数值将增大5k ; (8) 已知y i 为线性规划的对偶问题的最优解,若y i >0,说明在最优生产计划中第 i 种资源已经完全耗尽;若y i =0,说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z 2-3分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基 可行解对应图解法中可行()?????≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 域的哪一顶点。 ()??? ??≥≤+≤++=0,8259 43.510max 12 1212121x x x x x x st x x z ()??? ??≥≤+≤++=0,242615 53.2max 22 121212 1x x x x x x st x x z 2-4已知线性规划问题,写出其对偶问题: 5 43212520202410max x x x x x z ++++=

高二数学简单线性规划知识点

高二数学简单线性规划知识点 导读:我根据大家的需要整理了一份关于《高二数学简单线性规划知识点》的内容,具体内容:数学这一学科知识积累的越多,掌握的就会越熟练,下面是我给大家带来的,希望对你有帮助。归纳1.在同一坐标系上作出下列直线:2x+y=0;2x+y=1;2x+y=-... 数学这一学科知识积累的越多,掌握的就会越熟练,下面是我给大家带来的,希望对你有帮助。 归纳 1.在同一坐标系上作出下列直线: 2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7xYo简单线性规划(1)-可行域 上的最优解2y 问题1:x 有无最大(小)值? 问题2:y 有无最大(小)值? 问题3:2x+y 有无最大(小)值? 2.作出下列不等式组的所表示的平面区域3二.提出问题 把上面两个问题综合起来: 设z=2x+y,求满足 时,求z的最大值和最小值.4y 直线L越往右平移,t随之增大. 以经过点A(5,2)的直线所对应的t值最大;经过点B(1,1)的直线所对应的t值最小.

可以通过比较可行域边界顶点的目标函数值大小得到。 思考:还可以运用怎样的方法得到目标函数的最大、最小值?5线性规划问题:设z=2x+y,式中变量满足 下列条件: 求z的最大值与最小值。 目标函数 (线性目标函数)线性约束条件 象这样关于x,y一次不等式组的约束条件称为线性约束条件 Z=2x+y称为目标函数,(因这里目标函数为关于x,y的一次式,又称为线性目标函数6线性规划 线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 可行解:满足线性约束条件的解(x,y)叫可行解; 可行域:由所有可行解组成的集合叫做可行域; 最优解:使目标函数取得最大或最小值的可行解叫线性规划问题的最优解。可行域2x+y=32x+y=12(1,1)(5,2)7 线性目标函数 线性约束条件 线性规划问题 任何一个满足不等式组的(x,y)可行解可行域所有的最优解 目标函数所表示的几何意义——在y轴上的截距或其相反数。8线性规划

【精品】第47课时—简单的线性规划学案

高三数学第一轮复习讲义(47)2004。10.27 简单的线性规划 一.复习目标: 1.了解用二元一次不等式表示平面区域,了解线性规划的意义,并会简单的应用; 2.通过以线性规划为内容的研究课题与实习作业,提高解决实际问题的能力. 二.知识要点: 已知直线0Ax By C ++=,坐标平面内的点00(,)P x y . 1.①若0B >,000Ax By C ++>,则点00(,)P x y 在直线的方; ②若0B >,000Ax By C ++<,则点00(,)P x y 在直线的方. 2.①若0B >,0Ax By C ++>表示直线0Ax By C ++=方的区域; ②若0B <,0Ax By C ++>表示直线0Ax By C ++=方的区域. 三.课前预习: 1.不等式240x y -->表示的平面区域在直线240x y --=的() ()A 左上方()B 右上方()C 左下方()D 右下方 2.表示图中阴影部分的二元一次不等式组是()

()A 220102x y x y -+≤??-≥??≤?()B 21002x y x y -??-≥??≤≤?()C 1002x y -≤??≤≤?()D 10 02x y -≤??≤≤? 3.给出平面区域(包括边界)如图所示,若使目标函数(0)z ax y a =+> 取得最大值的最优解有无穷多个,则a 的值为() () A 14() B 35() C 4() D 53 4.原点和点(1,1)在直线0x y a +-=的两侧, 则a 的取值范围是. 5.由|1|1y x ≥+-及||1y x ≤-+2)

四.例题分析: 例1.某人上午7时乘船出发,以匀速v 海里/时(420v ≤≤)从A 港到相距50海里的B 港去,然后乘汽车以ω千米/时(30100ω≤≤)自B 港到相距300千米的C 市去,计划在当天下午4至9时到达C 市.设乘船和汽车的时间分别为x 和y 小时,如果已知所要的经费(单位:元)1003(5)(8)P x y =+?-+-,那么v ,ω分别是多少时所需费用最少?此时需要花费多少元? 小结: 例2.某运输公司有10辆载重量为6吨的A 型卡车与载重量为8吨的B 型卡车,有11名驾驶员。在建筑某段高速公路中,该公司承包了每天至少搬运480吨沥青的任务.已知每辆卡车每天往返的次数为A 型卡车8次,B 型卡车7次;每辆卡车每天的成本费A 型车350元,B 型车400元.问每天派出A 型车与B 型车各多少辆,公司所花的成本费最低,最低为多少? 小结:

高考全国卷及各省数学线性规划真题附答案.docx

2017 高考全国卷及自主招生数学高考真题 线性规划专题真题整理(附答案解析) x 3y 3, 1. ( 17 全国卷 I ,文数 )设 x ,y 满足约束条件 x y 1, 则 z=x+y 的最大值为( ) 7 y 0, A . 0 B . 1 C .2 D .3 答案: D 解析:如图,由图易知当目标函数 z x y 经过 直线 x 3 y 3 和 y 0 (即 x 轴)的交点 A(3,0) 时, z 能取到最大值,把 A(3,0) 代入 z=x+y 可得 z max 3 0 3 ,故选 D. x 2 y 1 2.(17 全国卷 I, 理数 14 题)设 x ,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值 x y 0 为 答案: 5 x 2 y 1 解析:不等式组 2x y 1 表示的平面区域如图所示。 x y 0 由 z 3x 2 y 变形得 y 3 x z 。要求 z 的最小值, 2 2 即求直线 y 3 x z 的纵截距的最大值。由右图,易知 2 2 当直线 y 3 x z 过图中点 A 时,纵截距最大。 2 2 联立方程组 2 x y 1 ,此时 z 3(1) 2 1 5 。 x 2 y 1 ,解得 A 点坐标为 ( 1,1) 故 z 3x 2 y 的最小值是 -5.

2x+3y 30 3. (17 全国卷Ⅱ,文数 7、理数 5)设 x、y 满足约束条件2x 3 y 3 0 .则z2x y的 y 30 最小值是() A.-15 C.1D9 答案: A 2x+3y 30 解析:不等式组2x 3y 30 表示的可行域如图所示, y30 易知当直线z 2x y 过到y 2 x 1与 y 3 交点 3 6 ,3 时,目标函数 z2x y 取到最小值,此时有 z min 26315 ,故所求z 最小值为15. )设,满足约束条件 3x 2 y60 的取值范围是 4. (17 全国卷Ⅲ,文数 5 x0,则 z=x-y x y y0 () A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 答案: B 解析:绘制不等式组表示的可行域,结合目标函数 的几何意义可得目标函数z x y 在直线3x 2y 60 与= - 直线 x0 (即x 轴)的交点A0,3处取得最小值, 此时 z min0 3 3。在点B2,0处取得最大值,此时 z max 2 0 2 . 故本题选择 B 选项 . 5.(17 全国卷Ⅲ,理数13)若 x,y 满足约束条件x y 0 x y 2 0 则z3x 4 y 的最小值为y 0 ________.

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

线性规划知识复习、题型总结

线性规划 基础知识: 一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=0 2. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<0 3. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>0 2.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不. 包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界; 注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断 Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。 方法二:利用规律: 1.Ax+By+C>0,当B>0时表示直线Ax+By+C=0上方(左上或右上), 当B<0时表示直线Ax+By+C=0下方(左下或右下); 2.Ax+By+C<0,当B>0时表示直线Ax+By+C=0下方(左下或右下) 当B<0时表示直线Ax+By+C=0上方(左上或右上)。 四、线性规划的有关概念: ①线性约束条件: ②线性目标函数: ③线性规划问题: ④可行解、可行域和最优解: 典型例题一--------画区域 1. 用不等式表示以)4,1(A ,)0,3(-B ,)2,2(--C 为顶点的三角形内部的平面区域. 分析:首先要将三点中的任意两点所确定的直线方程写出,然后结合图形考虑三角形内部区域应怎样表示。 解:直线AB 的斜率为:1) 3(104=---=AB k ,其方程为3+=x y . 可求得直线BC 的方程为62--=x y .直线AC 的方程为22+=x y . ABC ?的内部在不等式03>+-y x 所表示平面区域内,同时在不等式062>++y x 所表示的平面区域内,同时又在不等式022<+-y x 所表示的平面区域内(如图). 所以已知三角形内部的平面区域可由不等式组?? ???<+->++>+-022, 062,03y x y x y x 表示. 说明:用不等式组可以用来平面内的一定区域,注意三角形区域内部不包括边界线. 2 画出332≤<-y x 表示的区域,并求所有的正整数解),(y x . 解:原不等式等价于???≤->.3,32y x y 而求正整数解则意味着x ,y 还有限制条件,即求??? ??? ?≤->∈∈>>.3, 32, ,,0,0y x y z y z x y x .

74简单的线性规划学案

7.4 简单的线性规划第二课时学案 一、知识点: 1、二元一次方程表示平面区域: 2、目标函数、可行域、可行解、最优解、线性规划问题: 3、解线性规划问题的基本步骤: 二、应用: 例1:(1)已知,x y满足不等式组 22 21 0,0 x y x y x y +≥ ? ? +≥ ? ?≥≥ ? ,求3 z x y =+的最小值. (2) 已知,x y满足不等式组 270 43120 230 x y x y x y -+≥ ? ? --≤ ? ?+-≥ ? ,求 ①43 z x y =-的最大值与最小值; ②22 z x y =+的最大值与最小值; ③y z x =的取值范围.

(3) 已知,x y 满足不等式组2040250x y x y x y -+≥??+-≥??--≤? , 求①23z x y =-的最值; ②22222z x y x y =++-+的最小值; ③12 y z x +=+的最大值; ④24z x y =+-的最大值. 例2:给出平面区域如图所示,若使目标函数()0z ax y a =+> 取到最大值的最优解有无穷多个,则a 的值为( ). A. 14 B. 35 C. 4 D.53 变式: 给出平面区域如图所示,若使目标函数()0z ax y a =+> 取到最大值的最优解只在C 处,则a 的范围为 . 例3:已知()2,f x ax c =-且()()411,125f f -≤≤--≤≤,求()3f 的取值范围.

7.4 简单的线性规划第三课时学案 一、知识点: 1、目标函数、可行域、可行解、最优解、线性规划问题: 2、实际问题: 3、整点问题: 二、应用: 例1:某工厂生产甲、乙两种产品.已知生产甲种产品1t需耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品1t需耗A种矿石4t、B 种矿石4t、煤9t.每1t甲种产品的利润是600元, 每1t乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t、B种矿石不超过200t、煤不超过363t.问甲、乙两种产品应各生产多少,能使利润总额达到最大?

简单的线性规划 习题含答案

线性规划教案 1.若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 2.不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为 () A、4 B、1 C、5 D、无穷大解:如图,作出可行域,△ABC的面 积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选 B 3.满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥ ? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D 四、求线性目标函数中参数的取值范围 4.已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使 z=x+ay(a>0)取得最小值的最优解有无数个,则a的值 为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函 数z=x+ay(a>0)取得最小值的最优解有无数个,则将 l向右上方平移后与直线x+y=5重合,故a=1,选 D 5.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56m3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产

【全国百强校】山东省日照第一中学人教版高中数学必修五3.3简单线性规划学案

【自学】 对于题目:已知实数,x y 满足:12,x y ≤+≤11x y -≤-≤,求2x y +的取值范围. 有个同学的解法如下: 解:由已知,得不等式组:12(1) 11(2)x y x y ≤+≤ ?? -≤-≤ ? , 两个同向不等式作加法,得: 原不等式组化为 两个同向不等式作加法,得023(4)y ≤≤ 即 0 1.5y ≤≤ (5). 两个同向不等式(3)和(5)作加法,得 从而2x y +的取值范围是[0,4.5]. 思考:上题合适的解法该是怎样的呢??? 【对话】 【精讲点拨】 例1、已知2z x y =+,其中实数,x y 满足:12 11 x y x y ≤+≤??-≤-≤?,求z 的最大值和最 小值. 小结:

1、线性规划中的几个相关概念: 2、解决简单线性规划的方法: 3.解简单线性规划问题的步骤:

【对话】 【合作探究与展示分享】 例2、设2z x y =+,式中变量,x y 满足条件4335251x y x y x -≤-?? +≤??≥? ,求z 的最大值和最小值. 变式1、在例2中将2z x y =+改为610z x y =+,求z 的最大值和最小值. 变式2、在例2中将2z x y =+改为2z x y =-,求z 的最大值和最小值. 例3、设变量,x y 满足条件1035371x y x y x -+≤?? +≤??≥? , (1) 找出,x y 均为正整数的可行解; (2) 求出目标函数53z x y =+的最大值; (3) 若,x y 均为正整数,求目标函数53z x y =+的最大值.

【评价】 【自我评价】 1. 右图中阴影部分的点满足不等式组52600 x y x y x y +≤??+≤? ?≥??≥?在这些点中,使目标函数68z x y =+取得最大值的点的坐标是______________. 2. 求函数23z x y =+的最大值,式中的,x y 满足约束条件2324700 x y x y x y +-≤ ??-≤? ?≥??≥? *3、在例2中将2z x y =+改为y z x =,求z 的最大值和最小值. *4、在例2中将2z x y =+改为2 2 z x y =+,求z 的最大值和最小值. **5.已知变量,x y 满足约束条件14 22x y x y ≤+≤?? -≤-≤? ,若目标函数 (0)z ax y a =+>其中仅在点(3,1)处取得最大值,则a 的取值范围为____________.

线性规划经典例题

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A 二、求可行域的面积 例2、不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个 x y O 2 2 x=2 y =2 x + y =2 B A 2x + y – 6= 0 = 5 x +y – 3 = 0 O y x A B C M y =2

解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得到整 点个数为13个,选D 四、求线性目标函数中参数的取值范围 例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1 解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解 有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D 五、求非线性目标函数的最值 例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、 5 解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为 4 5 ,选C 六、求约束条件中参数的取值范围 例6、已知|2x -y +m|<3表示的平面区域包含点 (0,0)和(- 1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)

《简单的线性规划》知识点及题型归总

二元一次不等式(组)与简单的线性规划问题 一、考点、热点回顾 1.二元一次不等式表示的平面区域 (1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线,以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线. (2)对于直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可断定Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域. 2.线性规划相关概念 名称意义 约束条件由变量x,y组成的一次不等式 线性约束条件由x,y的一次不等式(或方程)组成的不等式组 目标函数欲求最大值或最小值的函数 线性目标函数关于x,y的一次解析式 可行解满足线性约束条件的解 可行域所有可行解组成的集合 最优解使目标函数取得最大值或最小值的可行解 线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题 3.重要结论 画二元一次不等式表示的平面区域的直线定界,特殊点定域: (1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线. (2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证. 知识拓展 1.利用“同号上,异号下”判断二元一次不等式表示的平面区域 对于Ax+By+C>0或Ax+By+C<0,则有 (1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方; (2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方. 2.最优解和可行解的关系 最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 二、典型例题 例1、(1)分别画出不等式x+2y-4>0和y≥x+3所表示的平面区域;

《简单的线性规划问题》(第一课时)教学设计

《简单的线性规划问题》(第一课时)教学设计 一、内容与内容解析 本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法. 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用. 本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想. 本节教学重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解. 二、目标和目标解析 (一)教学目标 1.了解约束条件、目标函数、可行解、可行域、最优解等基本概念. 2. 会用图解法求线性目标函数的最大值、最小值. 3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想. 4.结合教学内容培养学生学习数学的兴趣和“用数学”的意识. (二)教学目标解析 1. 了解线性规划模型的特征:一组决策变量(,) x y表示一个方案;约束条件是一次不等式组;目标函数是线性的,求目标函数的最大值或最小值.熟悉线性

线性规划练习题含答案

线性规划练习题含答案 一、选择题 A .4 5 - B .1 C . 2 D .无法确定【答案】B 【解析】解:如图所示 要是目标函数取得最小值的最优解有无穷多个,则令ax+y=0,并平移过点C 24 (,)33 ,(可行域最 左侧的点)的边界重合即可。注意到a>0,只能与AC 重合,所以a=18.已知点集{}2 2 (,)48160A x y x y x y =+--+≤, {} (,)4,B x y y x m m 是常数=≥-+,点集A 所表示的平面区域与点集B 所表示的平面区域的边界的交点为,M N . 若点(,4)D m 在点集A 所表示的平面区域内(不在边界上),则△DMN 的面积的最大值是 A. 1 B. 2 C. 22 D. 4【答案】B 【解析】解:因为点集A 表示的为圆心为(2,4),半径为2的圆,而点集B 表示为绝对值函数表示的区域则利用数形结合思想,我们可以求解得到。【题型】选择题 9.在平面直角坐标系中,若不等式组101010x y x ax y +-≥??-≤??-+≥? (α为常数)所表示的平面区域内的面积等于2,则a 的值为( )A . -5 B .1 C . 2 D . 3 【答案】D 【解析】解:当a<0时,不等式表示的平满区域如图中的M ,一个无限的角形区域,面积不可能为2,故只能a 0≥,此时不等式表示的区域为如图中的N ,区域为三 角形区域,若这个三角形的面积为2,则AB=4,即点B (1,4),代入y=ax+1,得a=310.已知方程:2 20x ax b ++= (,)a R b R ∈∈,其一根在区间(0,1)内,另一根在区间(1,2)内,则22 (3)z a b =++的取值范围为 A. B. 1(,4)2 C. (1,2) D. (1,4)【答案】B 【解析】解: 2( ,2)2222f (x)x ax 2b,f (0)0 f (1)0,f (3)0b 0,a 2b 10,2a 2b 40a b z (a 3)b -1z 2解:设由图像可知,三者同时成立,求解得到由线性规划知识画出可行域,以为横轴,为纵轴,再以为目标,几何意义为区域内的点到(3,0)的距离的平方,当a=-1,b=0时,z 最大为4,当点到直线 a+2b+1=02的距离为,最小为,由题目,不能去边界2=++><>>++<++>=++11.的取值范围是则满足约束条件变量122,012430 ,++=≤-+≥≥?????x y s y x x y x y x ( )A .[1,4] B .[2,8] C .[2,10] D .[3,9]【答案】B 【解析】约束条件034120x y x x y ≥≥+-≤?????表示的区域如图,221112y y s x x ++=++=?,11y x ++表示点(x ,y )与点(-1,-1)的斜率,PB 的斜率为最小值,PA 的斜率为最大值,斜率的取值范围是[1,4],112y x ++?的取值范围是[2,8]。 12.若变量x,y 满足约束条件1 325x y x x y ≥-?? ≥??+≤? 则z=2x+y 的最大值为 (A )1 (B)2 (C)3 (D)4【答案】C 【解析】:∵ 作出可行域,作出目标函数线,可得直线与 y x = 与325x y +=的交点为最优解点,∴即为(1,1),当1,1x y ==时max 3z =13.在集合 }4,1,1|),{(≤+≥≥=y x y x y x A 中,y x 2+的最大值是

相关主题
文本预览
相关文档 最新文档