当前位置:文档之家› 模拟量输入电路

模拟量输入电路

模拟量输入电路
模拟量输入电路

文件编号:ICBB-HW-11-05

CBB规范

模拟量输入电路

(VER:V2.0)

拟制:专时间:2010-12-08

批准:宏时间:2010-02-17

文件评优级别:□A优秀□B良好□C一般

1 功能介绍

本电路实现输入电压0~10V或者电流0~20mA的模拟量信号转换为CPU可以直接测量的0~3V电压信号,此电路在原一代产品电路的基础上做了进一步优化设计,其抗干扰能力显著提高。

2 详细原理图

电路原理图

工作原理说明:

外部模拟量信号从AI1端口输入,首先经过安规电容C1和磁珠L1,可有效防止线路上的浪涌电流电压进入后端电路。如果输入的是电流信号,需将J1的2、3脚短接,电流流过电阻R3和R4,在电阻R8端可得到0~10V的电压信号,如果外部电压过高(超过15V)或者过低(少于0V),二极管D1可以发生钳位作用,保证电压在-1V~16V之间。

输入信号接到运放TL082的同相端,电压跟随输出到ATI-IN端口,电压幅值不变仍然是0~10V,电阻R10和R11构成分压关系输出0~3.0V的电压信号。二极管D2同样是起电压钳位作用,保证输出电压在-1.0~4.0V之间,有效保护CPU。

3 器件功能

磁珠L1,防止浪涌输入,可有效抑制EMI与RFI,提高抗干扰能力;

电容C1,安规电容防止浪涌电压,保护后端电路;

功率电阻R3~R7,降压限流,防止流过电流过大损坏器件;

电容C2与磁珠L1对输入信号进行LC滤波;

二极管D1~D2,对信号进行电压钳位,防止电压过高或者过低;

电容C3、C4、C7、C8、C9、C10滤波电容,消除输入信号的尖峰和毛刺;

电容C5,加速电容,提高输入电路的响应能力。

电阻R2、R9,下拉电阻。

运放U1,电压跟随器。

电阻R3、R4,短接片J1,输入为电流信号时J1短接2,3脚,电流流过R8、R9并产生对应的电压信号;

电阻R8限流电阻,此电阻大小影响运放的输出能力;

电阻R10、R11,将运放端输出的信号进行分压输出0~3.0v 到控制器。

4 参数计算

在设计电路参数时,应兼顾以下因素:1、对外部输入信号进行抗干扰处理;2、输入信号值限幅。

4.1 安规电容C1的选择:

防静电,理论上能有几百伏耐压值即可,考虑到公司常用元件中最接近的器件,所以选择2KV/1nF 的电容。

4.2 磁珠L1、电容C2的选取:

选择10μH 感值,其高频阻抗为500±25%,C2选100pF 的片状电容,时间常数为

==LC t 1us.

4.3 电阻R3、R4的选取。

0~20mA 电流输入,对应电压输入时0~10V ,则有V ATI /R 的值在0~20mA 之间,则有R=500欧。

所以采用两个R3=R4=1k 并联。 4.4 电阻R5、R6、R7的选取:

模拟量输入阻抗通常为20K ,所以R1、R2取值10K,Rf=R5+R6=20k ,以满足平衡条件。 4.5 R2、R9的选取:

电路中R2与R9为下拉电阻,R2在没有输入时给运放提供一个固定的输入电平,R9下拉到地,在运放损坏时提供一个稳定的输出电平,同时给C9提供一个电荷泄放通道,其取值无特别要求,此处选R2=20K,R9=5.1K 。 4.6 电阻R8的选取:

R8串联在运放输出端主要起到限流,保护运放在输出短路时不被烧坏,其值一般在100欧~10k ,此处不宜过大,选100欧。 4.7 二极管D1~D2:

由于此处二极管的电流和工作电压小,此处选公司的优选器件MMBD7000LT1。 4.8 电阻R10、R11的选取:

电阻R10与R11串联构成分压电路,使运放端输出0~10V ,需要转换成0~3.0V 。则有:

10

1111

R R R V V ATI

IN ATI +=-要在0~3.0V, V ATI 为输入电压,此处取R10=5.1k ,R11=2.2k ,

满足设计要求

4.9 电容C3,C4,C7,C8,C9,C10的选取:

C3、C4与R10一起构成惯性虑波环节,用于抑制干扰,这里选用C3选0.1uF 电容,C4选1nF ,分别抑制低频与高频干扰。C7、C8为15V 电源滤波电容,提供电流纹波对地通道,保持电源输出信号的纯洁,选用最常用的0.1uF 片状电容,C9,C10分别选100p 与20P 滤波电容与R10并联,吸收不同频段反射信号,消除干扰。 4.10 运放U1的选取:

电路工作电压在20V 以下,选用我司优选器件双单元运放TL082CDR. 5 器件清单

序号

料号

名称

规格

数量

位号

13-08-97-104片状电容;100nF±10%-50V-0603-X7R0.1u3C3,C7

,C8 23-24-90-101片状电阻;1/10W-100Ω±1%-06031001R8 33-08-98-101片状电容;100pF±5%-50V-0603-NPO100p2C2,C9 43-24-90-103片状电阻;1/10W-10KΩ±1%-060310k2R5,R6 53-24-90-102片状电阻;1/10W-1KΩ±1%-06031k2R3,R4 63-08-98-102片状电容;1nF±5%-50V-0603-NPO1n2C4,C5 73-08-78-102片状电容;1nF±20%-2KV-1206-X7R1n/2kV1C1 83-24-90-222片状电阻;1/10W-2.2kΩ±1%-0603 2.2k1R11 93-24-90-203片状电阻;1/10W-20kΩ±1%-060320k2R2,R7 103-08-98-200片状电容;20pF±5%-50V-0603-NPO20p1C10 113-24-90-512片状电阻;1/10W-5.1kΩ±1%-0603 5.1k2R9,R1

123-29-04-501片式铁氧体磁珠,直流电阻0.4Ω/500Ω±

25%/100MHZ/2.0*1.2*0.9

FERRIES

BEADS-SI0805

1L1

133-56-52-700(3-56

-53-700)双开关二极管;100V/200mA/串联/SOT-23MMBD7000LT1

G

2D1,D2

143-52-31-003插针-普通方脚插针-3PIN/单排/直脚

/2.54/5.84/2mmPCB-3A

PIN-31J1

152-15-11-082(2-15

-11-083)

运放;双单元/SOIC-8TL0821U1 6 关键器件资料

MMBD7000LT1-D.pdf tl081a.pdf

模拟量两线制与四线制接法

模拟量两线制与四线制接法(个人经验总结)发上来,供大家参考。 概述:两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当PLC的模板输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC的模板输入通道设定为连接二线制传感器时,PLC的模拟输入模板的通道上还要向外输出一个直流24V的电源,以驱动两线制传感器工作。 接法:传感器型号:1、两线制(本身需要供给24vDC电源的,输出信号为4-20MA,电流)即+接24vdc,负输出4-20mA电流。 2、四线制(有自己的供电电源,一般是220vac ,信号线输出+为4-20ma正,-为4-20ma负。 PLC: (以2正、3负为例)1、两线制时正极2输出24VDC电压,3接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24vdc;跳线为两线制电流信号。 (以2正、3负为例)2、四线制时正极2是接收电流,3是负极。(四

线制好处是传感器负极信号与柜内M为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线制传感器时,一种方法是2接传感器正,3接传感器负,plc跳线为4线制电流。 (以2正、3负为例)3、四线制传感器与plc两线制跳线接法:信号线负与柜内M线相连。将传感器正与plc的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例)4、电压信号:2接传感器正,3接传感器负,plc跳线为电压信号。

关于西门子模拟量输入模块接线的阐述

关于西门子模拟量输入模块接线的阐述 关于西门子模拟量输入模块6ES7 331-7KF02-0AB0接线图的阐述 1.问题概述 我们公司所采用的很多模拟量输入模块的订货号是6ES7 331-7KF02-0AB0, 认真研究该模块接线图后发现很多问题,通过网络查资料,向西门子咨询和同事讨论问题基本解决,经整理后写成本文件,供同事参考,具体描述如下 1.1具体问题: ①端子10(COMP )和端子11(MANA)为什么要短接。 ②端子11(MANA)和端子20(M)为什么要短接。 ③两线制具体怎么接,为什么要这样接。 ④四线制具体怎么接,为什么要这样接。 ⑤两线制和四线制的区别重点在什么地方。 ⑥西门子设备手册中的“使用非隔离电源的接地4线制传感器时,不需要互连MANA和M-(端子11、13、15、17、19)。”这句话怎么理解,我们该怎样处理。 ⑦功能性接地是什么作用。 2.1参考图片

图1西门子设备手册提供的6ES7 331-7KF02-0AB0接线图 图2 6ES7 331-7KF02-0AB0接线端子说明 2.2问题讲解 ①问题“①端子10(COMP )为什么和端子11(MANA)短接。” 端子10(COMP )是用于外部补偿,而Mana是参考电位,一般模拟量输入模块6ES7 331-7KF02-0AB0 使用内部补偿,所以必须将端子10(COMP )与参考电位Mana短接。 ②问题“②端子11(Mana)和端子20(M)为什么要短接。” 端子11(Mana)作为模拟测量电路参考电位,参考电位就是模块供电的DC24V负(-),所以端子11(Mana)和端子20(M)短接。 ③问题“⑤两线制和四线制的区别重点在什么地方。” 区别1:有无独立供电

S7-200模拟量接线

S7-200模拟量模块系列 模拟信号是指在一定范围内连续的信号(如电压、电流),这个“一定范围”可 以理解为模拟量的有效量程。在使用S7-200模拟量时,需要注意信号量程范围,拨码开关设置,模块规范接线,指示灯状态等信息。 本文中,我们按照S7-200模拟量模块类型进行分类介绍: ?AI 模拟量输入模块? 1. ? 2. AO模拟量输出模块 3. AI/AO模拟量输入输出模块 4. 常见问题分析 首先,请参见“S7-200模拟量全系列总览表”,初步了解S7-200模拟量系列的基本信息,具体内容请参见下文详细说明: AI 模拟量输入模块 A. 普通模拟量输入模块: 如果,传感器输出的模拟量是电压或电流信号(如±10V或0~20mA),可以选用普通的模拟量输入模块,通过拨码开关设置来选择输入信号量程。注意:按照规范接线, 尽量依据模块上的通道顺序使用(A->D),且未接信号的通道应短接。具体请参看 《S7-200可编程控制器系统手册》的附录A-模拟量模块介绍。 4AI EM231模块: 首先,模拟量输入模块可以通过设置拨码开关来选择信号量程。开关的设置应用于 整个模块,一个模块只能设置为一种测量范围,且开关设置只有在重新上电后才能 生效。也就是说,拨码设置一经确定后,这4个通道的量程也就确定了。如下表所示:

注:表中0~5V和0~20mA(4~20mA)的拨码开关设置是一样的,也就是说,当拨码 开关设置为这种时,输入通道的信号量程,可以是0~5V,也可以是0~20mA。 ? 8AI EM231模块: 8AI的EM231模块,第0->5通道只能用做电压输入,只有第6、7两通道可以用做电流输入,使用拨码开关1、2对其进行设置:当sw1=ON,通道6用做电流输入;sw2=ON 时,通道7用做电流输入。反之,若选择为OFF,对应通道则为电压输入。 注:当第6、7道选择为电流输入时,第0->5通道只能输入0-5V的电压。 B. 测温模拟量输入模块(热电偶TC;热电阻RTD): 如果,传感器是热电阻或热电偶,直接输出信号接模拟量输入,需要选择特殊的测 温模块。测温模块分为热电阻模块EM231RTD和热电偶模块EM231TC。注意:不同的信 号应该连接至相对应的模块,如:热电阻信号应该使用EM231RTD,而不能使用 EM231TC。且同一模块的输入类型应该一致,如:Pt1000和Pt100不能同时应用在一个热电阻模块上。 热电偶模块TC: EM231 TC支持J、K、E、N、S、T和R型热电偶,不支持B型热电偶。通过拨码设置,模块可以实现冷端补偿,但仍然需要补偿导线进行热电偶的自由端补偿。另外, ?该模块具有断线检测功能,未用通道应当短接,或者并联到旁边的实际接线通道上。 热电阻模块RTD: 热电阻的阻值能够随着温度的变化而变化,且阻值与温度具有一定的数学关系,这 种关系是电阻变化率α。RTD模块的拨码开关设置与α有关,如下图所示,就算同是 Pt100,α值不同时拨码开关的设置也不同。在选择热电阻时,请尽量弄清楚α参数,按 照对应的拨码去设置。具体请参看《S7-200可编程控制器系统手册》的附录A-热电偶和 热电阻扩展模块介绍。

电子电路必备的20种模拟电路

电子电路工程师必备的20种模拟电路 对模拟电路的掌握分为三个层次: 初级层次:是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次:是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。 一、桥式整流电路 1、二极管的单向导电性: 伏安特性曲线: 理想开关模型和恒压降模型: 2、桥式整流电流流向过程: 输入输出波形:

3、计算:Vo,Io,二极管反向电压。 二、电源滤波器 1、电源滤波的过程分析: 波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器 1、信号滤波器的作用: 与电源滤波器的区别和相同点: 2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线。 3、画出通频带曲线。 计算谐振频率。

四、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。 五、共射极放大电路 1、三极管的结构、三极管各极电流关系、特性曲线、放大条件。

关于西门子模拟量输入模块接线的阐述

关于西门子模拟量输入模块6ES7 331-7KF02-0AB0接线图的阐述 1.问题概述 我们公司所采用的很多模拟量输入模块的订货号是6ES7 331-7KF02-0AB0, 认真研究该模块接线图后发现很多问题,通过网络查资料,向西门子咨询和同事讨论问题基本解决,经整理后写成本文件,供同事参考,具体描述如下 具体问题: ①端子10(COMP )和端子11(MANA)为什么要短接。 ②端子11(MANA)和端子20(M)为什么要短接。 ③两线制具体怎么接,为什么要这样接。 ④四线制具体怎么接,为什么要这样接。 ⑤两线制和四线制的区别重点在什么地方。 ⑥西门子设备手册中的“使用非隔离电源的接地4线制传感器时,不需要互连MANA和M-(端子11、13、15、17、19)。”这句话怎么理解,我们该怎样处理。 ⑦功能性接地是什么作用。 参考图片 图1西门子设备手册提供的6ES7 331-7KF02-0AB0接线图 图2 6ES7 331-7KF02-0AB0接线端子说明 问题讲解 ①问题“①端子10(COMP )为什么和端子11(MANA)短接。” 端子10(COMP )是用于外部补偿,而Mana是参考电位,一般模拟量输入模块6ES7 331-7KF02-0AB0 使用内部补偿,所以必须将端子10(COMP )与参考电位Mana短接。 ②问题“②端子11(Mana)和端子20(M)为什么要短接。” 端子11(Mana)作为模拟测量电路参考电位,参考电位就是模块供电的DC24V负(-),所以端子11(Mana)和端子20(M)短接。 ③问题“⑤两线制和四线制的区别重点在什么地方。” 区别1:有无独立供电 两线制没有独立外部供电,由模块测量回路供电。 四线制有独立外部供电。 区别2:电流流向 两线制电流由模块流向仪表后流回模块。 四线制电流由仪表流向模块后流回仪表。

K-AI01 8通道模拟量输入模块使用说明书

HOLLiAS MACS -K 系列模块 2014年5月B版

HOLLiAS MAC-K系列手册- K-AI01 8通道模拟量输入模块使用说明书 重要信息 危险图标:表示存在风险,可能会导致人身伤害或设备损坏件。 警告图标:表示存在风险,可能会导致安全隐患。 提示图标:表示操作建议,例如,如何设定你的工程或者如何使用特定的功能。

目录 1.概述 (1) 2.接口说明 (3) 2.1模块单元示意图 (3) 2.2IO-BUS (4) 2.3模块的防混淆设计 (6) 2.4模块地址跳线 (7) 2.5现场接口电路原理 (8) 3.状态灯说明 (11) 4.其他特殊功能说明 (13) 4.1抗220V AC功能 (13) 4.2二线制外供电保护 (14) 4.3诊断功能 (15) 4.4冗余功能 (17) 5.工程应用 (18) 5.1底座选型说明 (18) 5.2应用注意事项 (19) 6.尺寸图 (20) 7.技术指标 (20)

K-AI01 8通道模拟量输入模块 1.概述 K-AI01为K系列8通道模拟量通道隔离输入模块,测量范围0~22.7mA模拟信号(默认出厂量程4~20mA),可以按1:1冗余配置使用。无需跳线就可以设置为配电或不配电工作方式,可以接二线制仪表或四线制仪表。 K-AI01模块具备强大的过流过压保护功能,误接±30VDC和过电流都不会损坏。同时,配合增强型底座还可以做到现场误接220V AC不损坏。 K-AI01模块支持带点热插拔、支持冗余配置,具备完善断线、短路、超量程诊断功能,面板设计有丰富的LED指示灯,除指示模块电源、故障、通讯信息外,每个通道也有指示灯,可以方便指示各通道的断线、短路、超量程等信息。 K-AI01模块每个通道可设置不同的滤波参数以适应不同的干扰现场。可以根据工艺需要,配合主控制器的不同运算周期,组成可快可慢的控制回路。 K-AI01模块采用双冗余IO-BUS、双冗余供电工作方式,任意断一根IO-BUS,不会影响其正常工作。 K-AI01模块采用了现场电源和系统电源分开隔离供电。同仪表相连的电路采用现场电源供电,数字电路和通讯电路采用系统电源供电,因此现场来干扰不会影响数字电路和通讯。 K-AI01模块实施喷涂三防漆处理,按照ISA-S71.04-1985标准生产,达到G3防腐等级。 K-AI01模块配套K-A T01、K-A T02、K-A T11、K-A T21和K-DOT01底座使用,通过电缆连接构成完整的电流测量模块单元。模块插在模块底座上,模块底座的接线端子负责接入现场仪表信号,模块负责将模拟信号转换为数字信号,最后通过冗余的IO-BUS送给主控器单元,IO-BUS同时提供冗余的系统电源和现场电源。 如图1-1、图1-2所示,分别为模块非冗余配置和冗余配置的外观结构图。完整的模块单元在系统机柜中的安装位置如图1-3所示:

对输入、输出模拟量的PLC编程实例解析

对输入、输出模拟量的PLC编程的探讨及编程实例解析 对于初学PLC编程的人来说,模拟量输入、输出模块的编程要比用位变量进行一般的程序控制难 的多,因为它不仅仅是程序编程,而且还涉及到模拟量的转换公式推导与使用的问题。不同的传感变送器,通过不同的模拟量输入输出模块进行转换,其转换公式是不一样的,如果选用的转换公式不对, 编出的程序肯定是错误的。比如有3个温度传感变送器: (1)、测温范围为0~200,变送器输出信号为4~20ma (2)、测温范围为0~200,变送器输出信号为0~5V (3)、测温范围为-100 ~500,变送器输出信号为4~20ma (1)和(2)二个温度传感变送器,测温范围一样,但输出信号不同,(1)和(3)传感变送器输出信号一样,但测温范围不同,这3个传感变送器既使选用相同的模拟量输入模块,其转换公式也是各不相同。 一、转换公式的推导 下面选用S7-200的模拟量输入输出模块EM235的参数为依据对上述的3个温度传感器进行转换公式的推导: 对于(1)和(3)传感变送器所用的模块,其模拟量输入设置为0~20ma电流信号,20ma 对应数子量=32000,4 ma对应数字量=6400; 对于(2)传感变送器用的模块,其模拟量输入设置为0~5V电压信号,5V对应数字量=32000,0V对应数字量=0; 这3种传感変送器的转换公式该如何推导的呢?这要借助与数学知识帮助,请见下图:

上面推导出的(2-1)、(2-2)、(2-3)三式就是对应(1)、(2)、(3)三种温度传感变送器经过模块转换成数字量后再换算为被测量的转换公式。编程者依据正确的转换公式进行编程,就会获得满意的效果。 二、变送器与模块的连接

模拟量输入检测电路

CBB规范 模拟量输入检测电路 (VER:V1.0) 拟制:华时间:2010-05-27 批准:时间: 文件评优级别:□A优秀□B良好□C一般

1 功能介绍 本电路实现输入电压0~10V 或者电流0~20mA 的模拟量信号转换为CPU 可以直接测量的0~3.3V 电压信号。 2 详细原理图 +15 -15 +3.3 +15 AI1 AI1-AD AI1:外部模拟量输入 (0-10V/0-20mA) AI1-AD: 输出信号(0-3.3V) 1、2短接:选择(0-10V) 2、3短接:选择(0-20mA) +- U1A TL08232 1 8 4 C10.1u C40.1u D2 MMBD7000LT1 1 2 3 D1 MMBD7000LT1 1 2 3 C2 1u/50V L1 10uH 1 2 R210k R110k R520k R3100R720k R4 6.8k R63.3k C31n/2kV C51n R91k R81k J1 PIN-3 123J1/U-DJ1短接片 1 工作原理说明: 外部模拟量信号从AI1端口输入,首先经过安规电容C3和电感L1,可有效防止线路上的浪涌电流电压进入后端电路。如果输入的是电流信号,需将SW1开关拨到ON 端,电流流过电阻R8和R9,在电阻R1端可得到0~10V 的电压信号,如果外部电压过高(超过15V)或者过低(少于0V),二极管D1可以发生钳位作用,保证电压在-1V~16V 之间。 输入信号接到运放TL082的同相端,电压跟随输出到R4端口,电压幅值不变仍然是0~10V ,电阻R4和R6构成分压关系输出0~3.3V 的电压信号。二极管D2同样是起电压钳位作用,保证输出电压在-0.3~3.6V 之间,有效保护CPU 。 3 器件功能 磁珠L1,防止浪涌输入,提高抗干扰能力; 电容C3,安规电容防止浪涌电压,保护后端电路; 功率电阻R1~R6,降压限流,防止PC1流过大电流损坏; 电阻R1及电容C2,对输入信号进行RC 滤波; 二极管D1~D2,对信号进行电压钳位,防止电压过高或者过低; 电容C1、C4、C5,滤波电容,对电路正常工作影响不大; 电阻R8、R9,短接片J1,输入为电流信号时J1短接2,3脚,电流流过R8、R9并产生对 应的电压信号; 电阻R3限流电阻,此电阻大小影响运放的输出能力; 电阻R4、R6,将运放端输出的信号进行分压输出。 4 参数计算 在设计电路参数时,应兼顾以下因素:1、对外部输入信号进行抗干扰处理;2、输入信

集成电路培养方案.

西安邮电学院电子工程学院 本科集成电路设计与集成系统专业培养方案 学科:工学---电气信息专业:集成电路设计与集成系统(Engineering---Electric Information)(Integrated Circuit Design & Integrated System)专业代码:080615w 授予学位:工学学士 一、专业培养指导思想 遵循党和国家的教育方针,体现“两化融合”的时代精神,把握高等教育教学改革发展的规律与趋势,树立现代教育思想与观念,结合社会需求和学校实际,按照“打好基础、加强实践,拓宽专业、优化课程、提高能力”的原则,适应社会主义现代化建设和信息领域发展需要,德、智、体、美全面发展,具有良好的道德修养、科学文化素质、创新精神、敬业精神、社会责任感以及坚实的数理基础、外语能力和电子技术应用能力,系统地掌握专业领域的基本理论和基本知识,受到严格的科学实验训练和科学研究训练,能够在集成电路设计与集成系统领域,特别是通信专用集成电路与系统领域从事科学研究、产品开发、教学和管理等方面工作的高素质应用型人才。 二、专业培养目标 本专业学生的知识、能力、素质主要有:①较宽厚的自然科学理论基础知识、电路与系统的学科专业知识、必要的人文社会学科知识和良好的外语基础;②较强的集成电路设计和技术创新能力,具有通信、计算机、信号处理等相关学科领域的系统知识及其综合运用知识解决问题的能力;③较强的科学研究和工程实践能力,总结实践经验发现新知识的能力,掌握电子设计自动化(EDA)工具的应用;④掌握资料查询的基本方法和撰写科学论文的能力,了解本专业领域的理论前沿和发展动态;⑤良好的与人沟通和交流的能力,协同工作与组织能力;⑥良好的思想道德修养、职业素养、身心素质。毕业学生能够从事通信集成电路设计与集成系统的设计、开发、应用、教学和管理工作,成为具有奉献精神、创新意识和实践能力的高级应用型人才。 三、学制与学分 学制四年,毕业生应修最低学分198学分,其中必修课110学分,限选课36学分,任选课10学分,集中实践环节34学分,课外科技与实践活动8学分。

FV转换电路模拟电路课程设计

线性F/V转换 姓名:陈志豪 班级:电信1208班 学号:120900812 桌号:36号

目录 第一章、设计概述与要求 (1) 一、设计概述 (1) 二、设计任务及要求 (1) (一)设计任务 (1) (二)设计要求 (1) 第二章、设计方案与论证 (1) 一、设计原理 (1) 二、原理框图 (2) 三、单元电路方案论证 (2) 第三章、单元电路设计与分析 (8) 一、输入信号 (8) 二、交流信号放大电路 (8) 三、波形转换电路 (9) 四、微分电路 (10) 五、单稳电路 (11) 六、滤波电路 (13) 七、直流放大电路 (13) 第四章、电路的组够与调试 (16) 一、遇到的主要问题和解决方案 (16) 二、实验数据记录 (16) 第五章总结 (16) 第六章仪器、仪表、元器件介绍 (17) 参考文献: (18) 附:电路总图............................................................. 错误!未定义书签。

第一章、设计概述与要求 一、设计概述 线性F/V转换在很多场合均有应用,如涡流计量计、脉冲转速表、调频遥测技术中恢复原始信号等。它把输入的频率信号直接变换成直流电压输出信号,并且此直流电压输出与输入信号的频率成正比。 通过本次课程设计,应在了解线性F/V转换器设计原理及构成的基础上,利用集成运算放大器、单稳电路、滤波电路以及信号放大电路等构成整个小系统,设计完成一个线性F/V转换器,通过改变输入信号的频率,实现对直流输出电压的线性变换。 二、设计任务及要求 (一)设计任务 选取基本集成放大器LF353、555定时器、二极管和电阻、电容等元器件,设计并制作一个简易的线性V/F转换器。首先,在EWB软件平台环境下进行电路设计和原理仿真,选取合适的电路参数,通过输出波形的直流电压值测试线性F/V转换器的运行情况。其次,在硬件平台上搭建电路,并进行电路调试,通过数字万用表观测电路的实际输出电压值。最后,将该实际电压值与理论分析和仿真结果进行比较,分析产生误差的原因,并提出改进方法。 (二)设计要求 1、输入频率为0~10kHz、幅度为20mV(峰峰值)的交流信号。 2、线性输出0~10V的直流信号。 3、转换绝对误差小于20mV(平均值)。 4、1kHz时的纹波u opp小于50mV。 第二章、设计方案与论证 一、设计原理 F/V转换电路输出的直流电压幅值与输入信号的频率成正比例,且为线性关系。具体分析如下。 在单稳电路输出脉冲信号的高度u H及宽度t w确定的条件下,平均输出电压u0可表示为

模拟量接地注意事项

1:两端的接地点难保没有电位差,有电位差就会有微弱电流,使屏蔽层实际上变成了接地线。 2:两端接地的屏蔽线工作于高频干扰较为严重地工作现场,会因屏蔽层和内部信号线间形成的线电容耦合 到信号回路,严重的将影响信号误判。 3:各种调速器和PLC说明中都明确信号线屏蔽层必须单端接地并且接地端应该在控制器一侧。 一.模拟量模块SF灯亮。 西门子模拟量输入模块我用的最多是6ES7311-7KF02-0AB0,应用于钢厂的热处理线,主要是监测压力,流量,水位等。记得刚出道时去钢厂调试一套热处理线,当时此模块是安装在一个ET200组成的DP从 站柜内,硬件组态下载进去后,SF灯长亮,查阅相关手册才知道SF灯亮表明硬件故障。后来逐步排查,才解决问题,是量程卡所插的方向与硬件组态中的设置不一致导致。项目交工后,自己请教了下总工程师,总结了一下,对于模块出现SF灯亮的可能原因如下: 1. 模块所需24VDC电源未正确接入(经常碰见) 2. 前连接器未插到位(在钢厂协助过用户解决通信问题时碰见) 3. 总线连接器未连好 4. 量程卡所插的方向与硬件组态中的设置不一致(经常碰见) 5. 有硬件中断或者诊断中断产生(断线、超限)等,这种情况未碰见过。 二. 读出的模拟量值超限 PLC在线监控FC105块,通道中的读出7FFF上溢值或者8000下溢值的现象。模块也是6ES7311-7KF 02-0AB0,应用于铜厂的污水处理,主要是监测压力,PH,液位,温度等。 有次监控值出现是8000,经检查发现是外部的测温度传感器断线了。还有次监控值出现是7FFF,用户不停地催着我解决,头大了,根本不知道如何解决。当时系统外部的接线完全满足模块要求,仍然出现超限,就致电西门子热线,工程师给出的原因说有可能是信号源接地不好、信号电缆敷设过程中有电磁干扰等原 因造成模块M-与Mana间电势差过大,让我逐个排除,听了答复后,当时就觉得和没说一样,只局限于 在理论分析上,没有实际的解决之道。后来找客户协商,重新做接地,还是没有解决!后来总工程师告诉我,加了个有源隔离器,才得以解决。 模拟量,说一千,到一万。最重要的是模拟量在使用过程中一定要注意它的使用规范,与它所连接的变送 器是几线制?是有源的还是无源的?是隔离的还是非隔离的?具体可参看西门子技术专家崔工所写的抓住 一点,模拟量接线问题迎刃而解的故事,受益匪浅,醍醐灌顶。 以下是我整理收集的传感器与AI模块连接接线示意图,分享給各位同仁,互相交流学习。

模拟量输出电路

文件编号:INVT0_013_0005_CBB_01 CBB规范 模拟量输出电路 (VER: 拟制:华时间:2009-05-26 批准:时间: 文件评优级别:□A优秀□B良好□C一般

1 功能介绍 目前许多单片机本身都不具备模拟量输出(DAC)功能,但可以输出PWM信号,本电路实现了将频率为10K,幅值为5V的PWM信号转换成0~10V电压或者0~20mA电流的模拟量信号输出。 2 详细原理图 工作原理说明: (1)输入频率为10K,幅值为5V的PWM信号,经过元件R1、C1、R2、C3二阶低通滤波后转换成0~5V的电压信号; (2)运放U1A是一个同相放大器,对输入信号放大(1+R6/R5)倍,所以输出电压Uout 对应0~10V; (3)虚线框内部分构成了一个恒流源,电流大小就是Iout=Uout*R7/R8/R13; (4)通过短接片跳线可以选择输出电流或者电压信号。

3 器件功能 电阻R1、R2及电容C1、C3构成二阶RC 低通滤波器,将输入PWM 信号转换成对应电压。 U1A 为同相输入运算放大器; U1B 构成了一个恒流源; 二极管D1,对端子信号进行电压钳位,防止电压过高或者过低,起保护作用; 电容C2、C4为芯片TL082的滤波电容; C5、C6,输出电压滤波,减少电压纹波作用; Q1、Q2三极管,增加电流驱动能力; R9、R11,三极管基极限流电阻。 4 参数计算 4.1 运算放大器: 选择常用TL082。 4.2 电阻R1、电容C1、电阻R2、电容C3: 构成二阶低通滤波电路,必须满足截止频率远远小于输入的PWM 频率,这里电阻我们选用22K ,兼顾到响应速度,电容C1选用电容,为了更好地稳定运算输入端电压,电容C3这里选用1uF 电容。滤波积分时间常数为: 3121C C R R ???=μμ1.012222???K K =7mS 符合使用要求。 4.3 电容C2、C4: 芯片电源滤波电容,选择常用的电容。 4.4 电容C5、 滤波作用,直接与外端输出端子相连,一方面减少输出电压纹波,另一方面也可以抑制外部输入的干扰信号。这里选用100V 电容。 4.5 电容C6: 滤波电容,抑制电压纹波,选择1uF/50V 电容。 4.6 电阻R5、R6的选取:

模拟电路仿真实例

模拟电子电路仿真 1.1 晶体管基本放大电路 共射极,共集电极和共基极三种组态的基本放大电路是模拟电子技术的基础,通过EWB 对其进行仿真分析,进一步熟悉三种电路在静态工作点,电压放大倍数,频率特性以及输入,输出电阻等方面各自的不同特点。 1.1.1 共射极基本放大电路 按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等 。 1.静态工作点分析 选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。 2.动态分析 用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。由波形图可观察到电路的输入,输出电压信号反相位关系。再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。 3.参数扫描分析 在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。 4.频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。 由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,

西门子模拟量输入模块SM331接线方法总结

P L C 接法 西门子模拟量输入模块S M 331接线方法总结 两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当P L C 的模板输入通道设定为连接四线制传感器时,P L C 只从模板通道的端子上采集模拟信号,而当P L C 的模板输入通道设定为连接二线制传感器时,P L C 的模拟输入模板的通道上还要向外输出一个直流24V 的电源,以驱动两线制传感器工作。 传感器型号:1、两线制(本身需要供给24v D C 电源的,输出信号为4-20M A ,电流)即+接24v d c ,负输出4-20m A 电流。 2、四线制(有自己的供电电源,一般是220v a c ,信号线输出+为4-20m a 正,-为4-20m a 负。 P L C : (以2正、3负为例)1、两线制时正极2输出24V D C 电压,3接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24v d c ;跳线为两线制电流信号。 (以2正、3负为例)2、四线制时正极2是接收电流,3是负极。(四线制好处是传感器负极信号与柜内M 为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线制传感器时,一种方法是2接传感器正,3接传感器负,p l c 跳线 为4线制电流。 (以2 正、3负为例)3、四线制传感器与p l c 两线制跳线接法:信号线负与柜内M 线相连。将传感器正与p l c 的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例)4、电压信号:2接传感器正,3接传感器负,p l c 跳线为电压信号。 第 1 页4线制与2线制注意区别地是否相同? 这2个为2线制的解释。 传感器,变送器 此时plc 跳线为4线制。 跳线为2线制。

模拟量输入模块AI561

模拟量输入模块AI561 -4个可配置的模拟量输入 -分辨率:11位加标志位或12位 图:模拟量输入模块AI561概述 目录 用途 功能 电气连接 内部数据交换 I/O配置 参数 诊断 显示

测量范围 技术数据 订货信息 用途 模拟量输入模块AI561可在以下设备中作为远程扩展模块使用:?FBP 接口模块DC505-FBP ?CS31 总线模块DC551-CS31 ?PROFINET总线模块(例如 CI501-PNIO) ?AC500 CPUs (PM5xx) 具有以下特点: ?在1个组中有4个可配置的模拟量输入(I0到I3) 输入之间电气隔离。 该模块其他的电气线路没有与输入或I/O总线电气隔离。 功能

电气连接 模拟量输入模块AI561可通过I/O总线连接到以下设备: ?FBP 接口模块DC505-FBP ?CS31 总线模块DC551-CS31 ?PROFINET总线模块(例如 CI501-PNIO) ?AC500 CPUs (PM5xx) ?其他AC500 I/O模块 使用可插拔的9针和11针端子排进行电气连接。这些端子排的连接有所不同(弹簧接线端子或螺钉接线端子,电缆为正面接线或旁侧接线)。更多相关信息,请参见S500-eCo I/O模块的端子排一章。端子排不包含在模块订货范围中,须单独订购。 端子的分配:

通过I/O 总线为模块内的电路提供内部电源(由总线模块或CPU 提供)。因此,每个AI561从CPU 或总线模块的24V DC 电源端子L+/UP 和 M/ZP 消耗10mA 的电流。 外部电源连接到端子L+ (+24 V DC) 和M (0 V DC)。M 端子与CPU 或总线模块的M/ZP 端子电气连接在一起。 该模块提供几种诊断功能 (请参见“诊断”章节)。 下图显示推荐的模拟量输入AI0的内部结构。模拟量输入 AI1 ...AI3 采用相同的设计。 下图显示推荐的连接模拟量传感器(电压)到模拟量输入模块AI561的输入I0的电气连接。I1到I3的连接方法相同。

模拟电子电路仿真(很全 很好)

仿真 1.1.1 共射极基本放大电路 按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等 。 1. 静态工作点分析 选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。 2. 动态分析 用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。由波形图可观察到电路的输入,输出电压信号反相位关系。再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。 3. 参数扫描分析 在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。 4. 频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。 由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为-100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25.12MHz。 由理论分析可得,上述共射极基本放大电路的输入电阻由晶体管的输入电阻rbe限定,输出电阻由集电极电阻R3限定。 1.1.2共集电极基本放大电路(射极输出器)

西门子S7-200模拟量接线方法

怎样使用 S7-224 XP 的模拟量输入通道接收电流信号? 显示订货号 6ES7214-2AD23-0XB0SIMATIC S7-200, CPU 224XP 6ES7214-2BD23-0XB0SIMATIC S7-200, CPU 224XP 解答: S7-224 XP 的两路模拟量输入通道被出厂设置为电压信号(0-10V)输入。为了能够输入电流信号,必须在 A+ 与 M 端 (或 B+ 与 M 端) 之间并入一个500 欧姆的电阻。 与传感器以及电压源的两线制连接方式如图1 所示。 ( 25 KB ) 图 1 与传感器以及电压源的 3 线制连接方式如图 2 所示。 ( 24 KB ) 图 2 与传感器及电压源的 4 线制连接方式如图 3 所示。

( 24 KB ) 与电压输出的变送器及电流源的 4 线制连接方式如图 ( 21 KB )

How through external switching can you use a 0-10V analog input on a makeshift basis also for 0- 20mA? Display part number 6ES7214-2AD23-0XB0SIMATIC S7-200, CPU 224XP 6ES7214-2BD23-0XB0SIMATIC S7-200, CPU 224XP Instructions: The two analog inputs of the S7-224 XP are factory-set for voltage measurement (0..10V). In order to be able to use the inputs as current inputs as well you must incorporate a 500 Ohm resistor between terminals A+ and M (or B+ and M). Figure 1 shows the connection of a sensor to a voltage source as a 2-conductor connection. ( 25 KB ) Fig. 01 Figure 2 shows the connection of a sensor to a voltage source as a 3-conductor connection. ( 24 KB ) Fig. 02 Figure 3 shows the connection of a sensor to a voltage source as a 4-conductor connection.

所有模拟量模块接线问题

抓住一点,模拟量接线问题迎刃而解(一)——确定基准电位点很重 要 2013-03-04 今天,一个新来的热线同事找我讨论模拟量模块的问题,他在热线上遇到了一些麻烦,用户打电话反映在现场的S7 300模拟量模块读数不变化,怎么折腾都读数是32767。尽管模拟量模块大家都很熟悉,但是类似的问题还经常有用户反应。翻了翻手边的资料,似乎没有系统讲解这个问题的,于是把自己的经验归纳总结一下。既然是经验,放在下载中心似乎不太合适,就放在自己的故事里吧。故事写完,想必也会有个比较正式的版本放在下载中心。 在我看来,想解决这样的问题,最根本的是要抓住一点。有的用户可能迫不及待地想知道哪一点了,但是这一点涉及的知识面还是有些宽。平时也忙,我会断断续续的写,大家耐心看完这个系列,就可以抓住这一点了。 关于读不出值的问题,如果总是32767没有变化,其实值已经有了,只不过是超量程了。如果值为0,那就要注意模拟量是否有问题了,使用万用表测量现场信号并没有超限。为什么会出现这两种现象呢?这是因为选择的参考电位不同,例如,现场过来的信号为5V,那首先要问一下,基准点是几伏?10~15 是5V,-10~ -5同样也是5V,如果测量端基准点是0V,那么测量就会有问题,所以一定要保证两端等电位。模拟量模块的基准电位点就是M ANA ,所有的接线都与之有关。在接下来的故事中,咱们就仔细讲讲接线的问题。 抓住一点,模拟量接线问题迎刃而解(二):隔离与非隔离问题系列 2013-03-11 这里的隔离是指模拟量模块的基准电位点M ANA 与地(也是PLC的数据地)隔离。 隔离模块M ANA 与地M可以不连接,以M ANA 作为测量端的参考电位;非隔离模块 M ANA 与地M必须连接,这样地M 变为M ANA 作为测量端的参考电位。隔离模块的 好处就是可以避免共模干扰。如何知道模块是否是隔离模块,例如SM331模块,可以从模板规范中查到。S7-300中只有一款SM334(SM355除外)模块是非隔离的,此外CPU31XC集成的模拟量也是非隔离的,共同特点就是模块的输出和输入公用M端。 同样传感器也有隔离与非隔离的问题。通常非隔离的传感器电源的负端与信号的负端公用一个端子,例如传感器有三个端子 L, M 和S+,通过L, M端子向传感器供电,S+,M为信号的输出,公用M端。判断传感器是否隔离最好还是参考手册。隔离传感器信号负端与地M可以不连接,以信号负端作为信号源端的参考电位。非隔离传感器信号负端必须在源端(设备端)接地,以源端的地作为信号的参考电位。 下面就是如何保证测量端与信号源端等电位接线的问题。在下面建议的连接图中所用的缩写词和助记符含义如下: M +:测量导线(正) M -:测量导线(负) M ANA :模拟量模块基准电位点 这里需要注意M ANA ,不同的接线方式都是以M ANA 为参考基准电位。

液晶显示器VGA模拟输入接口电路

液晶显示器VGA模拟输入接口电路 VGA 模拟输入接口电路的工作过程如下: 由显示器VGA 接口1、2、3 脚接收到的R、G、B 信号,经双向二极管 D12、D11、D10 限幅,R31、R30、R29 三个电阻进行阻抗匹配,由 C7、C10、C14 耦合到主控芯片U4(CM5 126)进行A/D 转换等处理(该机A/D 转换电路集成在主控芯片中)。 由显示器VGA 接口13 脚接收到的行同步信号(HSYNC),经稳压管 ZD9(5.6V)限幅,送到反相器U3(74LCX14)的5 脚,经反相后,从U3 的6 脚输出,送到主控芯片U4(GM5126)内部的同步处理电路进行处理。 由显示器VGA 接口14 脚接收到的场同步信号(YSYNC),经稳压管 ZD8(5.6V)限幅,送到反相器U3(74LCX14)的⒈脚,经反相后,从U3 的2 脚输出,送到主控芯片U4(CM5126)内部的同步处理电路进行处理。 因液晶显示器须和主机通信,显示器作为外部设各,须提供身份识别信号供 主机检测识别,因此,电路中设置了DDC 存储器U2(M24C02WMN6)。在DDC 存储器U2 中,存储了有关显示器的基本信息(如厂商、型号、显示模式配置等),U2 通过5 脚(DDC 串行数据)、6 脚(DDC 串行时钟)与计算机主机进行 通信,完成液晶显示器的身份识别,只有识别显示器后,两者才能同步、协调、稳定的工作。 图1 AOC LM729 液晶显示器输入接口电路 从图1 中可以看出,由于存储器U2 的8 脚供电端由电脑主机输出的 VGA_5V(由计算机主机产生,通过VGA 接口的9 脚送到显示器)和显示器电源产生的+5V 电压共同供电,因此,即使显示器不开机,存储器也可工作(不开机时由VGA_5V 供电),以方便计算机主机随机读取DDC 存储器中的信息。

相关主题
文本预览
相关文档 最新文档