当前位置:文档之家› 溶液生长ZnO一维纳米阵列及其复合纳米结构的研究进展

溶液生长ZnO一维纳米阵列及其复合纳米结构的研究进展

溶液生长ZnO一维纳米阵列及其复合纳米结构的研究进展
溶液生长ZnO一维纳米阵列及其复合纳米结构的研究进展

ZnO纳米阵列合成

ZnO纳米阵列的水热合成 摘要 水热合成技术是指在特制的密封反应器(高压釜)中,以水溶液作为反应体系,通过对反应体系的加热至或接近其临界温度而产生高压,从而进行无机材料的合成与制备的一种有效方法“吲。该方法可使一些在常温常压下反应速率很慢的热力学反应在水热条件下实现反应快速化。在水热条件下,水既作为溶剂又作为矿化剂,在液态或气态还是传递压力的媒介,同时由于在高压下绝大多数反应物均能部分溶解于水从而促使反应在液相或气相中进行。水热反应有水热氧化、热沉淀、水热合成、水热还原、水热分解、水热结晶等类型。水热反应法为各种前驱物的反应和结晶提供了一个在常压条件下无法得到的、特殊的物理和化学环境。水热反应的温度一般在100—400。C,压力从大于0.1Mpa直至几十到几百Mpa。与其它粉体制备方法相比,水热合成纳米材料的纯度高、晶粒发育好,避免了因高温煅烧和球磨等后续处理引起的杂质和结构缺陷。水热法的原料成本相对较低,所得纳米颗粒纯度高,分散性好,晶型好,且大小可控,因而水热合成法是制备纳米氧化物的好的方法之一. 关键词: 目录 1、绪论

ZnO 属于带隙较宽( 室温下3. 37eV) 的半导体材料, 由于本征缺陷的存在, 使得ZnO 往往具有的N 型导电性。与其它传统半导体材料如Si、GaAS、CdS、GaN 等相比, ZnO 具有高的激子束缚能( 高达60meV,远大于GaN 的21~ 25meV) 、高的击穿强度和饱和电子迁移速率, 可用作高温、高能、高速电子器件。另外,ZnO 还具有热电效应和化学传感特性, 在传感器领域有重要的应用。纳米级氧化锌由于粒子尺寸小, 比表面积大, 具有表面效应、量子尺寸效应和小尺寸效应等, 与普通氧化锌相比, 表现出许多特殊的性质, 如无毒和非迁移性、压电性、吸收和散射紫外线能力。这一新的物质形态,赋予了氧化锌在科技领域许多新的用途。目前来说, 制备ZnO 纳米结构的工艺方法很多,如物理气相沉积法、化学气相沉积法、溶胶凝胶法, 分子束外延法、热蒸发法、阳极氧化铝模板法、水热法等等。这些方法制备的ZnO 纳米材料具有非常丰富的结构形貌, 如ZnO 纳米线、纳米带、纳米环、纳米梳, 四脚状纳米ZnO 结构等等。相对而言, 化学溶液方法比较简单。水热法是一种制备氧化物的湿化学方法。水热法又称高温溶液法, 是指在特制的密闭反应器( 高压釜) 中, 采用水溶液作为反应体系, 通过对反应体系加热,在反应体系中产生一个高温高压的环境进行无机合成与材料制备的一种有效方法。在水热法中, 由于水处于高温高压状态, 在反应中具有传媒剂作用; 另一方面, 高压下绝大多数反应物均能完全( 或部分) 溶解于水, 从而加快反应的进行。近年来, 由于其相对于其它方法具有能耗低、适用性广、可控性强、产率高、物相均匀、纯度高、结晶良好以及环境污染小等优点, 引起了人们越来越广泛的关注。在本文中, 我们采用ZnCl2 溶液和浓氨水( 25%) ,利用一种简单的水热法合成了

ZnO纳米棒阵列生长机理及光催化 性能研究

Material Sciences 材料科学, 2018, 8(5), 482-489 Published Online May 2018 in Hans. https://www.doczj.com/doc/cc8354484.html,/journal/ms https://https://www.doczj.com/doc/cc8354484.html,/10.12677/ms.2018.85054 Growth Mechanism and Photocatalytic Performance of ZnO Nanorod Arrays Chunwei Liu, Yang Wan, Shenghai Zhuo, Sha Luo* College of Material Science and Engineering, Northeast Forestry University, Harbin Heilongjiang Received: Apr. 22nd, 2018; accepted: May 9th, 2018; published: May 16th, 2018 Abstract Well-defined ordered ZnO nanorod arrays were successfully prepared on activated carbon fibers by combining sol-gel with a hydrothermal method. The growth mechanism was proposed by SEM, XRD and N2 physisorption. Concentration of zinc acetate had a regulatory effect on the morphology of ZnO nanorods. ZnO films provided the nucleus for oriented growth of nanorods, promoting its preferential growth along the c-axis direction of activated carbon fibers. The photocatalytic tests showed the catalytic performance of ZnO nanorod arrays/activated carbon fibers was influenced obviously by zinc acetate. When the Zn(CH3COO)2 concentration was 0.15 mol?L?1, its removal effi-ciency of methylene blue reached 90% during 120 min. After five regeneration cycles, its photo-catalytic efficiency remained 82%. Keywords Zinc Oxide, Nanorod Array, Activated Carbon Fiber, Growth Mechanism, Photocatalysis ZnO纳米棒阵列生长机理及光催化 性能研究 刘春闱,万阳,卓盛海,罗沙* 东北林业大学材料科学与工程学院,黑龙江哈尔滨 收稿日期:2018年4月22日;录用日期:2018年5月9日;发布日期:2018年5月16日 *通讯作者。

一维纳米材料的制备概述

学年论文 ` 题目:一维纳米材料的制备方法概述 学院:化学学院 专业年级:材料化学2011级 学生姓名:龚佩斯学号:20110513457 指导教师:周晴职称:助教

2015年3月26日 成绩 一维纳米材料制备方法概述 --气相法、液相法、模板法制备一维纳米材料 材料化学专业2011级龚佩斯 指导教师周晴 摘要:一维纳米材料碳纳米棒、碳纳米线等因其独特的用途成为国内外材料科学家的研究热点。然而关于如何制备出高性能的一维纳米材料正是各国科学家所探究的问题。本文概述了一维纳米材料的制备方法:气相法、液相法、模板法等。 关键词:一维纳米材料;制备方法;气相法;液相法;模板法 Abstract: the nanoscale materials such as carbon nanorods and carbon nanowires have become the focus of intensive research owing to their unique applications. but the question that how to make up highqulity one-dimentional nanostructure is discussing by Scientists all around the world. This parper has reviewed the preparation of one dimention nanomaterials ,such as vapor-state method, liqulid -state method ,template method and so on. Key words: one-dimention nanomaterials ; preparatinal method ; vapor-state method liqulid-state method ; template method 纳米材料是基本结构单元在1nm ~100nm之间的材料,按其尺度分类包括零维、一维、二维纳米材料。自80年代以来,零维纳米材料不论在理论上和实践中均取得了很大的进展;二维纳米材料在微型传感器中也早有应用。[1]一维纳米材料因其特殊的结构效应在介观物理、纳米级结构方面具有广阔的应用前景,它的制备研究为器件的微型化提供了材料基础。本文主要概述了近年来文献关于一维纳米材料的制备方法。 1 一维纳米材料的制备方法 近几年来,文献报导了制备一维纳米材料的多种方法,如溶胶-凝胶法、气相-溶液-固相法、声波降解法、溶剂热法、模板法、化学气相沉积法等。然而不同制备方法的纳米晶体生长机制各异。本文按不同生长机制分类概述,主要介绍气相法、液相法、模板法三大类制备方法。 1.1 气相法 在合成一维纳米结构时,气相合成可能是用得最多的方法。气相法中的主要机

氧化锌纳米棒研究进展汇总

氧化锌纳米棒研究进展** 孔祥荣*, 邱晨, 刘强, 刘琳, 郑文君 (南开大学化学学院材料系,天津,300071) Kxr0918@https://www.doczj.com/doc/cc8354484.html, 摘要:氧化锌纳米棒由于具有新奇的物理化学性质而成为研究的热点,本文就近年来氧化锌纳米棒在制备方法和反应机理及应用研究等方面予以综述。 关键词:氧化锌; 纳米棒; 制备; 反应机理 1 引言 近年来,低维纳米结构的半导体材料引起了广泛的关注,尤其是一维(1-D纳米材料在维数和大小物理性质的基础研究中有潜在的优势,同时在光电纳米器件和功能材料中的应用研究成为热点。氧化锌由于在室温下较大的导带宽度和较高的电子激发结合能(60meV 及光增益系数(300 cm 而使之具有独特的催化、电学、光电学、光化学性质,在太阳能电池、表面声波和压电材料、场发射、纳米激光、波导、紫外光探测器、光学开关、逻辑电路 [5,6][1]-1[2][3][4] 等领域潜在的应用等方面均具有广泛的应用前景。本文就氧化锌纳米棒及其阵列的制备、反应机理、应用研究等进行简要的综述。 2 氧化锌纳米棒的制备 2.1 超声波法和微波法 刘秀兰等在低温反应条件下(冰水浴),通过超声的方法,采用醋酸锌和水合肼为原料,[7] 以DBS 作为表面活性剂,制备了ZnO 纳米棒,截面为六方型,直径100nm ,长度1μm。研究表明:与其它制备方法相比,低温与超声技术可以更为方便获得分布均

一、长径比较小的ZnO 纳米棒。Hu等分别用超声和微波辐射两种方法得到了交联(二聚体,三聚体(T形,四聚体(X[8] 形))的ZnO纳米棒。超声辐射法和微波辐射法具有一个共同的特点,反应速度快,设备要求简单。 2.2 水热法 Liu 等用六水合硝酸锌和氢氧化钠为原料配成溶液,180 ℃水热处理20h 得到晶化程度[9] 很高的直径的为50 nm的高长径比的氧化锌纳米棒。Vayssieres [10]用硝酸锌盐和等摩尔的六次甲基四胺在水热条件下95 ℃几小时就可以在底物上得到了直径100~200 nm ,长度为10 μm 氧化锌纳米棒及其阵列。Wang 等[11]报道用Zn 作为底物同时作为反应物水热条件下得到了形貌可控的ZnO 纳米棒。陶新永等[12]采用PEG 辅助水热法合成了ZnO 纳米棒。研究发现,氢 [13]氧化钠浓度和反应时间对产物形貌和尺寸有较大的影响。Tang 等用H 2O 2、NaOH 和Zn 箔为 [14]原料辅助的水热法来合成具有良好光学性质的ZnO 纳米棒阵列。Wu 等用溴化十六烷三甲 基铵(CTAB 表面活性剂作导向剂在水热条件下,通过粒径几十纳米的纳米晶自组装得到了ZnO 单晶纳米棒。Guo 等[15]用氧化铟锡(ITO )底物上用简单的水热法通过改变温度成功的 [16]合成了粒径长度可控的分布较窄的高趋向的ZnO 纳米棒阵列。郭敏等采用廉价低温的水 热法, 在基底上制备高质量、高取向统一、平均直径小于50 nm 并且直径分布很窄的ZnO 纳米棒阵列薄膜。

纳米材料与纳米结构21个题目+完整答案

1.简单论述纳米材料的定义与分类。 2.什么是原子团簇? 谈谈它的分类. 3.通过Raman 光谱中任何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径? 4.论述碳纳米管的生长机理。 5.论述气相和溶液法生长纳米线的生长机理。 6.解释纳米颗粒红外吸收宽化和蓝移的原因。 7.论述光催化的基本原理以及提高光催化活性的途径。 8.什么是库仑堵塞效应以及观察到的条件? 9.写出公式讨论半导体纳米颗粒的量子限域效应和介电限域效应对其吸收边,发光峰的影响。 10.纳米材料中的声子限域和压应力如何影响其Raman 光谱。 11.论述制备纳米材料的气相法和湿化学法。 12.什么是纳米结构,并举例说明它们是如何分类的,其中自组装纳米结构形成的条件是什么。 13.简单讨论纳米颗粒的组装方法 14.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 15.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 16.简单讨论纳米材料的磁学性能。 17.简述“尺寸选择沉淀法”制备单分散银纳米颗粒的基本原理 18.简述光子晶体的概念及其结构 19.目前人们已经制备了哪些纳米结构单元、复杂的纳米结构和纳米器件。并说明那些纳米结构应该具有增强物理和化学性 能。 20.简单论述单电子晶体管的原理。 21.简述纳米结构组装的工作原理。 1.简单论述纳米材料的定义与分类。 答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。 现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。 如果按维数,纳米材料可分为三大类: 零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。 一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。 二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。 因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。

一维纳米结构阵列的生长及其研究发展

一维纳米结构阵列的生长及其研究发展 摘要:随着纳米材料研究的不断深入,对性能的研究愈来愈迫切。但研究无序随机排列的纳米材料性能却非常困难,既便能获得一些结果,却由于试样之间的不统一与不均匀,使不同研究者获得的同类实验结果没有对比性。为此,我们发展了基于有序多孔氧化铝模板的纳米线有序阵列制备技术,实现了纳米线直径可控、密度可调。为纳米材料性能的研究提供了保障,为纳米材料的应用奠定了基础。 关键词:纳米阵列纳米材料纳米线纳米管纳米纤维等 正文部分: 1. 引言:一维纳米阵列是指在一定范围内具有一定排布规律,有序稳定的纳米结构。近十几年来, 一维硅纳米结构(纳米线、纳米管、纳米纤维等)因其与现代半导体技术的兼容性及独特的光学、电学性质引起了人们的广泛研究兴趣。一维硅纳米结构在纳米电子器件(如生物传感器、太阳能电池、红外可见发光、场效应晶体管、热电冷却器、光电探测器及其它光电器件等领域)有着广泛的应用前景。目前,我们的研究主要集中在单晶硅基体上利用化学腐蚀和气相沉积技术原位合成一维硅纳米结构,并探索其在光电器件、传感器和电子发射器件等领域的应用。 1.1 纳米线 1.1.1 纳米线的概念 纳米线是一种纳米尺度(10?9 米)的线。换一种说法,纳米线可以被定义为一种具有在横向上被限制在100纳米以下(纵向没有限制)的一维结构。这种尺度上,量子力学效应很重要,因此也被称作" 量子线"。根据组成材料的不同,纳米线可分为不同的类型,包括金属纳米线(如:Ni,Pt,Au等),半导体纳米线(如:InP,Si,GaN 等)和绝缘体纳米线(如:SiO2,TiO2等)。分子纳米线由重复的分子元组成,可以是有机的(如:DNA)或者是无机的(如:Mo6S9-xIx)。 作为纳米技术的一个重要组成部分,纳米线可以被用来制作超小电路。 典型的纳米线的纵横比在1000以上,因此它们通常被称为一维材料。纳米线具有许多在大块或三维物体中没有发现的有趣的性质。这是因为电子在纳米线中在横向受到量子束缚,能级不连续。 这种量子束缚的特性在一些纳米线中(比如碳纳米管)表现为非连续的电阻值。这种分立值是由纳米尺度下量子效应对通过纳米线电子数的限制引起的。这些孤立值通常被称为电阻的量子化.在电子,光电子和纳电子机械器械中,纳米线有可能起到很重要的作用。它同时还可以作为合成物中的

零维纳米材料

零维纳米材料 邱松材化07级20071501170 摘要:概括讲述零维材料的各种类型,合成方法,性能和应用以及展望。 总述 零维纳米结构单元的种类有多样,常见的有纳米粒子(Nano-particle)﹑超细粒子(Ultrafine particle)﹑超细粉(Ultrafine powder)﹑烟粒子(Smoke particle)﹑人造原子(Artificial atoms) ﹑量子点(Quantum dop)﹑原子团簇(Atomic cluster)﹑及纳米团簇(Nano-cluster)等,不同之处在于尺寸范围。零维纳米结构材料有量子尺寸效应﹑小尺寸效应﹑表面效应﹑宏观量子效应等。有关这些基本的物理﹑化学性质,对于零维纳米材料的研究与应用极为重要。 一﹑原子团簇 原子团簇是20世纪80年代发现的,指几个至几百个原子的聚集体(粒径小于或等于1nm),如Fe n,Cu n S m,C n H m(n和m都是整数)和碳簇(C60、C70、富勒烯)等。原子团簇有许多奇异的特性,如具有幻数效应、原子团尺寸小于临界值时的“库仑爆炸”、原子团逸出功的震荡行为、极大的比表面使它具有异常高的化学活性和催化活性、光的量子尺寸效应和非线性效应、C60掺杂及掺包原子的导电性和超导性、碳管和碳葱的导电性等。 1、碳原子团簇 1985年,斯摩雷(R.E. Smalley)与英国的科洛托(H.W. Kroto)

等在瑞斯大学的实验室采用激光轰击石墨靶,并用苯来收集碳团簇, 用质谱仪分析发现了由60个碳原子构成的碳团簇丰度最高,同时还 发现了C70 等团簇。C60分子的结构像足球而被称为“足球烯”(由 12个五边形环和20个六边形环组成的球形32面体),它有无数优异 的性质:它本身是半导体,掺杂后可变成临界温度很高的超导体,由 它衍生出来的碳微管比相同直径的金属强度高100万倍。C70原子团 簇的结构与C60类似,呈椭圆球结构,被称为“橄榄球”,由12个五 边形环和25个六边形环组成的37面体。 构成碳团簇的原子数称为幻数,当它为20、24、28、32、36、 50、60、70时具有高稳定性,其中又以C60最稳定。所以,可以用 酸溶去其他的碳团簇,从而获得较纯的C60。 二、人造原子 人造原子又称为量子点,是20世纪90年代提出的新概念。所谓人造原子是由一定数量的实际原子组成的聚集体,尺寸小于 100nm.1996年麻省理工学院的阿休理(Ashoori)在一篇综述中,正 式提出人造原子的概念。1997年,加利福尼亚大学物理系的迈克尤 恩(Mc Euen)把人造原子的内涵进一步扩大,从维数来看,包括准零 维的量子点、准一维的量子棒和准二维的量子圆盘,甚至把100nm 左右的量子器件也看成人造原子。 人造原子与真正原子的运动行为特征和电学性质既相互联系又相互区别。相似之处:(1)人造原子有离散的能级,电荷也是不连续的,电子在人造原子中也是以轨道的方式运动,这与真正的原子极为相似;(2)电子填充

第二章 分子结构与性质单元练习题(含答案)

第二章分子结构与性质 一、单选题 1.下列有关共价键的叙述中,不正确的是( ) A.某原子跟其他原子形成共价键时,其共价键数一定等于该元素原子的价电子数。 B.水分子内氧原子结合的电子数已经达到饱和,故不能再结合其他氢原子。 C.非金属元素原子之间形成的化合物也可能是离子化合物 D.所有简单离子的核电荷数与其核外电子数一定不相等。 2.下列分子和离子中,中心原子价层电子对的空间构型为四面体形且分子或离子的空间构型为V形的是() A. NH B. PH3 C. H3O+ D. OF2 3.下列微粒中,含有孤电子对的是() A. SiH4 B. H2O C. CH4 D. NH 4.下列既有离子键又有共价键的化合物是() A. Na2O B. NaOH C. CaBr2 D. HF 5.下列各组物质两种含氧酸中,前者比后者酸性弱的是()

A. H2SO4和H2SO3 B. (HO)2RO2和(HO)2RO3 C. HNO3和HNO2 D. H2SiO3和H4SiO4 6.下列分子中的中心原子杂化轨道的类型相同的是 ( ) A. BeCl2与BF3 B. CO2与SO2 C. CCl4与NH3 D. C2H2和C2H4 7.1919年,Langmuir提出等电子体的概念,由短周期元素组成的粒子,只要其原子数相同,各原子最外层电子数之和相同,也可互称为等电子体。等电子体的结构相似,物理性质相近。据上述原理,下列各对粒子中,空间结构相似的是() A. SO2和O3 B. CO2和NO2 C. CS2和NO2 D. PCl3和BF3 8.根据价层电子对互斥理论及原子的杂化理论判断NF3分子的空间构型和中心原子的杂化方式为() A.直线形sp杂化 B.三角形sp2杂化 C.三角锥形sp2杂化 D.三角锥形sp3杂化 9.下列变化过程中,原物质分子内共价键被破坏,同时有离子键形成的是() A.盐酸和NaOH溶液反应

纳米材料与纳米结构

纳米材料与纳米结构 一、课程基本信息 课程编号:13103106 课程类别:专业核心课程 适应专业:材料物理 总学时:54学时 学分数:3学分 课程简介: 纳米技术和纳米材料科学是20世纪80年代末发展起来的新兴学科。由于纳米材料具有许多传统材料无法媲美的奇异特性和非凡的特殊功能,因此在各行各业中将有空前的应用前景,它将成为21世纪新技术革命的主导中心。本课程简单介绍纳米材料和纳米结构,主要论述纳米结构单元、纳米微粒的基本理论、物理特性、化学特性、制备与表面修饰、尺寸评估、纳米固体及其制备、纳米固体材料的微

结构、纳米复合材料的结构和性能、纳米粒子和离子团与沸石的组装体系、纳米结构、测量与应用等。 授课教材:《纳米材料学基础》,陈翌庆、王瑛编,中南大学出版社,2008年。 参考书目: [1]《纳米材料和纳米结构——国家重大基础研究项目新进展》,张立德、解思深编,化学工业出版社,2005年。 [2]《纳米复合材料》,徐国财、张立德编,化学工业出版社,2003年。 [3]《纳米材料分析》,黄惠忠编,化学工业出版社,2003年。二、课程教育目标 通过这门课程的教学,达到以下目标: 使学生对纳米材料的结构、组织、性能及制备、检测方法和工艺的基础理论与知识深入了解和掌握,对纳米材料与金属、非金属材料的复合方式,形成的结构组织、改性机理和应用了解,并通过相关资

料查询、阅读、综合分析与讨论,对纳米材料领域内最新进展和成果有所了解,基本具备具体分析、设计、研究和应用纳米材料基础知识、基本方法和能力。三、教学内容与要求 绪论 教学重点:纳米科技的基本概念和内涵 教学难点:纳米材料与其他学科的交叉、渗透 教学时数:3学时 教学内容:纳米科技的基本概念和内涵;纳米材料和技术领域研究的对象和发展的历史; 纳米材料与其他学科的交叉、渗透;纳米结构研究的进展和趋势;纳米家族中 的重要成员——纳米半导体;纳米材料在高科技中地位 教学方式:课堂讲授 教学要求: (1)掌握纳米科技的基本概念和内涵;

纳米材料与纳米结构复习内容-答案

纳米材料与纳米结构复习题 1.简单论述纳米材料的定义与分类。 答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。 现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。 如果按维数,纳米材料可分为三大类: 零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。 一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。 二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。 因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。 2.通过Raman光谱中如何鉴别单壁和多壁碳纳米管?如何计算单壁碳纳米管的直径? 答:利用微束拉曼光谱仪能有效地观察到单臂纳米管特有的谱线,这是鉴定单臂纳米管非常灵敏的方法。 100-400cm-1范围内出现单臂纳米管的特征峰,单臂纳米管特有的环呼吸振动模式;1609cm-1,这是定向多壁纳米管的拉曼特征峰。 单臂管的直径d与特征拉曼峰的波数成反比,即d = 224/w d:单壁管的直径,nm;w:为特征拉曼峰的波数cm-1 3.论述碳纳米管的生长机理。 答: 采用化学气相沉积(CVD)在衬底上控制生长多壁碳纳米管。原理:首先,过镀金属(Fe ,Co, Ni)催化剂颗粒吸收和分解碳化合物,碳与金属形成碳-金属体,随后碳原子从过饱和的催化剂颗粒中析出,为了便于碳纳米管的合成,金属纳米催化剂通常由具有较大的表面积的材料承载。 各种生长模型:1、五元环-七元环缺陷沉积生长 2、层-层相互作用(lip-lip interaction)生长3、层流生长(step flow)4、顶端生长(tip growth)5、根部生长(base growth)6、喷塑模式生长(extrusion mode) 7、范守善院士:13C 同位素标记,多壁碳纳米管的所有层数同时从催化剂中生长出来的,证明了“帽”式生长(yarmulke)的合理性;“帽”式生长机理:不是生长一内单壁管,然后生长外单壁管;而是在从固熔体相处时,开始就形成多层管。 4.论述气相和溶液法生长纳米线的基本原理。 答: 5.解释纳米颗粒红外吸收宽化和蓝移的原因。 答:红外吸收带的宽化原因: 纳米氮化硅、SiC、及Al2O3粉对红外有一个宽频带强吸收谱,这是由于纳米粒子大的比表面导致了平均配位数下降,不饱和键和悬键增多,与常规大块材料不同,没有一个单一的,择优的键振动模,而存在一个较宽的键振动模的分布,在红外光场作用下,它们对红外吸收的频率也就存在一个较宽的分布。这就导致了纳米粒子红外吸收带的宽化。 蓝移原因: 与大块材料相比,纳米微粒的吸收带普遍存在“蓝移”现象,即吸收带移向短波长方向。 表面效应:由于纳米微粒尺寸小,大的表面张力使晶格畸变,晶格常数变小。对纳米氧化物和氮化物小粒子研究表明:第一近邻和第二近邻的距离变短。键长的缩短导致纳米微粒的键本征振动频率增大,结果使红外光吸收带移向了高波数。(化学键的振动)

纳米结构与纳米材料英文例子翻译学习

摘要纳米材料(NSM)是这样一类固体,其结构单元(大多为结晶体)至少在一个方向上具有数个纳米的特征尺寸按照结 构单元的形状、化学成分可将其划分为12种类型.NsM的结构及性能不同于具相同化学成分的单晶体和玻璃.这种差别归 因于品体尺寸的减少、品体形状(薄片、针和等轴)引起的维数效应以及结构单元之间界面的密度下降和配位数的变化本文 讨论了支持上述观点的某些实验结果,描述了金属、大分子、半导体纳米材料的技术应用。 关键词:纳米结构材料, 界面, 尺寸效应, 结构与性能 Abstract:Nanostructured materials (NsM) are solids composed of structural elements-mostly crvstaltites-with a characteristic size (in at least one direction) of a few nanometers.NsM may be classified into twelve groups according to the shape and chemical com-position of their constituent structural elements. The atomic structure and properties of NsM deviate from the ones of a single crystal and / or glass with the same chemical composition. This deviation results from the reduced size of the crystallites. dlmensionality effects due to the shape of the crystallites (thin plates. needles or equiaxed shape). and the reduced densitV and / or modified coordination numbers in the interfaces between the structural elements. Some of the experimental observations supporting these ideas are discussed. Technological applications of metallic .macromolecular and semiconducting NsM are described, Key words: Nanostructured materials ,(NsM) interface size effect structure and property 1. Nanoscience and nanotechnology includes three fields: nanomaterials, nanodevice and nanomeasurement and nanocharacterization. 纳米科技包括三个研究领域: 纳米材料、纳米器件、纳米尺度的检测与表征. 2. What makes nanomaterials work is their extremely large surface free energy. 纳米材料的特殊性能主要由其巨大的表面自由能造成. 3. The current research conditions of nano materials as lubricant additive were reviewed. 回顾了纳米材料作为润滑添加剂的研究状况. 4. The preparations , properties and applications of the organic nanoparticles were reviewed. 本文综述了有机纳米材料的制备方法、性质及其应用. 5. Definition, manufacture, structure, properties and applications of nanostructured materials are briefly described. 简述了纳米材料的定义、制备、结构、性能和应用. 6. Development trend of metal oxide nanomaterials is reviewed lastly. 最后对金属氧化物纳米材料研究的发展方向提出了展望. 7. Flower - like nanostructured silver is prepared by electrochemical deposition techniques. 采用电化学沉积法制备了花状银纳米材料. 8. Discuss the application of nanometer materials in the Polymer modification. 论述了纳米材料在聚合物改性中的应用. 9. Microscale reaction technology was reviewed and its prospect in nanomaterials was discussed. 回顾了微尺度反应技术的发展及其在纳米材料制备中所展现的广阔前景. 10. Its directions of development in the future are also looked forward. 同时展望了纳米材料今后的发展方向. 11. An innovative process high gravity technology for nanometer material synthesis is presented. 介绍了一种独创性的纳米材料合成方法即超重力法. 12. Theprinciple , preparation methods , properties and applications of nano film materials have beensummarized. 本文介绍了离子束溅射和磁控溅射技术的基本原理、法及其在制备纳米材料中的应用和优点,以国内外这方面的最新进展.

纳米化学

第二章纳米结构单元及相关术语 1)团簇 2)纳米粒子 3)纳米相材料 4)准一维纳米材料 5)量子阱、量子线和量子点 6)人造原子

物质性质随尺寸的演变1厘米 1微米 100纳米10纳米1纳米0.1纳米 Fe 微晶 纳米粒子块体 Fe Fe 分子团簇铁纳米相材料无金属光泽,黑色矫顽力增大电阻增大块体铁材料 银白色金属光泽 导体 铁磁性铁磁性消失(超顺磁性)绝缘体

团簇(Cluster) 团簇是各种物质由原子、 分子向大块物质转变的过 渡状态,或者说,团簇代 表了凝聚态物质的初始状 态,是介于原子、分子与 宏观固体之间的物质结构 的新层次,有时被称为物 质的“第五态”。从原子到宏观块体材料的演变

团簇的定义: 团簇是由几个至上千个原子、分子或离子组成的相对稳定的聚集体(尺寸常常不超过1nm)。 团簇的分类: 1)一元原子团簇,如:Na n, Ni n,C60, C70 2)二元团簇,如:In n P m, Ag n S m 3)多元团簇,如:V n(C6H6)m 4)原子簇化合物,是原子团簇与其它分子以配位键结合形成的化合物(例如,某些含Fe-S团簇的蛋白质分子)。

团簇的特点: 团簇往往产生于非平衡条件,很难在平衡的气相中产生。对于尺寸较小的团簇,每增加一个原子,团簇的结构发生变化,所谓重构。而当团簇大小达到一定尺寸时,变成大块固体的结构,此时除了表面原子存在驰豫外,增加原子不再发生重构,其性质也不会发生显著改变,这就是临界尺寸。 原子团簇不同于具有特定大小和形状的分子,不同于分子间以 弱的相互作用结合而成的聚集体以及周期性很强的晶体。其形状可以是多种多样的,已知的有球状、骨架状、洋葱状、管状、层状、线状等。除惰性气体外,均是以化学键紧密结合的聚集体。

相关主题
文本预览
相关文档 最新文档