当前位置:文档之家› 抽屉原理是一种特殊的思维方法

抽屉原理是一种特殊的思维方法

抽屉原理是一种特殊的思维方法
抽屉原理是一种特殊的思维方法

抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。本讲的主要教学目标是:

1.理解抽屉原理的基本概念、基本用法;

2.掌握用抽屉原理解题的基本过程;

3. 能够构造抽屉进行解题;

4. 利用最不利原则进行解题;

5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.

二、抽屉原理的定义

(1)举例

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义

一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。

三、抽屉原理的解题方案

(一)、利用公式进行解题

苹果÷抽屉=商……余数

余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里

(2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里

(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里

(二)、利用最值原理解题

将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.

知识点拨

教学目标

8-2抽屉原理

知识精讲

模块一、利用抽屉原理公式解题

(一)、直接利用公式进行解题

(1)求结论

【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?

【解析】

6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.

利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,6÷5﹦1·····1,1+1﹦2(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.

【巩固】把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.

【解析】在8个鱼缸里面,每个鱼缸放一条,就是8条金鱼;还剩下的一条,任意放在这8个鱼缸其中的任意一个中,这样至少有一个鱼缸里面会放有两条金鱼.

【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.

【解析】将5名学生看作5个苹果将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉,由抽屉原理,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的作业.

【巩固】年级一班学雷锋小组有13人.教数学的老师说:“你们这个小组至少有2个人在同一月过生日.”你知道老师为什么这样说吗?

【解析】:先想一想,在这个问题中,把什么当作抽屉,一共有多少个抽屉?从题目可以看出,这道题显然与月份有关.我们知道,一年有12个月,把这12个月看成12个抽屉,这道题就相当于把13个苹果放入12个抽屉中.根据抽屉原理,至少有一个抽屉放了两个苹果.因此至少有两个同学在同一个月过生日.

【总结】题目中并没有说明什么是“抽屉”,什么是“物品”,解题的关键是制造“抽屉”,确定假设的“物品”,根据“抽屉少,物品多”转化为抽屉原理来解.

【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.

【解析】属相共12个,把12个属相作为12个“抽屉”,13个同学按照自己的属相选择相应的“抽屉”,根据抽屉原理,一定有一个“抽屉”中有两个或两个以上同学,也就是说至少有两个同学属相一样.

【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?

【解析】一年最多有366天,把366天看作366个“抽屉”,将367名学生看作367个“苹果”.这样,把367个苹果放进366个抽屉里,至少有一个抽屉里不止放一个苹果.这就说明,至少有2名同学的生日相同。

【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.

【解析】五种颜色最多只能涂5个不同颜色的面,因为正方体有6个面,还有一个面要选择这五种颜色中的任意一种来涂,不管这个面涂成哪种颜色,都会和前面有一个面颜色相同,这样就有两个面会被涂上相同的颜色.也可以把五种颜色作为5个“抽屉”,六个面作为六个物品,当把六个面随意放入五个抽屉时,根据抽屉原理,一定有一个抽屉中有两个或两个以上的面,也就是至少会有两个面涂色相同.

【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?

【解析】一年最多有366天,可看做366个抽屉,730个学生看做730个苹果.因为730÷366=1·····364,

抽屉原理所以,至少有1+1=2(个)学生的生日是同一天.

【巩固】试说明400人中至少有两个人的生日相同.

【解析】将一年中的366天或365天视为366个或365个抽屉,400个人看作400个苹果,从最极端的情况考虑,即每个抽屉都放一个苹果,还有35个或34个苹果必然要放到有一个苹果的抽屉里,所以至少有一个抽屉有至少两个苹果,即至少有两人的生日相同.

【例 3】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.

【解析】方法一:

情况一:这三个小朋友,可能全部是男,那么必有两个小朋友都是男孩的说法是正确的;情况二:这三个小朋友,可能全部是女,那么必有两个小朋友都是女孩的说法是正确的;情况三:这三个小朋友,可能其中1男2女那么必有两个小朋友都是女孩说法是正确的;情况四:这三个小朋友,可能其中2男1女,那么必有两个小朋友都是男孩的说法是正确的.

所以,三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩的说法是正确的;方法二:三个小朋友只有两种性别,所以至少有两个人的性别是相同的,所以必有两个小朋友都是男孩或者都是女孩.

【例 4】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.

【解析】假设共有n个小朋友到公园游玩,我们把他们看作n个“苹果”,再把每个小朋友遇到的熟人数目看作“抽屉”,那么,n个小朋友每人遇到的熟人数目共有以下n种可能:0,1,2,……,n-1.其中0的意思是指这位小朋友没有遇到熟人;而每位小朋友最多遇见1n-个熟人,所以共有n个“抽屉”.下面分两种情况来讨论:

⑴如果在这n个小朋友中,有一些小朋友没有遇到任何熟人,这时其他小朋友最多只能遇上2n 个熟人,这样熟人数目只有n-1种可能:0,1,2,……,2n.这样,“苹果”数(n个小朋友)超过“抽屉”数(n-1种熟人数目),根据抽屉原理,至少有两个小朋友,他们遇到的熟人数目相等.

⑵如果在这n个小朋友中,每位小朋友都至少遇到一个熟人,这样熟人数目只有1n种可能:1,2,3,……,n-1.这时,“苹果”数(n个小朋友)仍然超过“抽屉”数(n-1种熟人数目),根据抽屉原理,至少有两个小朋友,他们遇到的熟人数目相等.

总之,不管这n个小朋友各遇到多少熟人(包括没遇到熟人),必有两个小朋友遇到的熟人数目相等.

【巩固】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.

数学小组共有20名同学,因此每个同学最多有19个朋友;又由于他们都有朋友,所以每个同学至少有1个朋友.因此,这20名同学中,每个同学的朋友数只有19种可能:1,2,3,……,19.把这20名同学看作20个“苹果”,又把同学的朋友数目看作19个“抽屉”,根据抽屉原理,至少有2名同学,他们的朋友人数一样多.

【例 5】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?

因为任何整数除以3,其余数只可能是0,1,2三种情形.我们将余数的这三种情形看成是三个“抽屉”.一个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”里.将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以3的余数相同(需要对学生利用余数性质进行解释:为什么余数相同,则差就能被整除).这两个数的差必能被3整除.

【巩固】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.

【解析】想一想,不同的自然数被3除的余数有几类?在这道题中,把什么当作抽屉呢?把这四个连续的自然数分别除以3,其余数不外乎是0,1,2,把这3个不同的余数当作3个“抽屉”,把这4个连续的自然数按照被3除的余数,分别放入对应的3个“抽屉”中,根据抽屉原理,至少有两个自然数在同一个抽屉里,也就是说,至少有两个自然数除以3的余数相同

【例 6】证明:任取8个自然数,必有两个数的差是7的倍数.

【解析】在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差ab是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数.

【巩固】证明:任取6个自然数,必有两个数的差是5的倍数。

【解析】把自然数按照除以5的余数分成5个剩余类,即5个抽屉.任取6个自然数,根据抽屉原理,至少有两个数属于同一剩余类,即这两个数除以5的余数相同,因此它们的差是5的倍数。

【巩固】(第八届《小数报》数学竞赛决赛)将全体自然数按照它们个位数字可分为10类:个位数字是1的为第1类,个位数字是2的为第2类,…,个位数字是9的

为第9类,个位数字是0的为第10类.(1)任意取出6个互不同类的自然数,

其中一定有2个数的和是10的倍数吗?(2)任意取出7个互不同类的自然数,

其中一定有2个数的和是10的倍数吗?如果一定,请煎药说明理由;如果不一定,

请举出一个反例.

【解析】(1)不一定有.例如1、2、3、4、5、10这6个数中,任意两个数的和都不是10的倍数.

(2)一定有.将第1类与第9类合并,第2类与第8类合并,第3类与第7类合并,第4类与第6类合并,制造出4个抽屉;把第5类、第10类分别看作1个抽屉,共6个抽屉.任意7个互不同类的自然数,放到这6个抽屉中,至少有1个抽屉里放2个数.因为7个数

互不同类,所以后两个抽屉中每个都不可能放两个数.当两个互不同类的数放到前4个抽屉的任何一个里面时,它们的和一定是10的倍数.

【巩固】证明:任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数.

解析】两位数除以11的余数有11种:0,1,2,3,4,5,6,7,8,9,10,按余数情况把所有两位数分成11种.12个不同的两位数放入11个抽屉,必定有至少2个数在同一个抽屉里,这2个数除以11的余数相同,两者的差一定能整除11.两个不同的两位数,差能被11整除,这个差也一定是两位数(如11,22……),并且个位与十位相同.所以,任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数.

【例 7】任给11个数,其中必有6个数,它们的和是6的倍数.

【解析】设这11个数为1a,2a,3a,……,11a,由5个数的结论可知,在1a,2a,3a,4a,5a中必有3个数,其和为3的倍数,不妨设12313aaak;在4a,5a,6a,7a,8a中必有3个数,其和为3的倍数,不妨设45623aaak;在7a,8a,9a,10a,11a中必有3个数,其和为3的倍数,不妨设78933aaak.又在1k,2k,3k中必有两个数的奇偶性相同,不妨设1k,2k的奇偶性相同,那么1233kk是6的倍数,即1a,2a,3a,4a,5a,6a的和是6的倍数.

【巩固】在任意的五个自然数中,是否其中必有三个数的和是3的倍数?

【解析】至多有两个数在同一个抽屉里,那么每个抽屉里都有数,在每个抽屉里各取一个数,这三个数被3除的余数分别为0,1,2.因此这三个数之和能被3整除.综上所述,在任意的五个自然数中,其中必有三个数的和是3的倍数

【例 8】任意给定2008个自然数,证明:其中必有若干个自然数,和是2008的倍数(单独一个数也当做和).

【解析】把这2008个数先排成一行:1a,2a,3a,……,2008a,第1个数为1a;前2个数的和为12aa;前3个数的和为123aaa;……前2008个数的和为122008aaa.如果这2008个和中有一个是2008的倍数,那么问题已经解决;如果这2008个和中没有2008的倍数,那么它们除以2008的余数只能为1,2,……,2007之一,根据抽屉原理,必有两个和除以2008的余数相同,那么它们的差(仍然是1a,2a,3a,……,2008a中若干个数的和)是2008的倍数.所以结论成立.

【巩固】20道复习题,小明在两周做完,每天至少做一道题.证明:小明一定在连续的若干天恰好做了7道题目.

【解析】设小明第1天做了1a道题,前2天共做了2a道题,前3天共做了3a道题,……,前14天共做了14a道题.显然1420a,而1a~13a都小于20.考虑1a,2a,3a,……,14a及17a,27a,37a,……,147a这28个数,它们都不超过27.根据抽屉原理,这28个数中必有两个数相等.由于1a,2a,3a,……,14a互不相等,17a,27a,37a,……,14

7a也互不相等,因而这两个相等的数只能一个在前一组,另一个在后一组中,即有:7jiaa,所以7jiaa.这表明从第1i天到第j天,小明恰好做了7道题.

【例 9】求证:可以找到一个各位数字都是4的自然数,它是1996的倍数.

【解析】19964499,下面证明可以找到1个各位数字都是1的自然数,它是499的倍数.取500个数:1,11,111,……,111……1(500个1).用499去除这500个数,得到500

个余数1a,2a,3a,…,500a.由于余数只能取0,1,2,…,498这499个值,所以根据抽屉原则,必有2个余数是相同的,这2个数的差就是499的倍数,差的前若干位是1,后若干位是0:11…100…0.又499和10是互质的,所以它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,这是1996的倍数.

【巩固】任意给定一个正整数n,一定可以将它乘以适当的整数,使得乘积是完全由0和7组成的数.

【解析】考虑如下1n个数:7,77,777,……,777n位,1777n位,这1n个数除以n 的余数只能为0,1,2,……,1n中之一,共n种情况,根据抽屉原理,其中必有两个数除以n的余数相同,不妨设为777p位和777q位(pq),那么()777777777000pqpqq位位位位是n的倍数,所以n乘以适当的整数,可以得到形式为()777000pqq位位的数,即由0和7组成的数.

【例 10】求证:对于任意的8个自然数,一定能从中找到6个数a,b,c,d,e,f,使得()()()

---是105的倍数.

a b c d e f

【解析】105357.对于任意的8个自然数,必可选出2个数,使它们的差是7的倍数;在剩下的6个数中,又可选出2个数,使它们的差是5的倍数;在剩下的4个数中,又可选出2个数,使它们的差是3的倍数.

【巩固】任给六个数字,一定可以通过加、减、乘、除、括号,将这六个数组成一个算式,使其得数为105的倍数.

【解析】根据上一题的提示我们可以写出下列数字谜()()()abcdef使其结果为105的倍数,那么我们的思路是使第一个括号里是7的倍数,第二个括号里是5的倍数,第三个括号里是3的倍数,那么对于如果六个数字里有7的倍数,那么第一个括号里直接做乘法即可,如果没有7的倍数,那么我们做如下抽屉:{除以7的余数是1或者是6} {除以7的余数是2或者是5} {除以7的余数是3或者是4}那么六个数字肯定有两个数字在同一个抽屉里,那么着两个数如果余数相同,做减法就可以得到7的倍数,如果余数不同,做加法就可以得到7的倍数.这样剩下的4个数中,同理可得后面的括号里也可以组合出5和3的倍数.于是本题可以证明.

【巩固】(2008年中国小学数学竞赛决赛(一)在100卡片上不重复地编上1~100,至少要随意抽出几卡片才能保证所抽出的卡片上的数之乘积可被12整除?

【解析】21223,因为3的倍数有100333个,所以不是3的倍数的数一共有1003367(个),抽取这67个数无法保证乘积是3的倍数,但是如果抽取68个数,则必定存在一个数是3的倍数,又因为奇数只有50个,所以抽取的偶数至少有18个,可以保证乘积是4的倍数,从而可以保证乘积是12的倍数。于是最少要抽取68个数(即:68卡片)才可以保证结果。

【例 11】把1、2、3、…、10这十个数按任意顺序排成一圈,求证在这一圈数中一定有相邻的三个数之和不小于17.

【解析】(法1)把这一圈从某一个数开始按顺时针方向分别记为1a、2a、3a、…、10a.相邻的三个数为一组,有123aaa、234aaa、345aaa、…、9101aaa、1012aaa共10组.这十组三个数之和的总和为:12323410121210+++3355165aaaaaaaaaaaa,16516105,根据抽屉原理,这十组数中至少有一组数的和不小于17.(法2)在10个数中一定有一个数是1,不妨设101a,除去10a之外,把1a、2a、3a、…、9a这9个数按顺序分为三组123aaa、456aaa、789aaa.因为这三组数之和的总和为:123456789++231054aaaaaaaaa,根据抽屉原理,这三组数中至少有一组数之和不小于17.

【巩固】圆周上有2000个点,在其上任意地标上0,1,2,,1999(每一点只标一个数,不同的点标上不同的数).证明必然存在一点,与它紧相邻的两个点和这点上所标的三

个数之和不小于2999

【解析】把这一圈从某一个数开始按顺时针方向分别记为1a、2a、3a、…、2000a.相邻的三个数为一组,有123aaa、234aaa、345aaa、…、199920001aaa、200012aaa 共2000组.这2000组三个数之和的总和为:123234************+++33(1231999)5997000aaaaaaaaaaaa59970002998200010 00,根据抽屉原理,这两千组数中至少有一组数的和不小于2999.

【例 12】证明:在任意的6个人中必有3个人,他们或者相互认识,或者相互不认识.【解析】把这6个人看作6个点,每两点之间连一条线段,两人相互认识的话将线段涂红色,两人不认识的话将线段涂上蓝色,那么只需证明其中有一个同色三角形即可.从这6个点中随意选取一点A,从A点引出的5条线段,根据抽屉原理,必有3条的颜色相同,不妨设有3条线段为红色,它们另外一个端点分别为B、C、D,那么这三点中只要有两点比如说B、C之间的线段是红色,那么A、B、C3点组成红色三角形;如果B、C、D三点之间的线段都不是红色,那么都是蓝色,这样B、C、D3点组成蓝色三角形,也符合条件.所以结论成立.

【巩固】平面上给定6个点,没有3个点在一条直线上.证明:用这些点做顶点所组成的一切三角形中,一定有一个三角形,它的最大边同时是另外一个三角形的最小边.【解析】我

们先把题目解释一下.一般情况下三角形的三条边的长度是互不相等的,因此必有最大边和最小边.在等腰三角形(或等边三角形中),会出现两条边,甚至三条边都是最大边(或最小边).我们用染色的办法来解决这个问题.分两步染色:

第一步:先将每一个三角形中的最大边涂上同一种颜色,比如红色;第二步,将其它的未涂色的线段都涂上另外一种颜色,比如蓝色.这样,我们就将所有三角形的边都用红、蓝两色涂好.根据上题题的结论可知,这些三角形中至少有一个同色三角形.由于这个同色三角形有自己的最大边,而最大边涂成红色,所以这个同色三角形必然是红色三角形.由于这个同色三角形有自己的最小边,而这条最小边也是红色的,说明这条最小边必定是某个三角形的最大边.结论得证.

【巩固】假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同

色?

【解析】从这6个点中随意选取一点A,从A点引出的5条线段,根据抽屉原理,必有3条的颜色相同,不妨设有3条线段为红色,它们另外一个端点分别为B、C、D,那么这三点中只要有两点比如说B、C之间的线段是红色,那么A、B、C3点组成红色三角形;如果B、C、D三点之间的线段都不是红色,那么都是蓝色,这样B、C、D3点组成蓝色三角形,也符合条件.所以结论成立.(可以拓展玩转数学)

【巩固】平面上有17个点,两两连线,每条线段染红、黄、蓝三种颜色中的一种,这些线段能构成若干个三角形.证明:一定有一个三角形三边的颜色相同.

【解析】从这17个点钟任取一个点A,把A点与其它16个点相连可以得到16条线段,根据抽屉原理,其中同色的线段至少有6条,不妨设为红色.考虑这6条线段的除A点外的6个端点:

⑴如果6个点两两之间有1条红色线段,那么就有1个红色三角形符合条件;

⑵如果6个点之间没有红色线段,也就是全为黄色和蓝色,由上面的2题可知,这6个点中必有3个点,它们之间的线段的颜色相同,那么这样的三角形就符合条件.综上所述,一定存在一个三角形满足题目要求.

【例 13】上体育课时,21名男、女学生排成3行7列的队形做操.老师是否总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生或者都是男生,或者都

是女生?如果能,请说明理由;如果不能,请举出实例.

【解析】因为只有男生或女生两种情况,所以第1行的7个位置中至少有4个位置同性别.为了确定起见,不妨设前4个位置同是男生,如果第二行的前4个位置有2名男生,那么4个角同是男生的情况已经存在,所以我们假定第二行的前4个位置中至少有3名女生,不妨假定前3个是女生.又第三行的前3个位置中至少有2个位置是同性别学生,当是2名男生时与第一行构成一个四角同性别的矩形,当有2名女生时与第二行构成四角同性别的矩形.所以,不论如何,总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生同性别.问题得证.

【例 14】8个学生解8道题目.(1)若每道题至少被5人解出,请说明可以找到两个学生,每道题至少被过两个学生中的一个解出.(2)如果每道题只有4个学生解出,那么

(1)的结论一般不成立.试构造一个例子说明这点.

【解析】(1)先设每道题被一人解出称为一次,那么8道题目至少共解出58=40次,分到8个学生身上,至少有一个学生解出了5次或5次以上题目,即这个学生至少解出5道题,称这个学生为A,我们讨论以下4种可能:

第一种可能:若A只解出5道题,则另3道题应由其他7个人解出,而3道题至少共被解出35=15次,分到7个学生身上,至少有一名同学解出了3次或3次以上的题目(15=27+1,由抽屉原则便知)由于只有3道题,那么这3道题被一名学生全部解出,记这名同学为B.那么,每道题至少被A、B两名同学中某人解出.

第二种可能:若A解出6道题,则另2道题应由另7人解出,而2道题至少共被解出2×5=10次,分到7个同学身上,至少有一名同学解出2次或2次以上的题目(10=17+3,由抽屉原则便知).与l第一种可能I同理,这两道题必被一名学生全部解出,记这名同学为C.那么,每道题目至少被A、C学生中一人解出.

第三种可能:若A解出7道题目,则另一题必由另一人解出,记此人为D.那么,每道题目至少被A、D两名学生中一人解出.

第四种可能:若A解出8道题目,则随意找一名学生,记为E,那么,每道题目至少被A、E两名学生中一人解出,所以问题(1)得证.

(2)类似问题(1)中的想法,题目共被解出84=32次,可以使每名学生都解出4次,那么每人解出4道题.随便找一名学生,必有4道未被他解出,这4道题共被7名同学解出44=16次,由于16=2×7+2,可以使每名同学解出题目不超过3道,这样就无法找到两名学生,使每道题目至少被其中一人解出.具体构造如下表,其中汉字代表题号,数字代表学生,打√代表该位置对应的题目被该位置对应的学生解出.

【巩固】试卷上共有4道选择题,每题有3个可供选择的答案.一群学生参加考试,结果是对于其中任何3人,都有一个题目的答案互不相同.问参加考试的学

生最多有多少人?

【解析】设总人数为A,再由分析可设第一题筛选取出的人数为1A,第二题筛选的人

数为2A,第三题筛选取的人数为3A,第四题筛选的人数为4A.如果不能满足题目要

求,则:4A至少是3,即3个人只有两种答案.由于4A是3A人做第四题后筛选取

出的人数,则由抽屉原则知,(两种答案)中至少放有333AA个苹果(即

4A).333AA=4A=3,则A3至少为4,即4人只有两种答案.由于3A是2A人做第三

小学六年级奥数题集锦及答案

小学六年级奥数题集锦 及答案

小学六年级奥数题集锦及答案 工程问题? 1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时? 2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天? 3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时? 4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成? 5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个? 6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵? 7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完? 8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?

小学数学典型应用题合集之抽屉问题

小学数学典型应用题之抽屉问题 一、含义 在数学问题中有一类与“存在性”有关的问题,如367个人中至少有两个人是同一天过生日,这类问题在生活中非常常见,它所依据的理论,我们称之为“抽屉原理”。抽屉原理又名狄利克雷原则,是符合某种条件的对象存在性问题有力工具。 二、数量关系 1、基本的抽屉原则是:如果把n+1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(元素)。 2、抽屉原则可以推广为:如果有m个抽屉,元素的个数是抽屉个数的k倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。 三、解题思路和方法 目前,处理抽屉原理问题最基本和常用的方法是运用“最不利原则”,构造“最不利”“点最背”的情形。 四、例题 例题(一):不透明的箱子中有红、黄、蓝、绿四种颜色的球各20个,一次至少摸出多少个球才能保证摸出两个相同颜色的球? 解:(1)解决这个问题要考虑最不利的情况,因为有4种颜色,想要摸出两个相同颜色的球。 (2)那么最不利的情况就是,每种颜色的各摸出一个,这时再摸一个球,一定与前几个球有颜色相同的。因此至少要摸4+1=5(个)球。

例题(二):袋子中有2个红球,3个黄球,4个蓝球,5个绿球,一次至少摸出多少个球就能保证摸到两种颜色的球? 解:(1)解决这个问题要考虑最不利情况,想要摸出两种颜色的球,最不利的情况应该是将一种颜色的球都拿出来时,不论接下来摸的球是什么颜色都与之前颜色不同。 (2)因为4种球的个数各不相同,所以最不利的情况应该是先将个数最多的球都拿出来,接下来摸的球都一定与之前颜色不同。因此至少摸出5+1=6(个)球。 例题(三):一次数学竞赛共5道选择题,评分标准为:基础分5分,答对一题得3分,答错扣1分,不答不得分。要保证至少有4人得分相同,最少需要多少人参加竞赛? 解:(1)本题考察的是抽屉原理的相关知识,解决本题的关键是要知道得分一共有多少种不同的情况,进而从最坏的情况开始考虑解决问题。 (2)一共有5题,且有5分的基础分,那么每道题就有1分的基础分。也就相当于答对一题得4分,答错不得分,不答得1分。 (3)这次数学竞赛的得分情况有以下几种: ●5题全对的只有1种情况:得20分; ●对4题的有2种情况:1题答错得16分,1题没答得17分; ●对3题的有3种情况:2题全错得12分,只错1题得13分,2题不做得14分; ●对2题的有4种情况:3题全错得8分,只错2题得9分,只错1题得10分;3题全不答得11分;

小学六年级奥数专项练习29 抽屉原理

小学六年级奥数专项练习 专题29 抽屉原理(一)

【理论基础】 如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的“抽屉原理”。 基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x 个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。(2)如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。 利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。b、把元素放入(或取出)抽屉。C、说明理由,得出结论。 本周我们先来学习第(1)条原理及其应用。 例题1 某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么? 把一年中的天数看成是抽屉,把学生人数看成是元素。把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,即至少有两

个学生的生日是同一天。 平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。 练习1 1、某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么? 2、某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天? 3、15个小朋友中,至少有几个小朋友在同一个月出生? 例题2 某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)? 首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。要保证至少有一个抽屉里有2人,那么去的人数应大于抽屉数。所以至少要去7+1=8(个)学生才能保证一定有两位同学买到相同的书。 买书的类型有:

抽屉原理在数学中的运用

抽屉原理在初等数学中的运用 摘要:抽屉原理也称为鸽巢原理,它是组合数学中的一个最基本的原理.也是数学中的一个重要原理,抽屉原理的简单形式可以描述为:“如果把1+n 个球或者更多的球放进n 个抽屉,必有一个抽屉至少有两个球.”它的正确性十分明显,很容易被并不具备多少数学知识的人所接受,如果将其灵活地运用,则可得到一些意想不到的效果. 运用抽屉原理可以论证许多关于“存在”、“总有”、“至少有”的存在性问题。学习抽屉原理可以用来解决数学中的许多问题,也可以解决生活中的一些现象。如招生录取、就业安排、资源分配、职称评定等等,都不难看到抽屉原理的作用。在解决数学问题时有非常重要的作用. 抽屉原理主要用于证明某些存在性问题及必然性题目,如几何问题、涂色问题等. 各种形式的抽屉原理在高等数学和初等数学中经常被采用,使用该原理的关键在于如何巧妙地构造抽屉,即如何找出合乎问题条件的分类原则,抽屉构造得好,可得出非常巧妙的结论.本文着重从抽屉的构造方法阐述抽屉原理在高等数学和初等数学(竞赛题)中的应用,同时指出了它在应用领域中的不足之处. 关键词:抽屉原理;初等数学;应用 一、 抽屉原理(鸽巢原理) 什么是抽屉原理?先举个简单的例子说明,就是将3个球放入2个篮子里,无论怎么放,必有一个篮子中至少要放入2个球,这就是抽屉原理.或者假定有五个鸽子笼,养鸽人养了6只鸽子,当鸽子飞回巢中,那么一定至少有一个鸽笼里有两只鸽子,这就是著名的鸽巢原理. 除了这种比较普遍的形式外,抽屉原理还经许多学者推广出其他的形式.比如陈景林、阎满富编著的中国铁道出版社出版的《组合数学与图论》一书中对抽屉原理给出了比较具体的定义,概括起来主要有下面几种形式: 原理1 把多于n 个的元素按任一确定的方式分成n 个集合,则一定有一个集合中含有两个或两个以上的元素.

高斯小学奥数六年级下册含答案第05讲_抽屉原理

第五讲抽屉原理二 本讲知识点汇总: 一、最不利原则:为了保.证.能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能 达到目标. 二、抽屉原理: 形式1:把n 1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里; 形式2:把m n 1个苹果放到n 个抽屉中,一定有m 1个苹果放在一个抽屉里. 例1.中国奥运代表团的173 名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水 6 种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?「分析」本题的“抽屉”是饮料的选法,“苹果”是 1 73名运动员. 练习1、中国奥运代表团的83 名运动员到超市买饮料.超市有可乐、雪碧、芬达和橙汁,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同? 例2.国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项.那么至少有多少个学生,才能保证至少有 4 个人参加的活动完全相同?「分析」本题的“抽屉”是参加活动的方法. 练习2、高思运动会共有 4 个项目,每个学生至多参加3项,至少参加 1 项.那么至少有多少个学生,才能保证至少有 5 个人参加的活动完全相同?

例3.从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50? 「分析」思考一下:哪两个数的和是50? 练习3、从1到35这35 个自然数中,至少选出多少个数才能保证其中一定有两个数的和为34? 例4.从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是 6 的倍数呢?「分析」两个数的和是7 的倍数,这两个数除以7 的余数要符合什么条件哪? 练习4、从1至99这99 个自然数中任意取出一些数,要保证其中一定有两个数的和是 5 的倍数,至少要取多少个? 例5.至少取出多少个正整数,才能保证其中一定有两个整数的和或差是100 的倍数? 「分析」从余数角度思考一下:什么样的两个数的和或差是100? 例6.在边长为 2 的正六边形中,放入50 个点,任意三点不共线,请证明:一定能从中选出三个点,以它们为顶点的三角形面积不大于 「分析」通过把正六边形均分,来构造“抽屉” 1.

行测数学运算16种题型之抽屉原理问题

考试行测数学运算16种题型之抽屉原理问题 行测数学运算—抽屉原理问题 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。 假设有3个苹果放入2个抽屉中,则必然有一个抽屉中有2个苹果,她的一般模型可以表述为: 第一抽屉原理:把(mn+1)个物体放入n个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。 若把3个苹果放入4个抽屉中,则必然有一个抽屉空着,她的一般模型可以表述为:第二抽屉原理:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。 制造抽屉是运用原则的一大关键 例1、一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的? A.12 B.13 C.15 D.16 【解析】根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色,选B。 例2、从1、2、3、4……、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7? A.7 B.10 C.9 D.8 【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}。另外,还有2个不能配对的数是{6}{7}。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7,所以选择D。

抽屉原理与最不利原则(4年级培优)学生版

原理1 把多于n 个的物体放到n 个抽屉中,则至少有一个抽屉中有2个或2个以上的物体。 原理2 把多于mn (m 乘以n )个的物体放到n 个抽屉中,则至少有一个抽屉中有1+m 个 或多于1+m 个的物体。 ? 构造“抽屉”、找出“物体”及物体的放法是应用抽屉原理解决问题的关键。 常见的构造抽屉的方法有:数的分组法;剩余类法;图形分割法;染色法。 ? 当问题中出现“保证”二字,就要求我们必须利用“最不利”原则情况分析问题。 最不利原则就是从“极端倒霉”的情况考虑问题,将所有不利的情况都考虑进来。 我们可以用如下方法,解决简单抽屉原理的问题: 将n 个物品放到m 个抽屉中,如果a m n =÷,那么一定有一个抽屉中至少有a 个物品;如果b a m n ΛΛ=÷(0>b ),那么一定有一个抽屉中至少有1+a 个物品。 四年(1)班一共有42名学生,那么一定有至少几名学生的属相相同? 盒子中装有红、白、黑三种颜色的小球各20个,这些小球摸起来手感都一样。14个小朋友闭着眼睛玩摸球游戏,每个小朋友一次只能摸出一个小球。那么一次至少有几个小朋友摸出的小球颜色相同?

有3个不同的自然数,至少有两个数的和是偶数,为什么? 4个连续自然数分别被3除后,必有两个余数相同,为什么? 布袋中有60块大小、形状都相同的木块,每15块涂上相同的颜色,一次至少取出多少块才能保证其中至少有3块颜色相同? 一副扑克牌一共有54张,至少从中取出多少张才能保证: (1)至少有4张牌的花色相同; (2)4种花色的牌都有; (3)至少有4张牌是黑桃。 2012名冬令营营员去游览长城、颐和园、天坛,规定每人最少去一处,最多去两处游览,至少有几个人游览的地方完全相同? 某班组织全班45人进行体育比赛,项目有A、B、C三种,规定每人至少参加一项,最多参加三项,至少有几人参加的项目是相同的?

六年级奥数题:抽屉原理.doc

学习好资料欢迎下载 十八抽屉原理(1) 年级班姓名得分 一、填空题 1.一个联欢会有 100 人参加 , 每个人在这个会上至少有一个朋友 . 那么这 100 人中至少有个人的朋友数目相同 . 2.在明年 ( 即 1999 年 ) 出生的 1000 个孩子中 , 请你预测 : (1) 同在某月某日生的孩子至少有个 . (2) 至少有个孩子将来不单独过生日 . 3.一个口袋里有四种不同颜色的小球 . 每次摸出 2 个 , 要保证有 10 次所摸的 结果是一样的 , 至少要摸次. 4.有红、黄、蓝三种颜色的小珠子各 4 颗混放在口袋里 , 为了保证一次能取 到 2 颗颜色相同的珠子 , 一次至少要取颗 . 2 颗, 那么一定至少要取出 如果要保证一次取到两种不同颜色的珠子各 颗 . 5.从 1,2,3 ,12 这十二个数字中 , 任意取出 7 个数 , 其中两个数之差是 6 的 至少有对. 6.某省有 4 千万人口 , 每个人的头发根数不超过 15 万根 , 那么该省中至少有人 的头发根数一样多 . 7.在一行九个方格的图中 , 把每个小方格涂上黑、白两种颜色中的一种 , 那么 涂色相同的小方格至少有个. 8. 一付扑克牌共有54 张 ( 包括大王、小王 ), 至少从中取张牌,才能保证其中必有 3 种花色 . 9.五个同学在一起练习投蓝 , 共投进了 41 个球 , 那么至少有一个人投进了 个球 . 10.某班有 37 名小学生 , 他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几种 , 那么其中至少有名学生订的报刊种类完全相同. 二、解答题 11. 任给 7 个不同的整数 , 求证其中必有两个整数 , 它们的和或差是10 的倍数 . 12.在边长为 1 的正方形内任取 51 个点 , 求证 : 一定可以从中找出 3 点, 以它们为顶点的三角形的面积不大于 1/50. 13.某幼儿园有 50 个小朋友 , 现在拿出 420 本连环画分给他们 , 试证明 : 至少有4 个小朋友分到连环画一样多 ( 每个小朋友都要分到连环画 ). 2, 或 3, 要使每 14. 能否在 8 8 的棋盘上的每一个空格中分别填入数字1, 或 行、每列及两条对角线上的各个数字之和互不相同?请说明理由 .

抽屉原理优秀教案

《数学广角——抽屉原理》 实验小学 潘聪聪

《数学广角——抽屉原理》 【教学内容】: 我说讲课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2。 【教学目标】: 知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。 过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 【教学重点】: 1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 2、“总有”“至少”具体含义,以及为什么商+1而不是加余数。【教学难点】: 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教法和学法】: 以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。 【教学准备】:一定数量的笔、铅笔盒、课件。 【教学过程】: 一、游戏激趣,初步体验 师:同学们喜欢做游戏吗?学习新课之前,我们先做个游戏,老师这里准备了2张凳子,请3个同学上来,(找生)听清要求,老师说“请坐”时,每个同学必须都坐下,谁没坐下谁犯规,(师背对)听明白了吗?好“请坐!”告诉老师他们都坐下了吗?老师不用看,就知道一定有一张凳

子上至少坐了两名同学,对吗?假如请这3位同学再反复坐几次,老师还敢肯定地说:“不管怎么坐,总有一张凳子上至少坐2名同学,你们相信吗?其实这个游戏里面蕴藏着一个非常有趣的数学原理,想不想通过自己动手实践来发现它? 【设计意图:在课前进行的游戏激趣,一是激发学生的兴趣,引起探究的愿望;二为今天的探究埋下伏笔。】 二、操作探究,发现规律 1、小组合作,初步感知。 师:下面我们先从简单的情况入手,请看大屏幕(出示例1:4只铅笔放入3个盒子中),有几种不同的放法?你能得到什么结论?下面我们小组合作(出示合作要求,请生读要求),看哪组动作最快? (1)、学生动手操作,讨论交流,老师巡视,指导; (2)、全班交流。 师:哪个小组愿意汇报一下你们的研究成果?(找生展示,师板书:(3,1,0)(2,2,0)(4,0,0)(1,1,2)。 师:老师也是这样摆的,我们一起看一下(课件演示)观察这几种放法,你能得到什么结论?(课件出示:不管怎么放,总有一个文具盒中至少有2枝铅笔)。 师:刚才我们把所有情况都一一列举出来,想一想不用一一列举,我们能不能只要一种情况,也能得到这个结论?(生答“平均分”的方法时,课件演示)每个盒子先放1枝,还剩几枝?(1枝)这1枝怎么摆?(放哪个里面都行)你有什么发现?(无论怎么放,总有1个盒子至少放2枝铅笔)。师:既然是平均分,能用算式表示吗?(生答,师板书:4÷3=1……1) 师:这里的4指的是什么?3呢?商1呢?余数1呢? 师:看来解决这个问题时,用平均分的方法比较简便。

小学六年级奥数 抽屉原理(含答案)

抽屉原理 知识要点 1.抽屉原理的一般表述 (1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。它的一般表述为: 第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。 (2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。它的一般表述为: 第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。 2.构造抽屉的方法 常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。 例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点, (13) 点牌各一张),洗好后背面朝上放。一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。 点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。 点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。 解(1)13×2+1=27(张)(2)9×4+1=37(张) 例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内? 点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。 解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。 (2)要保证有5人的属相相同的最少人数为4×12+1=49(人) 不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。例3有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色相同?(2)四种花色都有?点拨首先我们要弄清楚一副扑克牌有2张王牌,四种花色,每种有13张。(1)按最不利原则先取出2张为王牌,再取4张均不同花色,再连续取两次4张也均不同花色,这时必能保证每一花色都有3张,再取1张即可达到要求。(2)仍需按最不利原则去取牌,先是2张王牌,接着依次把三种花色的牌全部取出13×3,这时假设仍是没有四种花色,再取1张即可。 解 (1)2+4×3+1=15(张) (2)2+13×3+1=42(张) 例 4 学校买来红、黄、蓝三种颜色的球,规定每位学生最多可以借两种不同颜色的球。那么至少要来几名学生借球,就能保证必有两名学生借的球的颜色完全相同? 点拨根据题中“最多可借两种不同颜色的球”,可知最多有以下6种情况: 解借球有6种情况,看做6个抽屉, 所以至少要来7名学生借球,才能保证。 例5 从前面30个自然数中最少要取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小

抽屉原理典型习题

抽屉原理 规律:用苹果数除以抽屉数,若除数不为零,则“答案”为商加1; 若除数为零,则“答案”为商 抽屉原则一:把n个以上的苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有两个苹果。 抽屉原则二:把多于m x n 个苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有(m+1)个苹果。 一、基础训练。 1、把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽屉, 它里面至少有______个苹果。 2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面 至少有_______只鸽子。 3、从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从 它里面至少拿出______个苹果。 4、从______个抽屉中(填最大数)拿出25个苹果,才能保证一定能找出一个抽屉,从它 当中至少拿出7个苹果。 二、拓展训练。 1、六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86 分以上后就说:“我可以断定,本班至少有4人成绩相同”。王老师说的对吗?为什么2、从1、2、3……,100这100个数中任意挑出51个数来,证明这51个数中,一定有(1)2个数互质(2)有两个数的差是50 3、圆周上有2000个点,在其上任意地标上0、1、2……、1999(每一点只标一个数,不同 的点标上不同的数),求证:必然存在一点,与它紧相邻的两个数和这点上所标的三个数之和不小于2999. 4、有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号,证明:在200个信号 中至少有四个信号完全相同。 5、在圆周上放着100个筹码,其中有41个红的和59个蓝的,那么总可以找到两个红筹码, 在他们之间刚好有19个筹码,为什么?

康德以及他的批判性思维

康德以及他的批判性思维 “有两种东西,我对它们的思考越是深沉和持久,它们在我心灵中唤起的惊奇和敬畏就会日新月异,不断增长,这就是我头上的星空和心中的道德定律。” 这句名言出自康德的《实践理性批判》最后一章,同时也被永远的刻在了康德的墓碑上。这是康德十分著名的一句话,充分的反应了他“仰望星空与反省自己”的思想。虽然康德是德国古典哲学的创始人,是一名唯心主义者和不可知论者,但是,他的这个思想依旧给我以很大的启迪。仰望星空说明要目光远大怀揣梦想,而反省自己似乎又是不断自我提升,脚踏实地的含义。即使作为一名马克思主义者,作为一名唯物主义者,我依旧认为这样的思想十分必要,只是不要过于偏激。魏老师曾举了一个十分生动的例子:刚刚出生的婴儿如果不认识外界世界,而只记得自我反省,那么他将是脱离实际的,也是不可取的。但是我们如果将自我反省运用到现实生活中,那么也将起到事半功倍的作用。 康德的博学使得我们很难用一个称号来评定他,他是哲学家、天文学家、星云说的创立者之一、德国古典哲学的创始人,唯心主义,不可知论者,德国古典美学的奠定者,他也被认为是对现代欧洲最具影响力的思想家之一。他在校任讲师15年,在此期间康德除讲授物理学和数学外,还讲授逻辑学、形而上学、道德哲学、火器和筑城学、自然地理等等很多风马牛不相及的课程。但是他最伟大之处,还是在他的哲学成就上。《纯粹理性批判》、《实践理性批判》和《判断力批判》这三本著作用去了他将近十年的岁月,但是却奠定了永远的哲学高度。德国诗人海涅说: “康德引起这次巨大的精神运动,与其说是通过他的著作的内容,倒不如说是通过在他著作中的那种批判精神,那种在当前已经渗入于一切科学之中的批判精神。”换句话说,“批判”是康德哲学的灵魂,“批判”精神是康德哲学的根本精神。康德的批判不是针对具体对象的批评,而是对一般形而上学的可能性进行审查。这种审查,康德将其分解为对三个问题的追问,即我能知道什么? 我应该做什么? 我希望什么? 针对这三个问题,他一步步展示了他的分析批判,并形成了其新的哲学体系。 《纯粹理性批判》在康德哲学体系中的地位最重要,是他批判哲学体系中的批判精神得以彰显的理论基石。这里康德要解决的是认识论的问题———我能知

六年级奥数举一反三第30周抽屉原理

六年级奥数举一反三第30周抽 屉原理 专题简析; 在抽屉原理的第【2】条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式; 元素总数=商×抽屉数+余数 如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。 例题1; 幼儿园里有120个小朋友,各种玩具有364件。把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具? 把120个小朋友看做是120个抽屉,把玩具件数看做是元素。则364=120×3+4,4<120。根据抽屉原理的第【2】条规则;如果把m×x×k【x>k≥1】个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。 练习1; 1·一个幼儿园大班有40个小朋友,班里有各种玩具125件。把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具? 2·把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。这是为什么? 3·把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球? 例题2; 布袋里有4种不同颜色的球,每种都有10个。最少取出多少个球,才能保证其中一定有3个球的颜色一样? 把4种不同颜色看做4个抽屉,把布袋中的球看做元素。根据抽屉原理第【2】条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。即2×4+1=9【个】球。列算式为 【3—1】×4+1=9【个】 练习2; 1·布袋里有组都多的5种不同颜色的球。最少取出多少个球才能保证其中一定有3个颜色一样的球? 2·一个容器里放有10块红木块·10块白木块·10块蓝木块,它们的形状·大小都一样。当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块? 3·一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。至少要取出几张牌,才能保证其中必有4张牌的点数相同? 例题3; 某班共有46名学生,他们都参加了课外兴趣小组。活动内容有数学·美术·书法和英

浅谈抽屉原理问题解题技巧

浅谈抽屉原理问题解题技巧 令狐采学 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果[是“至少两个苹果”吧?]。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素[这个定义是有问题的。苹果的问题还可以认为抽屉不能空,“多于N+1个元素在n个集合中必定有两个元素的集合”无论集合空不空肯定是不对的。应该也是“至少两个元素”]。它是组合数学中一个重要的原理[这一段应该是百度百科里的内容。但是注意百科左边的图片里也是“至少有2个苹果”,下面的解析里的狄利克雷原则也是正确定义的。希望老师在引用的时候仔细分辨。]。抽屉原理看似简单,但它是近年来公考行测广大考生很容易丢分的部分。考生不能有效得分的主要原因:一是考生只是去背诵抽屉原理相关定理与公式;二是考生不能透彻理解应用“最不利原则”的思维角度。 目前,处理抽屉原理问题最基本和常用的方法是运用“最不利原则”,构造“最不利”“点最背”的情形。下面利用几道例题对抽屉原理问题的解法进行一下探讨。

一.基础题型 【例1】从一副完整的扑克牌中至少抽出()张牌才能保证至少6张牌的花色相同? A.21 B.22 C.23 D.24 解析:题目要求保证:6张牌的花色相同.考虑最不利情形:每种花色取5张,一共20张,然后抽出大小王共2张,总共22张,再抽取任意一张都能保证6张花色相同,共23张.因此,答案选C. 【例2】一副无“王”的扑克牌,至少抽取几张,方能使其中至少有两张牌具有相同的点数?() A.10 B.11 C.13 D.14 解析:题目要求:两张牌具有相同的点数.考虑最不利情形:从中任取一种花色的牌13张,每张牌点数都不同,再抽取任何一张点数都会重复,总共抽取14张。因此,答案选D. 【例3】调研人员在一次市场调查活动中收回了435份调查试卷,其中80%的调查问卷上填写了被调查者的手机号码.那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?() A.101 B.175 C.188 D.200

六年级奥数讲义第29讲抽屉原理

抽屉原理 专题简析: 如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的“抽屉原理”。 基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。(2)如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。 利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。b、把元素放入(或取出)抽屉。C、说明理由,得出结论。 例题1: 某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么? 练习1: 1、某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,

为什么? 2、某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天? 3、15个小朋友中,至少有几个小朋友在同一个月出生? 例题2: 某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)? 练习2:

1、某班学生去买语文书、数学书、外语书、美术书、自然书。买书的情况是:有买一本的、二本的、三本或四本的。,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)? 2、学校图书室有历史、文艺、科普三种图书。每个学生从中任意借两本,那么至少要几个同学才能保证一定有两人所借的图书属于同一种? 3、一只袋中装有许多规格相同但颜色不同的玻璃珠子,颜色有绿、红、黄三种,问最少要取出多少个珠子才能保证有两个同色的? 例题3: 一只袋中装有许多规格相同但颜色不同的手套,颜色有黑、红、蓝、黄四种。问最少要摸出多少只手套才能保证有3副同色的?

简单抽屉原理与最不利原则(下)

(★★★) 在一个盒子里装着形状相同的三种口味的果冻,分别是苹果口味、巧克力口味和香芋口味的,每种果冻都有20个,现在闭着眼睛从盒子里拿果冻。请问: ⑴至少要从中拿出多少个,才能保证拿出的果冻中有香芋口味的? ⑵至少要从中拿出多少个,才能保证拿出的果冻中至少有两种口味? (★★★) 口袋中有三种颜色的筷子各10根,问: ⑴至少取多少根才能保证三种颜色都取到? ⑵至少取多少根才能保证有2双颜色不同的筷子? ⑶至少取多少根才能保证有2双颜色相同的筷子? (★★★) 一个布袋里有大小相同的颜色不同的一些球,其中红色的有10个,白色的有9个,黄色的有8个,蓝色的有3个,绿色的有1个。那么一次最少取出多少个球,才能保证有4个颜色相同的球? (★★★★) 将1只白手套、2只黑手套、3只红手套、8只黄手套和9只绿手套放入一个布袋里,请问: ⑴一次至少要摸出多少只手套才能保证一定有颜色相同的两双手套? ⑵一次至少要摸出多少只手套才能保证一定有颜色不同的两双手套?(两只手套颜色相同即为一双)

(★★★★) 一副扑克牌54张。 ⑴一次至少要抽出多少张才能保证有3张花色相同? ⑵一次至少要抽出多少张才能保证3种花色都有? (★★★★★) ⑴从大街上至少选出多少人,才能保证至少有3人属相相同? ⑵为保证至少5个人的属相相同,但不保证有6人属相相同,那么总人数应在什么范围内? (★★★★★) 幼儿园小朋友分200块饼干,无论怎样分都有人至少分到8块饼干,这群小朋友至多有多少名? 重点例题:例2,例4,例6

在线测试题 温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。 1.(★★★) 在一个袋子里装着形状相同的四种口味的糖果,分别是草莓口味、巧克力口味、菠萝口味和苹果口味的,每种糖果各有15块。现在闭着眼睛从盒子里拿果冻,那么至少要从中拿出()块,才能保证拿出的果冻中有菠萝口味的糖果。 A.16B.31C.46D.60 2.(★★★) 口袋中有四种颜色的筷子各6双,至少取()根才能保证四种颜色都取到;至少取()根才能保证有2双颜色相同的筷子。 A.37、13B.19、16C.25、12D.13、19 3.(★★★) 一个布袋里有大小相同的颜色不同的一些球,其中红色的有12个,白色的有11个,黄色的有9个,蓝色的有4个,绿色的有2个。那么一次最少取出()个球,才能保证有5个颜色相同的球。 A.20B.16C.14D.12 4.(★★★★) 将5只白手套、4只黑手套、8只红手套、10只黄手套和15只绿手套放入一个布袋里,那么一次至少要摸出()只手套才能保证一定有颜色相同的三双手套;一次至少要摸出()只手套才能保证一定有颜色不同的三双手套。(两只手套颜色相同即为一双) A.16、23B.24、20C.17、23D.25、29 5.(★★★★) 一副扑克牌54张。一次至少要抽出()张才能保证有4张花色相同;一次至少要抽出()张才能保证有2种花色。 A.16、19B.15、16C.20、19D.23、28 6.(★★★★) 为保证至少4个人的属相相同,但不保证有6人属相相同,那么总人数应在()范围内。 A.48至72B.48至60C.36至61D.37至60

六年级奥数举一反三第29周抽屉原理

六年级奥数举一反三第29周抽屉原理 专题简析; 如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的“抽屉原理”。 基本的抽屉原理有两条;(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。(2)如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。 利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答;a·构造抽屉,指出元素。b·把元素放入(或取出)抽屉。C·说明理由,得出结论。 本周我们先来学习第(1)条原理及其应用。 例题1; 某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么? 把一年中的天数看成是抽屉,把学生人数看成是元素。把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,即至少有两个学生的生日是同一天。 平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。 练习1; 1·某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么? 2·某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天? 3·15个小朋友中,至少有几个小朋友在同一个月出生? 例题2; 某班学生去买语文书·数学书·外语书。买书的情况是;有买一本的·二本的·也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)? 首先考虑买书的几种可能性,买一本·二半·三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。要保证至少有一个抽屉里有2人,那么去的人数应大于抽屉数。所以至少要去7+1=8(个)学生才能保证一定有两位同学买到相同的书。 买书的类型有; 买一本的;有语文·数学·外语3种。 买二本的;有语文和数学·语文和外语·数学和外语3种。 买三本的;有语文·数学和外语1种。 3+3+1=7(种)把7种类型看做7个抽屉,要保证一定有两位同学买到相同的书,至少要去8位学生。 练习2;

抽屉原理基本介绍

基本介绍 应用抽屉原理解题 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 例1:同年出生的400人中至少有2个人的生日相同。 解:将一年中的365天视为365个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有2人的生日相同. 400/365=1…35,1+1=2又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。 “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” 例2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理. 解:从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同. 上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少. 抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。 制造抽屉是运用原则的一大关键 例1 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。 分析与解答我们用题目中的15个偶数制造8个抽屉: 此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点).由制造的抽屉的特点,这两个数的和是34。 例2:从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

国外批判性思维研究概述

国外批判性思维研究概述 [摘要] 批判性思维是理性和创造性的核心能力,没有批判性思维教育就没有真正的素质教育。本文从心理学和教育领域对国外批判性思维的研究进行了总结,并对我国批判性思维的发展提出了建议。 [关键词] 批判性思维;国外;研究概述 批判性思维(critical thinking)在学习、研究和工作中具有极其重要的作用。随着世界多极化、经济全球化的深入发展,提高国民素质、培养具有批判性思维能力的人才的重要性和紧迫性日益凸显。保尔(Paul)曾断言[1] “批判性思维”将会成为21世纪教育的本质性基础。以下从心理学和教育领域对国外批判性思维进行论述。 1. 批判性思维在心理学领域的发展 批判性思维正式成为理论是在心理学领域的发展,也是批判性思维发展的重要领域。心理学者们对批判性思维的研究从1910年开始发展至今,大致经历了四个阶段。 第一阶段:初级萌芽(1910年—1939年)早期关于批判性思维的研究文献并不多,主要以杜威的研究为主。20世纪初,杜威在《我们怎样思维》一书中系统论述了什么是反省思维(Reflective Thinking)。杜威认为教育的目的就是学会反省思维,他在之后的工作中初步明确了反省思维的性质和结构,并把概念、分析、综合、判断、理解、推理、假设和检验作为反省思维的基本要素。[2]杜威对反省思维的分析为批判性思维在之后的很长一段时间内的发展指明了方向,并且形成了批判性思维研究的一种系统理论框架。 第二阶段:逐步发展(1940年—1970年)

1941年,美国教育心理学家格拉泽在《批判性思维发展实验研究》一书中从 儿童心理学角度出发研究批判性思维,“批判性思维”术语被正式提出并确定下 来。此后,批判性思维研究的著作逐渐增多。布莱克(1946)的《批判性思维:逻辑与科学方法引论》,美国教育委员会(1954)出版的《社会科学中的批判性思维》,帕尔默(1955)等人的《阅读与写作中的批判性思维》,费希尔(1956)的《批判性思维与 人文学科》。批判性思维的认知发展理论和批判性思维技能理论研究在这一时期也开始被关注。20世纪60年代现代认知心理学快速发展,皮亚杰认知发展理论被研 究者从认知发展阶段的角度引进批判性思维的研究领域。批判性思维技能理论研究也初露锋芒,主要代表人物有恩尼斯、巴迪门、阿伦、罗特。恩尼斯(1962)在《哈 佛教育评论》发表题为“批判性思维的概念”的文章,对批判性思维技能的性质进 行阐述,这标志着批判性思维技能的发展进入一个新的阶段。 第三阶段:初步繁荣(1970年—1990年)批判性思维在这二十年进入了初步繁 荣阶段,批判性思维的著作和论文研究有了显著性增加。以恩尼斯(1980)、迈克佩 克(,1980)、西格尔(1985)和保罗(1982)为代表的批判 性思维技能理论发展迅速,并占据主导地位。信息加工理论的不断发展被人们 用于对批判性思维技能理论的深入研究(Cornbleth C,1983; Postiglione R A,1987)。批判性思维的认知阶段理论继续受到研究学者的关注并得到进一步发展(Hatcher D,1987; Siegel H,1985)。这一时期,美国的批判性思维运动正如火如荼进行着,美国各大高校结合自身的发展特色提出了一系列关于批判性思维发展的措施,并积极地付诸实施。哈佛大学校长博克(1986)在《高等教育》一书中系统论述 了文理教育,提出文理教育的重要目标就是批判性思维。哥伦比亚大学的核心课程 的教育目标就是培养学生的批判性思维能力和科学探索能力。[3]关于批判性思维 的教学效果、方法、测量工具的开发以及测评理论的研究均逐步发展(Garoian C R, 1988; Norris S P, 1986)。 第四阶段:空前繁荣(1990年至今)

相关主题
文本预览
相关文档 最新文档