当前位置:文档之家› 玻璃钢锚杆力学性能参数

玻璃钢锚杆力学性能参数

玻璃钢锚杆力学性能参数
玻璃钢锚杆力学性能参数

玻璃钢锚杆

特点:

1、杆体轻(仅为同体积钢材重量的1/4) 易于安装施工,通用锚杆机均可操作,减轻劳动强度,节省运输成本;

2、不腐蚀耐环境性强,不反射电磁波,可满足永久支护需求;

3、易切割不产生火花,便于综采作业,有利于生产安全,提高生产效率;

4、比强度高;

5、杆体通体全螺纹,握裹力强,锚固力大;

6、根据支护需求,可任意调整截取锚杆杆体长度。玻璃钢锚杆有关技术参数:

全螺纹式树脂玻璃纤维增强塑料体,是由高性能树脂与高强度玻璃纤维,辅以多种添加剂,再经特殊工艺加工而成的复合材料。

因其材质特殊,适用于大多数巷道施工,继而将逐步取代传统钢锚杆。也被称之为玻璃纤维锚杆或玻璃钢锚杆。

与钢锚杆相比,其优点主要有以下:

杆体易切割:玻璃钢锚杆为复合材料容易切割,可对采煤机刀头起到保护作用;

防爆防静电:切割时不会产生火花,对巷道安全施工极为有利,特别适合高瓦斯浓度区域;

高强耐腐蚀:高承载能力、抗拉力强,杆体强度优于等直径的螺纹钢,可用作长久支护;

轻便易操作:重量仅为同等规格钢锚杆的1/4。可在隧道和煤矿等狭小空间方便使用;使施工更容易,从而减轻工人劳动强度。

一、概述:

全螺纹式树脂锚杆玻璃纤维增强塑料杆体是由全螺纹杆体与托盘、螺母等组成,杆体材料为玻璃纤维增强塑料,杆体结构如图1所示。

全螺纹式树脂锚杆玻璃纤维增强塑料杆体与树脂锚杆锚固剂配套使用,主要用于煤巷护帮锚杆支护。

二、产品规格及表式方法:

1.杆体标记形式如下:

示例:公称直径为20mm,长度为1800mm,杆体尾部结构为非金属材料的全螺纹式树脂锚杆玻璃纤维增强塑料杆体,可标记为MGSL20/1800F。

玻璃钢基本性能

玻璃钢基本性能 概述 玻璃钢是一种用途广泛的纤维复合材料,是以玻璃纤维为增强材料,以合成树脂为基体复合而成的新型工程材料. 玻璃钢的基本性能十分复杂.不同的玻璃纤维和不同的合成树脂所组成的玻璃钢的性能是不相同的,即使采用同一牌号的玻璃纤维和同一牌号的树脂,只要其间的配比不同,其性能(包括力学、物理、化学方面的性能和静态、动态方面的性能)就不会相同.充分了解玻璃钢的基本性能,才能合理地进行玻璃钢结构设计,用其所长,避其所短.玻璃钢的基本力学性能(包括静态和动态的力学性能)是进行玻璃钢结构设计的重要依据.静态力学性能一般是指玻璃钢在某一初始阶段的力学性能,其中最重要的是强度和弹性性能,动态力学性能与时间有关,例如蠕变、疲劳等是玻璃钢材料随着时间延续,在持久载荷或交变载荷作用下所反映出来的特性;冲击性能则是材料在极短的时间内承受载荷的特性.一般玻璃钢工程结构设计大都是选用静态力学性能参数进行设计.但如果不考虑动态力学性能的影响,很可能十分危险.在选用静态力学性能参数的同时,必须充分考虑动态力学性能对实际结构的影响,选择合适的安全系数. 玻璃钢的主要力学性能大致有如下特点: (1)强度和弹性性能的可设计性.因玻璃钢是由玻璃纤维和合成树脂组成的,所以人们可以通过改变这两个组分材料的配比,和改变玻璃纤维的分布方向,在一定范围内获得不同强度和弹性性能的玻璃钢.例如,对于单向受结构,可以采用单向铺层方式,即可将单向玻璃布或玻璃纤维沿受力方向铺设.这种单向铺层方式能够在纤维方向获得很高的强度,而在垂直于纤维方向,则没有多余的强度储备.又如,对于双向受力的结构;可以采用双向铺层和多向铺层方式,并根据双向受力的大小,采用不同双向纤维量分布.对不同方向选用适当的纤维用量,不仅可以使玻璃钢在不同方向具有不同的强度值,也可以使其具有不同的弹性模量. 上述特点所表现出来的强度和弹性的可设计性,使得从事结构设计的研究者也同时参与到材料的设计中去了,这对于结构设计是十分重要的. (2)各向异性性能,玻璃钢在不同方向上具有不同的力学性能,因此是一种各向异性材料. 玻璃钢是由若干个单层板层合起来,构成一个多层的层合板(壳)结构.每一个单层板在

金属材料力学性能最常用的几项指标

金属材料力学性能最常用的几项指标 硬度是评定金属材料力学性能最常用的指标之一。 对于金属材料的硬度,至今在国内外还没有一个包括所有试验方法的统一而明确的定义。就已经标准化的、被国内外普通采用的金属硬度试验方法而言,金属材料硬度的定义是:材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种测试方法是最长用的,它们是金属硬度检测的主要测试方法。而洛氏硬度试验又是应用最多的,它被广泛用于产品的检测,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的及不可移动工件的硬度检测。 1.布氏硬度计原理 对直径为D的硬质合金压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验

锚杆的锚固长度设计计算

锚杆(索) 1.锚杆(索)的作用机理 立柱在荷载的作用下,有绕着基地转动的趋势,此时可以利用灌浆锚杆(索)的抗拔作用力来进行抵抗。灌浆锚杆(索)指用水泥砂浆(或水泥浆、化学浆液等)将一组钢拉杆(粗钢筋或钢丝束、钢轨、小钢筋笼等)锚固在伸向地层内部的钻孔中,并承受拉力的柱状锚固体。它的中心受拉部分是拉杆。其受拉杆件有粗钢筋,高强钢丝束,和钢绞线等三种不同类型。而且施工工艺有简易灌浆、预压灌浆以及化学灌浆。锚固的形式应根据锚固段所处的岩土层类型、工程特征、锚杆(索)承载力大小、锚杆(索)材料和长度、施工工艺等条件,按表1-1进行具体选择。 同时,为了更好地对锚杆(索)进行设计,以下将对锚杆(索)的抗拔作用力机理进行介绍。 锚杆(索)的抗拔作用力又称锚杆(索)的锚固力,是指锚杆(索)的锚固体与岩土体紧密结合后抵抗外力的能力,或称抗拔力,它除了跟锚固体与孔壁的粘结力、摩擦角、挤压力等因素有关外,还与地层岩土的结构、强度、应力状态和含水情况以及锚固体的强度、外形、补偿能力和耐腐蚀能力有关。 许多资料表明,锚杆(索)孔壁周边的抗剪强度由于地层土质不同,埋深不同以及灌桨方法不同而有很大的变化和差异。对于锚杆(索)抗拔的作用机理可从其受力状态进行分析,由图1-1表示一个灌浆锚杆(索)中的砂浆锚固段,如将锚固段的砂浆作为自由体,其作用力受力机理为: 锚杆选型表1-1

当锚固段受力时,拉力T 。首先通过钢拉杆周边的握固力(u)传递到砂浆中,然后再通过锚固段钻孔周边的地层摩阻力(τ)传递到锚固的地层中。因此,钢拉杆如受到拉力作用,除了钢筋本身需要有足够的截面积(A)承受拉力外,锚杆(索)的抗拔作用还必须同时满足以下三个条件: ①锚固段的砂浆对于钢拉杆的握固力需能承受极限拉力; ②锚固段地层对于砂浆的摩擦力需能承受极限拉力; ③锚固土体在最不利的条件下仍能保持整体稳定性。 以上第①、②个条件是影响灌浆锚杆(索)抗拔力的主要因素。 i 孔壁摩阻力τ i 图1-1 灌浆锚杆(索)锚固段的受力状态 2.锚杆(索)的设计计算 锚杆(索)的设计原则: (1)锚杆(索)设计前应进行充分调查,综合分析其安全性、经济性与可操作性,避免其对路堤周围构筑物和埋设物产生不利影响。 (2)设计锚杆(索)时应考虑竣工后荷载作用对路堤的影响,要保证它们在载荷作用下不产生有害变形。 (3)设计锚杆(索)时,应对各种设计条件和参数进行充分的计算和试验来确定,只有少数有成熟的试验资料及工程经验的可以借用。 锚杆(索)的设计要素: 锚杆(索)的设计要素包括:锚杆(索)长度、锚固长度、相邻结构物的影

工程材料力学性能答案

工程材料力学性能答案1111111111111111111111111111111111111 1111111111111111111111111111111111111 111111 决定金属屈服强度的因素有哪 些?12 内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。试举出几种能显著强化金属而又不降低其塑性的方法。固溶强化、形变硬化、细晶强化试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?21韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。何谓拉伸断口三要素?影响宏观拉伸断口性态的

因素有哪些?答:宏观断口呈杯锥形,纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化?断裂强度与抗拉强度有何区别?抗拉强度是试样断裂前所承受的最大工程应力,记为σb;拉伸断裂时的真应力称为断裂强度记为σf; 两者之间有经验关系:σf = σb (1+ψ);脆性材料的抗拉强度就是断裂强度;对于塑性材料,于出现颈缩两者并不相等。裂纹扩展受哪些因素支配?答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。2222222222222222222222222222222222 2222222222222222222222222222222222 2222 试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。答:单向拉伸试验的特点及应用:单向拉伸的应力状态较硬,一般用于塑性变形

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

锚杆参数计算

铁迈煤矿锚杆(索)支护参数计算 一、锚杆长度: 按照加固拱原理确定锚杆参数: L≥L1+L2+L3 其中:L -------锚杆全长,m; L1-------锚杆外露长度,一般取0.05-0.2m,包括垫板、螺母;为了进行拉拔试验通常取0.2M. L2-------锚杆有效长度(顶锚杆免压拱高与帮锚杆破碎深度较大值)m; L3-------锚杆锚固长度,一般为0.3-0.5m; L2= [B/2+Htan(45°-W/2)]/f 其中:L2-------锚杆有效长度,m; B-------巷道掘进跨度,取3.8m; H-------巷道掘进高度,取3.5m; W-------围岩(煤体)内摩擦角,取45°; f-------岩石普世系数,取2.5;则 L2=[3.8/2+3.5*tan(45°-45°/2)]/2.5=1.34 所以锚杆长度L≥L1+L2+L3=0.2+1.34+0.5=2.0m,因此采用长度 为2.0m的锚杆;

结论1:锚杆长度确定为2.0m 二、锚杆间排距 B=√---Q/-(khr)------ 式中: B:锚杆间排距; Q:锚杆锚固力;取80KN K:安全系数,取2; h:巷道掘进宽度;3.8m r:上覆岩层平均体积重量取25 KN/m3 则:B=√---Q/-(khr)-----= √-80/(2*3。8*25--=0.649m,取0.6m. 结论2:锚杆间排距确定为0.6m. 三、锚索长度: 为了加强锚固体的强度,减少煤岩顶板冒落,采用锚索的长度为: L=L1+L2+L3+L4 其中:L---------锚索长度,m; L1 --------锚索深入稳定岩层锚固长度,m; L2 --------需要悬吊不稳定岩层(煤体厚度),取 2.5m; L3 --------上托盘及锚具厚度,0.15m; L4 --------需要外露张拉的长度,取0.25m。

竹子的力学特性

选题:从力学观点分析竹子的力学特征 徐锴,材料1302,2013012057 【摘要】本文通过分析竹子的材料和构造,说明竹子的强度特性。并通过该种特性进行一些实际应用设计,本文选用建筑中的应用。 【关键词】竹子,强度,建筑,可持续发展 1、收集的常识【1】: (1)竹,禾本科,竹木质化,有明显的节,节间常中空,高大、生长迅速,竹枝杆挺拔,修长。(2)分布于热带、亚热带至温带地区,其中东亚、东南亚和印度洋及太平洋岛屿上分布最集中,种类也最多。 (3)在竹材研究方面,国内外对竹材的物理性质研究的较多,研究重点主要集中在密度、吸水率及干缩性等方面。密度在很大程度上决定着竹材的力学性质,密度主要取决于纤维含量、纤维直径及细胞壁厚度,密度随纤维含量增加而增加。 2、分析竹子强度特性【2】 相比较于钢材,竹子体轻,但是硬度大。根据实验测定, 竹材的形变量非常小, 弹性和韧性却很高, 顺纹抗拉强度170M Pa, 顺纹抗压强度达80M Pa。特别是刚竹, 其顺纹抗拉强度最高竟达280M Pa, 几乎相当于同样截面尺寸材的一半。虽然钢材的抗拉强度为一般竹材的2.5~3倍,但若按单位重量计算抗拉能力,则竹材要比钢材强2~3倍。

3、竹强度大的力学分析 3.1 空心圆截面的强度分析【4】 (1)根据化工设备机械基础的弯曲强度理论【4】, 杆件强度主要指标是弯曲应力。弯曲强度条件为 ][W M max max σσ≤=。 要提高杆件的强度, 除了合理安排受力, 降低M max 的数值以外, 主要是采用合理的截面形状, 尽量提高抗弯截面模量W 的数值, 充分利用材料。,实心圆截面和空心圆截面的抗弯截面模量分别是 3d 321W π=实 )1(32 1W 43απ-=D 空 式中, d 是实心杆直径, D 是空心杆外径, 1D 是空心杆内径。2 1D D = α为空心杆内、外径比值, 当空心杆和实心杆的截面积相同时 )(2122D -D 4 1d 41ππ=或212D -D d = 则11-1-1D 32 1d 321W W 22433>+==α ααππ)(空实 (1)根据以上分析, 空心圆截面杆的抗弯强度比同样截面积的实心杆大; 并且空心圆截面杆内、外直径的比值α越大,其抗弯强度也随之增大。 例如, 当α= 0。 7 时, 它的抗弯强度比同样重量的实心圆截面大2倍。 因为, 杆件抗弯时从正应力的分布规律可知在杆截面上离中性轴越远, 正应力越大, 而中性轴附近的应力很小, 这样其材料的性能未能充分发挥作用。 若将实心圆截面改为空心圆截面, 也就是将材料移置到离中性轴较远处, 却可大大提高抗弯强度。 (2)在风荷载下,竹子主要抵抗的是弯矩和剪力。对于抗弯,边缘最大正应力与截面的截面惯性矩I 成反比,而I 随截面半径增大而增大,故空心结构形成的大半径有利于降低边缘最大正应力提高抗弯能力。 3.2 材料分布的强度分析 (1)由于边缘的正应力最大,故将优质材料布置在边缘是最优化的结构布置,竹子就做到了这点:竹壁自外而内,分为竹青、竹肉和竹黄三个部分,竹子的表面呈现出青色的叫竹青,

锚杆支护参数计算

1 地质条件 岱庄煤矿综掘煤巷位于313采区中部,沿3上煤层顶板掘进,巷道底板标高在-203~-208m ,地表松散层厚度平均36m ;煤层厚度为3~3.83m ,平均3.4m ;煤层直接顶为砂质泥岩,厚度在0.60~.95m 之间,平均0.8m ;老顶为细砂岩,厚度15m 左右;底板为粉砂岩,厚度在1.158~.58m ,平均为4.9m 。 煤巷两侧及底板为煤体,粘聚力0.45MPa 、内摩擦角26°、容重1.33kg /m 3、单向抗压强度6.35MPa ;煤巷顶板为砂质泥岩,粘聚力2MPa 、内摩擦角28°、容重 2.76kg/m 3单向抗压强度20MPa ;原岩应力6.48MPa ;围岩稳定性系数为1.7,巷道围岩为Ⅳ类,属较稳定围岩。 2 锚杆及托盘材料 目前顶板锚杆采用Φ16mm 螺纹钢,设计强度240MPa ,托盘为铸钢托盘;两侧采用压缩木锚杆,设计强度17.6MPa 。 3 锚杆支护参数计算 3.1锚杆长度计算 21l l l += (1) 式中:1l 为锚杆外露长度,一般为0.1m ;2l 为被锚固围岩的厚度, 2/2h R l p -= (2) Ccon rH rH R R p +=sin 0 (3) 式中:p R 巷道围岩塑性区半径;o R 为矩形断面的等效圆掘进半径(见图1),其值为 2.18m ;h 为巷道宽度或高度,两者之间取小值,即h =2.6m 。 将上述巷道围岩参数代入式(3)得: ①巷道顶板岩层: m con R p 53.228228sin 48.648.618.2=?+?= ②卷道侧壁(煤体): m con R p 08.32645.026sin 48.648.618.2=?+?= 由式(2),得锚杆锚固区围岩厚度: 煤巷顶板岩层:m l 23.12=

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

钢材力学性能标准一览表

钢材力学性能指标汇总表 钢筋的公称横截面积与公称重量 公称直径,mm 公称横截面积mm 2 公称重量,Kg/m 6.5 33.18 8 50.27 0.395 10 78.54 0.617 12 113.1 0.888 14 153.9 1.21 16 201.1 1.58 18 254.5 2.00 20 314.2 2.47 22 380.1 2.98 25 490.9 3.85 28 615.8 4.83 32 804.2 6.31 36 1018 7.99 40 1257 9.87 50 1964 15.42 注:表中公称重按密度为7.85g/cm3计算。 一、钢筋混凝土用热轧带肋钢精GB1499-1998 1、力学性能 牌号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 不小于 HRB335 6~25 28~50 335 490 16 HRB400 6~25 28~50 400 570 14 HRB500 6~25 28~50 500 630 12 2、弯曲性能(按下表规定的弯心直径弯曲180°后,钢筋受弯曲部位表面不得产生裂纹) 牌号公称直径mm 弯曲试验弯心直径 HRB335 6~25 28~50 3a 4a HRB400 6~25 28~50 4a 5a HRB500 6~25 28~50 5a 7a 二、钢筋混凝土用热轧光圆钢筋GB13013-91 表面形状钢筋级别强度等级代号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯d弯心直径a公称直径 不小于 光圆Ι R235 8~20 235 370 25 180°d=a 三、低碳钢热轧圆盘条GB/T701-1997 牌号屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯180°d弯心直径a公称直径 不小于 Q215 215 375 27 d=0 Q235 235 410 23 d=0.5a 四、冷轧扭钢筋JG3046-1999

锚杆锚索参数计算

(一)按加固拱原理确定锚杆参数 综合分析国内外关于锚杆参数的经验数据和规定,对于跨度小于10米的巷道、硐室,可按下面经验公式确定锚杆参数 1.锚杆长度L=N(1.1+W/10) =1.1×(1.1+3.6/10) =1.606m (2200mm) 2.锚杆间(排)距D≤0.5L=0.5×1.606 =0.803m (800×900mm) 3.锚杆直径d=1/110×L=1/110×1.606 =0.0146米=14.6mm (18mm)式中W-巷道或硐室跨度,米;取3.6; N-围岩稳定量影响系数,取1.1,规定如下: Ⅱ类(稳定性较好)围岩,N=0.9; Ⅲ类(中等稳定)围岩,N=1.0; Ⅳ类(稳定性较差)围岩,N=1.1; Ⅴ类(不稳定)围岩,N=1.2; 通过计算,φ18×L2200(mm)锚杆满足设计要求,间排距800×900(mm)满足设计要求。 (二)悬吊理论校核锚索间(排)距 为防止巷道顶板岩层发生大面积整体跨落,用φ17.8mm,L=6300mm的钢绞线,将锚杆加固的“组合梁”整体悬吊于坚硬岩层中,校核锚索间(排)距,冒落方式按最严重的冒落高度大于锚杆长度的整体冒落考虑,此时,靠巷

道两帮锚杆和锚索一起发挥悬吊作用,在忽略岩体粘结力和内摩擦力的条件下,取垂直方向力的平衡,可用下式计算锚索间(排)距。 L=nF2/[BHγ-(2F1sinθ) /L1] 式中L-锚索间(排)距,m; B-巷道最大冒落宽度,取3.6+1.2=4.8m; H-巷道冒落高度,按最严重冒落高度取2.0m; γ-岩体容重,25kN/m3; L1-锚杆排距,0.9m; F1-锚杆锚固力(以最小锚固力计算),85kN; F2-锚索极限承载力(以最小锚固力计算),取200kN; θ-角锚杆与巷道顶板夹角,90°; n -锚索每排根数,取2; 通过上式计算, L=2×200÷[4.8×2.0×25-(2×85×sin90°÷0.9)] =400÷﹙240-188.9﹚=7.8m 得出锚索间排距小于7.8m,所选间排距2150×900(mm)满足设计要求。

材料的力学性能

材料的力学性能 mechanical properties of materials 主要是指材料的宏观性能,如弹性性能、塑性性能、硬度、抗冲击性能等。它们是设计各种工程结构时选用材料的主要依据。各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测出的。表征材料力学性能的各种参量同材料的化学组成、晶体点阵、晶粒大小、外力特性(静力、动力、冲击力等)、温度、加工方式等一系列内、外因素有关。材料的各种力学性能分述如下: 弹性性能材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。材料的这种性能称为弹性。外力卸除后即可消失的变形,称为弹性变形。表示材料在静载荷、常温下弹性性能的一些主要参量可以通过拉伸试验进行测定。 拉伸试样常制成圆截面(图1之a)或矩形截面(图1之b)棒体,l为标距,d为圆形试样的直径,h和t分别为矩形截面试样的宽度和厚度,图中截面形状用阴影表示,面积记为A。长度和横向尺寸的比例关系也有如下规定:对于圆形截面试样,规定l=10d或l=5d;对于矩形截 面试样,按照面积换算规定或者。试样两端的粗大部分用以和材料试验 机的夹头相连接。试验结果通常绘制成拉伸图或应力-应变图。图2为低碳钢的拉伸图,横坐标表示试样的伸长量Δl(或应变ε=Δl/l),纵坐标表示载荷P(或应力σ=P/A)。图中的曲线从原点到点p为直线,pe段为曲线,载荷不大于点e所对应的值时,卸载后试样可恢复原状。反映材料弹性性质的参量有比例极限、弹性极限、弹性模量、剪切弹性模量和泊松比等。 比例极限应力和应变成正比例关系的最大应力称为比例极限,即图中点p所对应的应力,以σp表示。在应力低于σp的情况下,应力和应变保持正比例关系的规律叫胡克定律。载荷超过点p对应的值后,拉伸曲线开始偏离直线。 弹性极限试样卸载后能恢复原状的最大应力称为弹性极限,即图中点e所对应的应力,以σe表示。若在应力超出σe后卸载,试样中将出现残余变形。比例极限和弹性极限的测试值敏感地受测试精度的影响,并不易测准,所以在有关标准中规定,对于拉伸曲线的直线部分产生规定偏离量(用切线斜率的偏差表示)的应力作为"规定比例极限"。对于弹性

锚杆和锚索支护参数的计算

一、锚杆支护参数的计算 1)锚杆长度的确定: 顶锚杆 根据悬吊理论计算: 本矿的煤层顶板属中等稳定形,锚杆须锚入稳定岩石0.35米,锚杆外露0.05米,,则锚杆的长度L=l 1+l 2+l 3=1.3+0.35+0.05=1.7 (m) 其中 L 1------顶板最大松动圈的厚度,根据已掘巷道离层分析 得1.3米 L 2------锚杆须锚入稳定岩石长度,取0.35m L 3------锚杆外露长度,0.05m 结合锚杆支护技术规范要求及我矿生产实际选定锚杆长度1.8m 2)锚杆间排距的确定: L= h K Q =1.02米,考虑巷道宽度间距取0.8米,排距取1.0米。 锚杆的抗拉力为 5.0吨,经矿技术科和安全科做锚杆拉拔力实验,锚杆的抗拉力均在5.0吨以上。 其中 Q----抗拉力,取5.0 k-----安全系数,取1.5 γ---岩石容重,取2.5T/m 3 h----顶板最大松动圈的厚度,根据已掘巷道离层分析得1.3米 考虑巷道宽度,间距取0.8米,排间取1.0米,符合理论计算要求。 二、锚索间排距的确定: L=nF 2/[BH γ-(2F 1sin θ)/L 1]

式中: L—锚索排距,m; B—巷道最大冒落宽度,3.1m; H—巷道冒落高度,按最严重冒落高度取3.6米; γ—岩体容重,取25KN/m3; L1—锚杆排距,1.0米; F1—锚杆锚固力,取50KN; F2—单根锚索的极限破断力,取210KN; θ—角锚杆与巷道顶板的夹角,85o; n—锚索排数,取2; L =2×210/[3.1×3.6×23-(2×50×sin85o)/1]=2.5m 考虑巷道宽度,间距取1.6米,排距取2.0米,符合理论计算要求。

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、 解释下列名词。 2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。 3?循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4?包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的 现象。 11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称 为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量G 切变模量 r 规定残余伸长应力 0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率 n 应 变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。【P4】 4、 现有4 5、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程 中不断地消耗能量;而脆性断裂是突然发生的断裂, 断裂前基本上不发生塑性变形, 没有明显征兆,因而危害性很大。 6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源? 断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即: (3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47 P55】 max 1 3 max 2 1 0.5 2 3 【新书P39旧书P46】

土体抗拉张力学特性研究现状与展望

土体抗拉张力学特性研究现状与展望 : 传统非饱和土力学认为来源于土壤学或土壤物理学中的基质吸力就是非饱和土的粒间吸力,下面是小编搜集整理的一篇探究抗拉张力学特性试验的论文范文,供大家阅读参考。 1、引言 在传统工程地质环境及土力学性质的研究中,土体通常不主动作为抗拉材料使用,认为土的抗拉强度很小或几乎视为零[1,2],实际工程中土体的抗拉强度常常被忽略,多侧重于抗压和抗剪,对抗拉张的研究较少[3,4].然而,许多工程问题中的土体会发生开裂现象,诸如红色问题土中常见的崩岗[5]、滑坡以及黄土中常见的滑塌[6]等地质灾害孕育过程中坡顶几乎都产生的张拉裂缝[7,8],其破坏模式是拉张和剪切的耦合,都与其抗拉张力学特性密切相关。 抗拉张强度是评价非饱和土的崩岗、崩塌及土坝、堤防、路基、垃圾填埋场等边坡的稳定性的重要参数,黄文熙[9]早就指出抗拉张是黏性土的一个比较重要的力学 性质。试验研究表明[4,10] 天然非饱和黏性土的抗拉强度一般可达到十几到几十千帕,从抗拉力学角度,土体的抗拉强度几乎相当于同等面积内2m×3m间距锚杆的抗拔力。可见,抗拉强度在 土体稳定性中起着相当重要的作用,忽略土的抗拉张强度显然是对土的强度认识上的不全面。 本文从土体抗拉张力学特性的实验研究和理论分析2个角度出发,介绍并对比分析了国内外土体抗拉张力学特性的试验以及理论方面的最新研究,通过总结分析历史上大量的岩土破坏试验抽象概括出了土体的8种破坏模式,随后认为土体变形破坏的实质是拉剪耦合的渐进性发展过程,并指出研究非饱和土抗拉特性的核心问题就是要弄清土体抗议与粒间吸力之间的关系,最后总结了研究现状中存在的主要问题,展望了今后的研究与发展方向。 2、抗拉张力学特性试验研究 土体的抗拉张力学特性的测试主要在室内进行,分2类:一类是直接测定法,即单轴拉伸试验和三轴拉伸试验方法;另一类是间接测定方法,包括径向压裂试验、弯 曲梁试验和环状试样法等。比较土体抗剪特性及理论的研究,土体抗拉张特性的研究程度无论从试验手段还是从理论方面都还是远远落后的。例如,至今仍没有统一规范并获得业界普遍认同的土体抗张特性测试仪器。不过,当前抗拉张的新型试验

材料力学性能课后习题答案

材料力学性能课后答案(整理版) 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些? 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 2、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 3、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同? 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。5、论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论 的局限性。

工程材料力学性能-第 版答案 束德林

《工程材料力学性能》束德林课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指 数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对 组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格

(完整版)锚杆支护理论计算方法

锚杆支护参数的确定 一、锚杆长度 L≥L1+L2+L3------------------------- ① =0.1+1.5+0.3=1.9m 式中: L——锚杆总长度,m; L1 ——锚杆外露长度(包括钢带+托板+螺母厚度),取0.1m; L2 ——锚杆有效长度或软弱岩层厚度,m; L3——锚入岩(煤)层内深度(锚固长度),按经验L3≥300mm。 (一)锚杆外露长度L1 L1=(0.1~0.15)m,[钢带+托板+螺母厚度+(0.02~0.03)] (二)锚入岩(煤)层内深度(锚固长度)L3 1.经验取值法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节锚杆支护设计”中、第3.3.3条第四款规定: 第3.3.3条端头锚固型锚杆的设计应遵守下列规定: 一、杆体材料宜用20锰硅钢筋或3号钢钢筋; 二、杆体直径按表3.3.3选用; 三、树脂锚固剂的固化时间不应大于10分钟,快硬水泥的终凝时间不应大于12分钟; 四、树脂锚杆锚头的锚固长度宜为200~250毫米,快硬水泥卷锚杆锚头的锚固长度

宜为300~400毫米; 五、托板可用3号钢,厚度不宜小于6毫米,尺寸不宜小于150×150毫米; 六、锚头的设计锚固力不应低于50千牛顿; 七、服务年限大于5年的工程,应在杆体与孔壁间注满水泥砂浆。 一般取300mm ~400mm 2. 理论估算法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节 锚杆支护设计”中规定: 第3.3.11条 局部锚杆或锚索应锚入稳定岩体。水泥砂浆锚杆或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时满足下列公式: 公式(3.3.11-1)、(3.3.11-2)见图形所示。 cs st f f d k l 412≥ (3.3.11-1) cr st a f d f d k l 2214≥ (3.3.11-2) 式中la ——锚杆杆体或锚索体锚入稳定岩体的长度(cm ); d1——锚杆钢筋直径走私或锚索体直径(cm ); d2——锚杆孔直径(cm ); f st ——锚杆钢筋或锚索体的设计抗拉强度(N/cm 2); f cs ——水泥砂浆与钢筋或水泥砂浆与锚索的设计粘结强度 (N/cm 2);圆钢为2.5MPa ,螺纹钢为5MPa 。

巷道锚杆支护计算公式概要

根据1552工作面围岩柱状资料分析,15#煤层顶板直接顶为粘土岩,厚度1.0-1.5m ,施工时,极易垮落,掘进施工时以14#煤层做顶沿15#煤层底板掘进,采取锚网支护。为了将锚杆加固的“组合梁”悬吊于老顶坚硬岩层中,需用高强度锚索做辅助支护。根据邻近1551运、回两巷掘进巷道的支护经验,确定1552回风巷、1552回风巷皮带机头硐室,采用锚杆—钢筋网—钢带--锚索联合支护。 二、支护参数设计 ㈠采用类比法合理选择支护参数:根据15#煤层邻近巷道的支护经验,1552回风巷巷道顶锚杆选用φ16mm ×1800mm 的圆钢锚杆,间距1000mm,排距900mm ;选用1x7丝φ15.24mm ,锚固力不小于230kN 冷拔钢筋,长度4.2m 的锚索加强支护。 ㈡采用计算法校核支护参数 1、锚杆长度计算 L = KH+L 1+L 2 式中:L ——锚杆长度,m H ——冒落拱高度,m K----安全系数,取2 L 1——锚杆锚入稳定岩层深度,取0.5m L 2——锚杆在巷道中的外露长度,取0.05m 其中: H=B/2f=3.4/(2×4)=0.43m 式中:B ——巷道宽度 f ——岩石坚固性系数,取4 L = 2H+L1+L2=2×0.43+0.5+0.05=1.41m 施工时取L=1.8m 2、锚杆间距、排距a 、b a=b=KHr Q 式中:a 、b ——锚杆间、排距m Q ——锚杆设计锚固力,50kN/根; H ——冒落拱高度,取0.58m ; K ——安全系数,取2; r ——被悬吊粘土岩的重力密度,26.44kN/m 3 a=b=44 .2643.0250??=1.48m

材料力学性能

第一章 一.静载拉伸实验 拉伸试样一般为光滑圆柱试样或板状试样。 若采用光滑圆柱试样,试样工作长度(标长)l0 =5d0 或l0 =10d0,d0 为原始直径。 二.工程应力:载荷除以试件的原始截面积。σ=F/A0 工程应变:伸长量除以原始标距长度。ε=ΔL/L0 低碳钢的变形过程:弹性变形、不均匀屈服塑性变形(屈服)、均匀塑性变形(明显塑性变形)、不均匀集中塑性变形、断裂。 三.低碳钢拉伸力学性能 1.弹性阶段(Ob) (1)直线段(Oa): 线弹性阶段,E=σ/ε(弹性模量,比例常数) σp—比例极限 (2)非直线段(ab): 非线弹性阶段 σe—弹性极限 2. 屈服阶段(bc) 屈服现象:当应力超过b点后,应力不再增加,但应变继续增加,此现象称为屈服。 σs—屈服强度(下屈服点),屈服强度为重要的强度指标。 3.强化阶段(ce) 材料抵抗变形的能力又继续增加,即随试件继续变形,外力也必须增大,此现象称为材料强化。 σb—抗拉强度,材料断裂前能承受的最大应力 4.局部变形阶段(颈缩)(ef) 试件局部范围横向尺寸急剧缩小,称为颈缩。 四.主要力学性能指标 弹性极限(σe):弹性极限即指金属材料抵抗这一限度的外力的能力 屈服强度(σs):抵抗微量塑性变形的应力 五.铸铁拉伸力学性能 特点: (1)较低应力下被拉断 (2)无屈服,无颈缩 (3)延伸率低 (4)σb—强度极限 (5)抗压不抗拉 讨论1:σs 、σr0.2、σb都是机械设计和选材的重要论据。实际使用时怎么办? 塑性材料:σs 、σr0.2 脆性材料:σb 屈强比:σs /σb 讨论2:屈强比σs /σb有何意义? 屈强比s / b值越大,材料强度的有效利用率越高,但零件的安全可靠性降低。 六.弹性变形及其实质 定义:当外力去除后,能恢复到原来形状和尺寸的变形。 特点:单调、可逆、变形量很小(<0.5~1.0%)

相关主题
文本预览
相关文档 最新文档