当前位置:文档之家› 237-实例 1 桁架桥结构静力分析

237-实例 1 桁架桥结构静力分析

237-实例 1 桁架桥结构静力分析
237-实例 1 桁架桥结构静力分析

实例1 桁架桥结构静力分析

1)问题描述:

本题是一个传统的桁架桥结构受重力荷载(节点荷载)的作用的静力分析,如图所示。主要演示OpenSEES桁架单元在结构分析中的应用。结构模型尺寸如下图所示,上弦杆与下弦杆采用H300x500x20x20型钢,所有的腹杆(斜杆)采用H300x300x15x15,顶部采力为4个100kN的集中力(不考虑自重影响),材料采用钢材,弹性模量E为200000MPa。弹性分析,求解跨中变形值。

注意:本题开始就采用3D分析系统,不再采用2D分析系统,主要因为3D分析系统已包括2D的分析内容,用户可以举一反三了解2D问题的分析。本书主要探讨OpenSEES的分析功能及操作使用,不会拘泥于建模的细节,如节点坐标的计算,单元连接的编排。因此本书主要的建模会依靠笔者开发的ETO程序(ETABS TO OPENSEES)及ETABS程序进行建模,于是这里会谈及ETABS的一些简单操作。通过ETABS进行建模,再导成OPENSEES的命令流,通过命令流介始OPENSEES实例结构分析的整个过程。

2)ETABS模型建模

(1) 采用ETABS的可视化界面进行OpenSEES的建模。打开ETABS程序,根据结构模型输入轴网的数据。如下图所示。选择Grid Only进行轴网建模,输入参数后只得到系统的轴网即可。

图轴网输入界面

图 ETABS显示的轴网系统

(2) 点击菜单【Define】→【Material Properties】输入材料参数,点击材料STEEL,将其参数弹性模量(Modulus of Elasticity)改为200000MPa即可。

注意:弹性材料的参数比较简单,一般只需要输入弹性模量E与泊松比μ,而剪切模量就通过弹性模量与泊松比计算得到。非线性(弹塑性)材料的参数就比较复杂,以后面的章节会进行介绍。

图 ETABS材料定义

(3) 点击菜单【Define】→【Frame Sections】输入截面参数。为了能够较好地将ETABS 的模型导入OPENSEES模型中,截面数尽可能地少,删除所有不相关或没有用上的截面,保留单元采用的截面。建立以下两个截面,H300X500X20X20及H300X300X15X15,以H300X500X20X20为例,截面参数与输入的界面如下图所示。

建立工字型截面采用【Add I/Wide Flange】。

注意:为了导入OPENSEES模型,方便标记,拟导成OPENSEES中的桁架单元的截面,截面的名称开头为字“T”(代表桁架单元截面 Truss),所以截面名字应为“TH300X500X20X20”。其它截面首字母与单元类型的关系如下表所示。

截面名称首字母 OpenSEES对应单元单元类型

T Truss桁架单元

E Elastic弹性单元

D Disp Beamcolumn基于刚度的纤维单元

N Nonlinear Beamcolumn基于柔度的纤维单元

H Beam With Hinge塑性铰单元

图 ETABS截面定义

(4) 点击工具栏工具即可建立单元。建立全部单元后即可得到模型如下图所示。建模

过程中,将指定的截面赋予单元采用以下操作:选取单元后,【Assign】→【Frame/Line】→【Frame Section】。

图 ETABS模型图

(5) 定义约束条件,选取指定为固定支座的点。选取节点后,【Assign】→【Joint/Point】→【Restraints(Supports)】,打开支座指定窗口,将该点设为固定支座,如图所示。

注意:桁架单元系统(三维系统),每个单元只有三个自由度,即UX、UY和UZ。

其固定支座为UX、UY与UZ共同约束。对于框架结构,每个单元有六个自由度,即UX,UY,UZ,RX,RY,RZ,其固定支座则为六个自由度全部约束。

图约束(支座)定义窗口

(6) 定义荷载工况,点击【Define】→【Static Load Case】。打开窗口,将DEAD的工况作用此次加荷载的工况,将【Self Weight Multiplier】改为0值。因为本分析施加的外荷载不考虑自重的影响。

注意:ETABS提供自重计算功能,ETBAS通过用户输入的构件的尺寸(长度、面

积、厚度与截面等),再加上输入的截面采用材料相关的容重(单位为N/mm3),然后计算得到每个线单元或面单元的自重,作用均布荷载或面荷载施加给单元。Self Weight Multiplier为自重系数N,代表该工况的荷载需要加上N倍的结构自重。

图荷载工况定义窗口

(7) 定义荷载,选择需要加载的节点,点击【Assign】→【Joint/Point Loads】→【Force】,弹出荷载输入窗口,输入以下数据,如图所示。荷载工况为DEAD,荷载大小为-100kN,即-100000N。

注意:本书ETABS及OPENSEES主要计算采用的单位体制为N,mm。在ETABS 建模时,必须时刻注意输入数据时采用的单位体制。

图点荷载定义窗口

(8) 通过材料定义、截面定义、单元建模、约束定义、荷载工况、点荷载(集中力)定义后,模型基本完成,模型如下图所示。

注意:实例的ETABS模型存放在光盘“/EXAM01/ETABS/”目录。

图 ETABS模型图

(9) 由于本实例属于三维桁架分析类型,即全部单元均为桁架单元,因此,分析之前需要设置系统的自由度规定,打开【Analyze】→【Set Analysis Option】,弹出分析属性设置窗口,将系统UX、UY、UZ勾选,即只保留结构的3个平动自由度,以代表系统为三维桁架系统。

图分析设置窗口

3)ETABS静力分析

采用ETABS对该模型进行静力分析,目的是为了与OPENSEES进行比较。分析点击【Analyze】→【Run Analysis】,分析所得结构变形如下图所示。其中,跨中节点(节点5)的竖向变形为-1.65mm。

注意:三维桁架体系在静力分析之前,往往需要判断是否存在机构体系,也就是说存在刚体运动自由度,一般可以通过周期分析得到,如果能进行周期分析且得到合理的周期值,那么证明结构不存在机构。本实例中,弦杆之间形在的四边形都加上了对角斜杆,保证结构不出现机构,因此静力分析可以完成。如果结构存在机构,在OPENSEES是不能完成计算的。

图 ETABS静力分析结果

4)OPENSEES建模

(1) 打开ETABS模型,点击【File】→【Export】→【Save Model as SAP2000 .s2k Text File】,将ETABS的结构模型输出为S2K文本。

(2) 打开ETO(ETABS TO OPENSEES)程序,点击工具栏的按钮导入S2K文件,文件导入后,得到结构模型如图所示。

图 ETO程序导入模型后界面

(3) 点击按钮,可以旋转模型视图,点击可以拖动视图,点击可以

全屏查看模型。点击按扭可显示输入荷载,荷载显示后如图所示。

图 ETO模型图

(4) 点击按钮可生成OPENSEES模型,即OPENSEES的TCL命令,打开后弹出窗口。点击【Generate】即生成OPENSEES的命令流,点击【Save】可保存TCL代码。

注意:OPENSEES代码是根据ETABS模型的S2K数据生成。包括材料属性(弹性部分),截面属性,单元属性,几何模型,荷载与约束等。实例的OPENSEES存放在光盘“/EXAM01/OPENSEES/”目录中。

图 ETO生成命令流

5)OPENSEES命令流解读

(1) 从ETO程序中生成的OPENSEES的命令流如下所示。

wipe

puts "System"

model basic -ndm 3 -ndf 6

puts "restraint"

node 1 0.000E+000 0.000E+000 0.000E+000

node 2 0.000E+000 3.000E+003 0.000E+000

…………

node 17 2.100E+004 0.000E+000 4.500E+003

node 18 2.100E+004 3.000E+003 4.500E+003

puts "node"

fix 1 1 1 1 0 0 0;

fix 2 1 1 1 0 0 0;

fix 9 1 1 1 0 0 0;

fix 10 1 1 1 0 0 0;

puts "material"

uniaxialMaterial Elastic 1 1.999E+005

uniaxialMaterial Elastic 2 2.482E+004

uniaxialMaterial Elastic 3 1.999E+005

puts "transformation"

puts "element"

element truss 1 11 12 1.305E+004 1

element truss 2 13 14 1.305E+004 1

…………

element truss 46 7 10 1.305E+004 1

puts "recorder"

recorder Node -file node0.out -time -nodeRange 1 18 -dof 1 2 3 disp

recorder Element -file ele0.out -time -eleRange 1 46 localForce

puts "loading"

## Load Case = DEAD

pattern Plain 1 Linear {

load 13 0.000E+000 0.000E+000 -1.000E+005 0.000E+000 0.000E+000 0.000E+000 load 14 0.000E+000 0.000E+000 -1.000E+005 0.000E+000 0.000E+000 0.000E+000 load 15 0.000E+000 0.000E+000 -1.000E+005 0.000E+000 0.000E+000 0.000E+000 load 16 0.000E+000 0.000E+000 -1.000E+005 0.000E+000 0.000E+000 0.000E+000 }

puts "analysis"

constraints Plain

numberer Plain

system BandGeneral

test EnergyIncr 1.0e-6 200

algorithm Newton

integrator LoadControl 1.000E-002

analysis Static

analyze 100

(2) OPENSEES的命令流一般可以划分为以下几个部分(按序划分):z结构模型定义

z结果输出定义

z荷载定义

z分析定义

其中,结构模型定义包括了节点定义、约束定义、材料定义、截面定义、坐标轴定义及单元定义,是代码的主体部分。结果输出,主要是定义OPENSEES里面记录数据的命令【Recorder】。荷载定义,包括了力控制工况静力荷载,位移控制工况的静力荷载分布,地震波的时程等。分析定义主要是一些迭代算法与收敛参数的选取。以下将逐行解释命令流并提示注意的地方。

(3) OPENSEES的第一句命令就是:wipe,即清除程序之前输入的数据,清空数据。

(4) 建立分析模型之前,需要确立结构自由度规定,命令model basic -ndm 3 -ndf 6,为普通的框架结构的自由度规定,由于本实例采用三维桁架自由度体系,因此命令应

改为:model basic -ndm 3 -ndf 3,其中,-ndm 3表示三维,-ndf 3 表示每个结点

有3个自由度。

(5) 节点定义的命令流为:node $nodeTag $posx $posy $posz,其中$nodeTag代表节点编号,$posx $posy $posz代表节点的三轴坐标。

注意:OPENSEES中所有的编号,包括节点编号,单元编号,材料编号等等,都不

可以重复,重复会引起OPENSEES出错。

(6) 弹性材料定义命令流为:uniaxialMaterial Elastic $matTag $E ,其中,为材料编号,为弹性模量值。弹性材料没有开裂、屈服及破坏等过程,因此参数最为简单。

注意:uniaxialMaterial,意思为单轴材料,OPENSEES中材料分为单轴材料(单

分量材料)及多轴材料。单轴材料一般用于宏观单元,如塑性铰,弹塑性桁架,纤

维单元中的纤维束等。

(7) 桁架单元定义的命令流:element truss $eleTag $iNode $jNode $A $matTag,其中,$eleTag为单元编号,$iNode为开始节点,$jNode为结束节点,$A为桁架单元的面

积,$matTag为桁架采用的材料编号。至这一步,分析模型基本建立。

注意:桁架单元,也称为二力杆,只有存在轴力向量。而杆件的刚度k=EA/L,因

此只需要提供截面面积A与切线模量E,也是因为这个原因,桁架单元(Truss)

不需要定义构件的局部坐标。

(8) 命令流的第二部分就是结构的分析结果的输出设置,即Recorder(记录器)。记录节点的变形的命令为:

recorder Node <-file $fileName> <-xml $fileName> <-time> <-node ($node1

$node2 ...)> <-nodeRange $startNode $endNode> <-node all> -dof ($dof1 $dof2 ...) $respType

其中,<-file $fileName><-xml $fileName>,表示输出结果的文件格式,可以是文本文件(file),也可以是网页数据格式(xml),也可以是二进制文件(binary),这关键看后处理方式采用什么方法读取。

<-time>表示第一列输出荷载倍数或时程的时间值。

<-node ($node1 $node2 ...)>,表示输出的节点号,可以每个节点号输入。-nodeRange $startNode $endNode>,表示输出一系列结点号,如从1至55结点。<-node all>,表示输出全部结点。这三个命令都是定义输出的节点。

-dof ($dof1 $dof2 ...)表示输出节点的自由度,从1~6可设置。如全部自由度输出为:-dof 1 2 3 4 5 6.

$respType,表示输出结点的内容,包括位移(disp),速度(vel),加速度(accel),位移增量(incrDisp),振型值("eigen i"),节点反力(reaction)等。本实例输出结点位移为主。

注意:-time参数,在力控制的荷载加载过程分析中,time表示力的倍数,如控制分析每步荷载为0.01,分析100步,则输出的值为:0.01,0.02,……,1.00。如采用指定力分布{P}作用下的位移加载控制分析,time表示力的倍数,如达到第一步位移d1需要荷载为0.23{P},则输出第一个time值为0.23。如果是时程分析,即输入地震波时程,time就是每个时间值,如时间间距为0.02s,输出值为0.02,0.04,……,

20.00。

$respType中,disp表示节点位移,即位移全量。Incrdisp表示位移增量;速度,加速度,为时程分析输出才有意义,而振型计算需要定义质量源(mass)。

实例中:recorder Node -file node0.out -time -nodeRange 1 18 -dof 1 2 3 disp,表示输出第1至18号节点的1、2、3三个平动自由度的位移值到文件node0.out。

(9) 输出单元内力命令流:recorder Element <-file $fileName> <-time> <-ele ($ele1 $ele2 ...)> <-eleRange $startEle $endEle> <-ele all> $eleInfo

其中,<-file $fileName>定义与节点的定义一样,表示文件存储格式。<-time>与上述致,不详述。<-ele ($ele1 $ele2 ...)> <-eleRange $startEle $endEle><-ele all>,以上述类似,表示记录的单元号,可以从第1个至第N个单元,也可以记示全部单元的信息。

$eleInfo表示单元输出结果的内容,包括:globalForce(整体坐标下的单元力向量),localForce(局部坐标下的单元力向量)。一般结构计算、设计会采用局部坐标下的单元力向量,即(F1,F2,F3,M1,M2,M3,F为剪力与轴力,M为弯矩与扭矩)实例中,命令流为:recorder Element -file ele0.out -time -eleRange 1 46 localForce,表示记录单元1~46的单元内力,内力值为局部坐标内力,存于文件ele0.out中。

注意:对于桁架单元,localForce只能输出轴力(Axial Force),即每个单元只输出一个值,对于框架单元,一般输出6个值。

(10) 命令流的第三部分为:荷载定义。荷载定义必须在分析之前,因为分析设置中包括对荷载工况的选择。集中力(点荷载)的荷载定义的命令流如下所示:

pattern Plain 1 Linear {

load 13 0.000E+000 0.000E+000 -1.000E+005 0.000E+000 0.000E+000 0.000E+000

load 14 0.000E+000 0.000E+000 -1.000E+005 0.000E+000 0.000E+000 0.000E+000

load 15 0.000E+000 0.000E+000 -1.000E+005 0.000E+000 0.000E+000 0.000E+000

load 16 0.000E+000 0.000E+000 -1.000E+005 0.000E+000 0.000E+000 0.000E+000

}

首先,pattern Plain 1代表静力荷载工况,工况编号1,Linear代表线性荷载(默认设置,具体意见不大)。

load 13 0.000E+000 0.000E+000 -1.000E+005 0.000E+000 0.000E+000 0.000E+000,表示点荷载,节点编号13,其荷载为FX=0,FY=0,FZ=-10000N,MX=0,MY=0,MZ=0。

注意:OPENSEES的命令行,如有出现子命令,如荷载工况下的点荷载设置,纤维截面中的纤维束设置,都是从命令再进入子命令进行定义,那么就出现括号{}。注意出现“{”的话,一定不要在子命令的结束中漏掉括号的右半部分“}”。

(11) 命令流的第四部分,也就是最后一部分就是分析设置,分析设置内容用到的弹塑性分析的基本知识较多,将会在以后的实例讲解中提到并进行讨述。实例中用到命令流是常用于结构在力控制下的静力分析。命令流解释如下:

integrator LoadControl 0.01

意思:荷载采用力控制模式,荷载的分布取决于该命令以上设置的荷载工况{P},每级增加荷载的倍数为0.01,即每级增加荷载实际为输入0.01{P}。

system BandGeneral

意思:矩阵带宽处理采用一般(General)处理方法。

test EnergyIncr 1e-10 200

意思:收敛准则采用能量准则,容差为1e-10,最大迭代步为200步。

numberer Plain

意思:结点自由度编号采用输入结点的顺序,为一般结构使用。(如果采用优化后的结点排序,方便带宽处理,提高计算效率)。

constraints Plain

意思:约束边界处理,采用一般处理,即致小数或大数法。(约束也可以采用罚函数或拉格朗日处理方法)。

algorithm Linear

意思:迭代算法采用线性法,一般用于处理弹性结果。

analysis Static

意思:结构计算为静力分析,即非时程(动力)分析。

analyze 1

意思:分析荷载总步数为100步,即结合原来的每步荷载倍数0.01,总共输入荷载为0.01×100=1.0{P}。

6)OPENSEES分析及分析结果

(1) ETO生成的命令流,做两处修改:

体系改为三维桁架体系:

model basic -ndm 3 -ndf 3

增加记录节点5的位移,保存于node5.out文件中:

recorder Node -file node5.out -time -node 5 -dof 1 2 3 disp

(2) 将上述的命令流保存为文件“Exam01.tcl”,或打开光盘目录“/EXAM01/ OPENSEES/”,找到“Exam01.tcl”文件。

(3) 打开OpenSEES程序,如下图所示,输入命令:

source Exam01.tcl

能够保证上述命令运行成功的前提是,OPENSEES.exe执行程序与Exam01.tcl在同一个目录下,如果不是,需要输入Exam01.tcl所在的全目录,如:

source D:\OPENSEES_EXAMPLE\Exam01\Exam01.tcl

运行后,OPENSEES界面如下图所示:

图 OpenSEES运行界面图

(4) OPENSEES得到分析结果有结点位移及单元内力。打开node5.out可以查看5号节点的平动位移值,从最后一行,如下,可知5号节点的竖向位移为-1.63mm,与ETABS 的分析结果一致。

1 6.52256e-018 -0.377547 -1.65348

(5) 采用ETO显示结构变形:打开OPENSEES的前后处理程序ETO,导入Exam01.s2k

文件。点击按钮,显示结构变形。弹出窗口如下图所示。

位移显示窗口

输入显示第100步的变形结果,输入变形显示放大倍数为10,点击【Load Deformation Data】,选取Exam01.tcl文件,程序自动读取全部结点位移文件,输出变形形状,如下图所示。变形形状与ETABS弹性分析结果一致。

注意:本书会常采用不同软件、不同算法或不同模型对一个结构进行分析,这是一种APPLE TO APPLE的对比方法,这样可以更好的理解程序或模型。

ETO显示结构变形图

7)知识点回顾:

(1) 应用ETO程序,先在ETABS建模,再导成OPENSEES命令流;

(2) 了解整个OPENSEES命令流的格式在常用的命令流;

(3) 节点建模、节点约束、弹性材料、桁架单元、节点单元输出设置、点荷载设置及分析工况设置等基本命令;

(4) 学习查看输出结果,并与ETABS进行对比,采用ETO程序后处理,显示结构变形。

abaqus屈曲分析实例

整个计算过程包括2个分析步,第1步做屈曲分析,笫2步做极限强度分析。 第1步:屈曲分析 载荷步定义如下: Step 1-Initial Step 2- Buckle

? Re Mbs M^nce C^wvoini live 2oc*$ *l^*?4 tjdp V :i.Jsa&# 录 +r A AJIu fffiC? fe3 Ha ? ;r????y fa-t n>rr ?: OfEYcm v Se?今 gh 3, gqcvKeiry C*p*?9r ? ? O?lec? ■ %?no?v C5 廉 H5Wr> MM fa Tin* Forti Sv Al€ *dep6?? ve^ tbjUx9)lo t JeiWA Tc?D -^lQZlll?hQ we' E ejewwiw b>w* biE Glcte 」r?>w* 69D eJe*MKi r?jw* bee CWfcr*?9*^ s£ Zac? “ Iraftet H U 匕“rb ? 2 更 K?4dCu^u!R? 虫 Hntwr GUput b 伽》ezi5 &■心 AcUxv? V H H?*?ctnr? 易 htecMtlar. hra, 日 CcrtadCcrtra 0 C?Wl >?wt K Ccctect sub lx 權 CwMoarSt Hj fiUdi _n ,.. ? ?! ? MCg WtW Swtfc lk2 pe**j". liwar p?nwbia?ko ▼ freque." 拯 sufAuun The 11?-51>^ )L>4ldH9jjn-2 “9 wioZ S *0 Sxe U>* oil^ 51 “ed S iU* TO . 0 . -ISO -MO mtb rew :t no 心 &逐Ply OCCOIIMV * 巧恪tc ?:?L -5Moe>?* bw tZfft to ?D7cp 炉、?ZlHWr? Me" “乡“r?x HMldrann ?2 vd 乡 tygeJa* 400 0 0 with x*w :? ?o tfi* oc

桁架结构分析

2013-2014年度学生研究计划(SRP)“桁架结构模型结构优化及试验” 结题论文 姓名骆辉军 学院土木与交通学院 专业土木工程(卓越全英班) 学号 201230221450 指导老师范学明 时间 2014年10月

一.实验背景 随着科学技术的发展和计算机软件技术的应用,应用相关的软件来进行桁架结构模型的优化已经可以成为现实。桁架结构中的桁架指的是桁架梁,是格构化的一种梁式结构。桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。在桥梁结构中,桁架结构也应用广泛。只受结点荷载作用的等直杆的理想铰结体系称桁架结构。它是由一些杆轴交于一点的工程结构抽象简化而成的。合理地设计桁架结构,就能够最大限度地利用材料的强度,起到减轻桁架重量,节省材料的目的,从而也能为工程实际应用提供相关的依据和参考。 但桁架的结构模型形式千变万化,仅仅从理论上分析桁架的受力特征和破坏特征,而不进行相应的试验研究是无法取得实质性的进展的。正是基于这样一个原则,我们需要在理论研究的基础上通过试验来优化桁架的结构模型,在各式各样的桁架结构中挑选出受力合理的结构,最大限度地使材料的强度得以利用。 研究桁架结构模型优化的意义 桁架结构中,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。 由于杆件之间的互相支撑作用,且刚度大,整体性好,抗震能力强,所以能够承受来自多个方向的荷载。而且具有结构简单,运输方便等优点,其应用于各个工程领域。古代木构建筑,而今的2008北京奥运会的主体育馆鸟巢;太空中的大型可展天线,地面上的跨海大桥,随处都可见到桁架的身影。由于桁架的结构模型千变万化,不同的桁架结构形式对桥梁或者屋架的受力特征有很大的影响,因而,研究桁架结构模型的优化具有重大的意义。 二.实验的相关资料 1.桁架结构的常见构造方式 桁架指的是桁架梁,是格构化的一种梁式结构,即一种由杆件彼此在两端用铰链连接而成的结构。桁架由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。 桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。其主要结构特点在于,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相

结构静力分析

第一章结构静力分析 1.1 结构分析概述 结构分析的定义:结构分析是有限元分析方法最常用的一个应用领域。结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身骨架;海洋结构,如船舶结构;航空结构,如飞机机身等;同时还包括机械零部件,如活塞,传动轴等等。 在ANSYS产品家族中有七种结构分析的类型。结构分析中计算得出的基本未知量(节点自由度)是位移,其他的一些未知量,如应变,应力,和反力可通过节点位移导出。 静力分析---用于求解静力载荷作用下结构的位移和应力等。静力分析包括线性和非线性分析。而非线性分析涉及塑性,应力刚化,大变形,大应变,超弹性,接触面和蠕变。 模态分析---用于计算结构的固有频率和模态。 谐波分析---用于确定结构在随时间正弦变化的载荷作用下的响应。 瞬态动力分析---用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。 谱分析---是模态分析的应用拓广,用于计算由于响应谱或PSD输入(随机振动)引起的应力和应变。 曲屈分析---用于计算曲屈载荷和确定曲屈模态。ANSYS可进行线性(特征值)和非线性曲屈分析。 显式动力分析---ANSYS/LS-DYNA可用于计算高度非线性动力学和复杂的接触问题。 此外,前面提到的七种分析类型还有如下特殊的分析应用: ●断裂力学 ●复合材料 ●疲劳分析 ●p-Method 结构分析所用的单元:绝大多数的ANSYS单元类型可用于结构分析,单元型 从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元。 1.2 结构线性静力分析 静力分析的定义 静力分析计算在固定不变的载荷作用下结构的效应,它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。可是,静力分析可以计算那些固定不变的惯性载荷对结构的影响(如重力和离心力),以及那些可以近似为等价静力作用的随时间变化载荷(如通常在许多建筑规范中所定义的等价静力风载和地震载荷)。 静力分析中的载荷 静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移,应力,应变和力。固定不变的载荷和响应是一种假定;即假定载荷和结构的响应随时间的变化非常缓慢。静力分析所施加的载荷包括: ●外部施加的作用力和压力 ●稳态的惯性力(如中力和离心力) ●位移载荷 ●温度载荷 线性静力分析和非线性静力分析 静力分析既可以是线性的也可以是非线性的。非线性静力分析包括所有的非线性类型:大变形,塑性,蠕变,应力刚化,接触(间隙)单元,超弹性单元等。本节主要讨论线性静力分析,非线性静力分析在下一节中介绍。

(完整word版)abaqus6.12-典型实例分析

1.应用背景概述 随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。而本案例就是取材于汽车碰撞模拟分析中的一个小案例―――保险杠撞击刚性墙。 2.问题描述 该案例选取的几何模型是通过导入已有的*.IGS文件来生成的(已经通过Solidworks软件建好模型的),共包括刚性墙(PART-wall)、保险杠(PART-bumper)、平板(PART-plane)以及横梁(PART-rail)四个部件,该分析案例的关注要点就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其是否能够对车体有足够的保护能力?这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源和时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠和刚性墙之间的接触采用接触对算法来定义。 1.横梁(rail) 2.平板(plane) 3.保险杠(bumper) 4.刚性墙(wall) 图2.1 碰撞模型的SolidWorks图

为了使模拟结果尽可能真实,通过查阅相关资料,定义了在碰撞过程中相关的数据以及各部件的材料属性。其中,刚性墙的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28;保险杠、平板以及横梁的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28,塑形应力-应变数据如表2.1所示。 表2.1 应力-应变数据表 应力210 300 314 325 390 438 505 527 应变0.0000 0.0309 0.0409 0.0500 0.1510 0.3010 0.7010 0.9010 注:本例中的单位制为:ton,mm,s。 3.案例详细求解过程 本案例使用软件为版本为abaqus6.12,各详细截图及分析以该版本为准。3.1 创建部件 (1)启动ABAQUS/CAE,创建一个新的模型数据库,重命名为The crash simulation,保存模型为The crash simulation.cae。 (2)通过导入已有的*.IGS文件来创建各个部件,在主菜单中执行【File】→【Import】→【Part】命令,选择刚刚创建保存的的bumper_asm.igs文件,弹出【Create Part From IGS File】对话框如图3.1所示,根据图3.1所示设定【Repair Options】的相关选项,其它参数默认,单击【Ok】按钮,可以看到在模型树中显示了导入的部件bumper_asm。 图3.1 Create Part From IGS File对话框

ABAQUS时程分析实例

ABAQUS时程分析法计算地震反应得简单实例ABAQUS时程分析法计算地震反应得简单实例(在原反应谱模型上 修改) 问题描述: 悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2、1e11Pa,泊松比0、3,所有振型得阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg 得集中质量。反应谱按7度多遇地震,取地震影响系数为0、08,第一组,III类场地,卓越周期Tg=0、45s。 图1 计算对象 第一部分:反应谱法 几点说明: λ本例建模过程使用CAE; λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱; λ *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。 λ ABAQUS得反应谱法计算过程以及后处理要比ANSYS方便得多。 操作过程为: (1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。continue (3)Create lines,在 分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800 mechanical-->>elasticity-->>elastic,young‘s modulus:2、1e11,poisson’s ratio:0、3、

衍架的结构静力分析

实验一 衍架的结构静力分析 结构静力分析是ANSYS 软件中最简单,应用最广泛的一种功能,它主要用于分析结构在 固定载荷(主要包括外部施加的作用力,稳态惯性力如重力和离心力,位移载荷和温度载荷等)作用下所引起的系统或部件的位移,应力,应变和力。一般情况下,结构静力分析适用于不考虑或惯性,阻尼以及动载荷等对结构响应的影响不大的场合,如温度,建筑规范中的等价静力风载和地震载荷等在结构中所引起的响应。 结构静力分析分为线性分析和非线性分析两类,由于非线性分析涉及大变形,塑性,蠕变和应力强化等内容,较为复杂,不适于作为入门教学。因此,本实训中只讨论ANSYS 的线性结构静力分析。 一、问题描述 图1所示为由9个杆件组成的衍架结构,两端分别在1,4点用铰链支承,3点受到一 个方向向下的力F y ,衍架的尺寸已在图中标出,单位: m 。试计算各杆件的受力。 其他已知参数如下: 弹性模量(也称扬式模量) E=206GPa ;泊松比μ=0.3; 作用力F y =-1000N ;杆件的 横截面积A=0.125m 2. 显然,该问题属于典型的衍架静力分析问题,通过理论求解 方法(如节点法或截面法)也可以很容易求出个杆件的受力,但这里为什么要用ANSYS 软件对其分析呢? 二、实训目的 本实训的目的有二:一是使学生熟悉ANSYS8.0软件的用户界面,了解有限元分析的一 般过程;二是通过使用ANSYS 软件分析的结果和理论计算结果进行比较,以建立起对利用ANSYS 软件进行问题根系的信任度,为以后使用ANSYS 软件进行更复杂的结构分析打基础。 图1衍架结构简图

三、结果演示 通过使用ANSYS8.0软件对该衍架结构进行静力分析,其分析结果与理论计算结果如表 1所示。 表1 ANSYS 分析结果与理论计算结果的比较 比较结果表明,使用ANSYS 分析的结果与理论计算结果的误差不超过0.5%,因此, 利用ANSYS 软件分析来替代理论计算是完全可行的。 四、实训步骤 (一) ANSYS8.0的启动与设置 1. 启动。点击:开始>所有程序> ANSYS8.0> ANSYS ,即可进入ANSYS 图形用户主界面。如图2所示。其中,几个常用的部分有应用菜单,命令输入栏,主菜单,图形显示区和显示 图形显示区 主菜单 应用菜单 命令输入栏 显示调整工具栏 图2 用户主界面

(完整word版)ABAQUS实例分析

《现代机械设计方法》课程结业论文 ( 2011 级) 题目:ABAQUS实例分析 学生姓名 XXXX 学号 XXXXX 专业机械工程 学院名称机电工程与自动化学院 指导老师 XX 2013年 5 月8 日

目录 第一章Abaqus简介 (1) 一、Abaqus总体介绍 (1) 二、Abaqus基本使用方法 (2) 1.2.1 Abaqus分析步骤 (2) 1.2.2 Abaqus/CAE界面 (3) 1.2.3 Abaqus/CAE的功能模块 (3) 第二章基于Abaqus的通孔端盖分析实例 (4) 一、工作任务的明确 (6) 二、具体步骤 (6) 2.2.1 启动Abaqus/CAE (4) 2.2.2 导入零件 (5) 2.2.3 创建材料和截面属性 (6) 2.2.4 定义装配件 (7) 2.2.5 定义接触和绑定约束(tie) (10) 2.2.6 定义分析步 (14) 2.2.7 划分网格 (15) 2.2.8 施加载荷 (19) 2.2.9 定义边界条件 (20) 2.2.10 提交分析作业 (21) 2.2.11 后处理 (22) 第三章课程学习心得与作业体会 (23)

第一章: Abaqus简介 一、Abaqus总体介绍 Abaqus是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。 Abaqus使用起来十分简便,可以很容易的为复杂问题建立模型。Abaqus具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。 Abaqus主要具有以下分析功能: 1.静态应力/位移分析 2.动态分析 3.非线性动态应力/位移分析 4.粘弹性/粘塑性响应分析 5.热传导分析 6.退火成形过程分析 7.质量扩散分析 8.准静态分析 9.耦合分析 10.海洋工程结构分析 11.瞬态温度/位移耦合分析 12.疲劳分析 13.水下冲击分析 14.设计灵敏度分析 二、Abaqus基本使用方法 1.2.1 Abaqus分析步骤 有限元分析包括以下三个步骤: 1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生 成一个Abaqus输入文件。提交给Abaqus/Standard或 Abaqus/Explicit。 2.分析计算(Abaqus/Standard或Abaqus/Explicit):在分析计算阶段, 使用Abaqus/Standard或Abaqus/Explicit求解输入文件中所定义的

结构静力分析边界条件施加方法与技巧—约束条件

在结构的静力分析中载荷与约束的施加方案对计算结果有较大的影响,甚至导致计算结果不可信,笔者在《结构设计CAE主业务流程》的博文中也提到这一点。那么到底如何施加载荷与约束呢?归根到底要遵循一个原则——尽量还原结构在实际中的真实约束和受力情况。本文着重介绍几种约束的施加方法与技巧,并通过具体例子来进一步说明。 1 销轴约束 销轴连接在结构中是很常见的一种形式,其约束根据具体的结构形式有所不同,下面以一个走行装置为例具体介绍一下。 走行装置是连接平动轨道与上部结构的,其约束应是轨道通过车轮对走行装置的约束,但是通常对于车轮只要验证其轮压满足要求即可,因此在模型中往往将车轮简化掉,因此对于走行装置的约束就变为销轴约束。 图1 某走行装置 图1 中1-10是与车轮相连接的轴孔,车轮行驶于轨道上,约束位置在10对轴孔处,如果把整个轴孔都约束则约束刚度太大,结果会导致圆孔周围应力过大,因此应简化为约束轴孔中心点,将中心点与轴孔边缘通过刚性单元连接,简化为点约束。首先y方向(竖直向上)是应该约束的(此处假设车轮及轴为刚体),其次由于轨道与轮缘的相互作用,z方向(侧向)也应该是约束的,然后由于走行装置在向下的压力下会产生沿x方向(运行方向)的位移,因此x方向约束应放开,但是如果10对轴孔中心x方向的约束全放开则会导致约束不全无法计算,因此应在1轴孔或10轴孔中心处施加x方向的约束,这样实现全自由度约束。 2 转动轨道约束 图2是一个翻车机模型,该结构通过电机驱动,托辊支撑,2个端环在轨道上转动来实现翻卸功能。

图2 翻车机 由于翻车机托辊支撑端环,由电机驱动不断地翻转卸车,造成其约束位置方向不断变化,针对一个具体翻转角度,翻车机端环在与托辊接触处(线接触)应约束沿翻车机端环径向,另外,由于翻车机在荷载作用下会产生沿翻车机轴向的位移,所以两端环中要约束一个端环的轴向自由度。 3 对称面约束 图3是某钢水罐模型,该模型关于y-z面对称,下面介绍一下该结构的约束处理。 图3 钢水罐 首先在1处由于受到钢水罐起吊装置的限制,其竖直方向y及水方向z无法变形,应施加z 方向及y方向的约束,而x方向是没有约束的,此时因缺少约束无法计算,应注意到该结构(包

桁架受力分析

3.4 静定平面桁架 教学要求 掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内力计算方法——结点法、截面法、联合法 3.4.1 桁架的特点和组成 静定平面桁架 桁架结构是指若干直杆在两端铰接组成的静定结构。这种结构形式在桥梁和房屋建筑中应用较为广泛,如南京长江大桥、钢木屋架等。 实际的桁架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。但根据对桁架的实际工作情况和对桁架进行结构实验的结果表明,由于大多数的常用桁架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其它杆件传到结点上,这就使得桁架结点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。因此,为了简化计算,在取桁架的计算简图时,作如下三个方面的假定: (1)桁架的结点都是光滑的铰结点。 (2)各杆的轴线都是直线并通过铰的中心。 (3)荷载和支座反力都作用在铰结点上。 通常把符合上述假定条件的桁架称为理想桁架。 桁架的受力特点 桁架的杆件只在两端受力。因此,桁架中的所有杆件均为二力杆。在杆的截面上只有轴力。 桁架的分类 (1)简单桁架:由基础或一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。(图3-14a) (2)联合桁架:由几个简单桁架联合组成的几何不变的铰接体系。(图3-14b) (3)复杂桁架:不属于前两类的桁架。(图3-14c)

3.4.2 桁架内力计算的方法 桁架结构的内力计算方法主要为:结点法、截面法、联合法 结点法――适用于计算简单桁架。 截面法――适用于计算联合桁架、简单桁架中少数杆件的计算。 联合法――在解决一些复杂的桁架时,单独应用结点法或截面法往往不能够求解结构的内力,这时需要将这两种方法进行联合应用,从而进行解题。 解题的关键是从几何构造分析着手,利用结点单杆、截面单杆的特点,使问题可解。 在具体计算时,规定内力符号以杆件受拉为正,受压为负。结点隔离体上拉力的指向是离开结点,压力指向是指向结点。对于方向已知的内力应该按照实际方向画出,对于方向未知的内力,通常假设为拉力,如果计算结果为负值,则说明此内力为压力。 常见的以上几种情况可使计算简化: 1、不共线的两杆结点,当结点上无荷载作用时,两杆内力为零(图3-15a)。 F1=F2=0 2、由三杆构成的结点,当有两杆共线且结点上无荷载作用时(图3-15b),则不共线的第三杆内力必为零,共线的两杆内力相等,符号相同。 F1=F2 F3=0 3、由四根杆件构成的“K”型结点,其中两杆共线,另两杆在此直线的同侧且夹角相同(图3-15c),当结点上无荷载作用时,则不共线的两杆内力相等,符号相反。

ANSYS Workbench Mechanical第四章 静力结构分析

Workbench -Mechanical Introduction 第四章 静力结构分析

概要 Training Manual ?本章,将练习线性静力结构分析,模拟过程中包括: A.几何和单元 B.组件和接触类型 C.分析设置 D.环境,如载荷和约束 环境如载荷和约束 E.求解模型 F.结果和后处理 ?本节描述的应用一般都能在ANSYS DesignSpace Entra或更高版本中使用。 –尽管本章中讨论的一些选项可能需要更高级的许可,但都给了提示。

线性静态结构分析基础 Training Manual ?对于一个线性静态结构分析(Linear Static Analysis),位移{x}由下面的矩阵方程解出: []{}{}F K= x 假设: –[K] 是一个常量矩阵 [K]是个常量矩阵 ?假设是线弹性材料行为 ?使用小变形理论 可能包含些非线性边界条件 ?可能包含一些非线性边界条件 –{F}是静态加在模型上的 ?不考虑随时间变化的力 ?不包含惯性影响(质量、阻尼) ?记住关于线性静态结构分析的假设是很重要的。非线性静态分析和动态分析在后面章节讲解。

A. 几何模型 Training Manual ?在结构分析中,可能模拟各种类型的实体。 ?对于面实体,在Details of surface body中一定要指定厚度值。 ?线实体的截面和方向,在DesignModeler里进行定义,并自动导入到Simulation(模拟)中。

… 质量点 Training Manual ?在模型中添加一个质量点来模拟结构中没有明确建模的重量体: –质量点只能和面一起使用。 –它的位置可以通过下面任一种方法指定: ?用户自定义的坐标系中指定(x,y,z)坐标值 ?通过选择顶点/边/面指定位置 –质量点只受包括加速度、重力加速度和角加速度的影响。 –质量是与选择的面联系在一起的,并假设它们之间没有刚度。 –不存在转动惯性

平面静定桁架的内力计算

第二节平面静定桁架的内力计算 桁架是工程中常见的一种杆系结构,它是由若干直杆在其两端用铰链连接而成的几何形状不变的结构。桁架中各杆件的连接处称为节点。由于桁架结构受力合理,使用材料比较经济,因而在工程实际中被广泛采用。房屋的屋架(见图3-10)、桥梁的拱架、高压输电塔、电视塔、修建高层建筑用的塔吊等便是例子。 图3-10房屋屋架 杆件轴线都在同一平面内的桁架称为平面桁架(如一些屋架、桥梁桁架等),否则称为空间桁架(如输电铁塔、电视发射塔等)。本节只讨论平面桁架的基本概念和初步计算,有关桁架的详细理论可参考“结构力学”课本。在平面桁架计算中,通常引用如下假定: 1)组成桁架的各杆均为直杆; 2)所有外力(载荷和支座反力)都作用在桁架所处的平面内,且都作用于节点处; 3)组成桁架的各杆件彼此都用光滑铰链连接,杆件自重不计,桁架的每根杆件都是二力杆。 满足上述假定的桁架称为理想桁架,实际的桁架与上述假定是有差别的,如钢桁架结构的节点为铆接(见图3-11)或焊接,钢筋混凝土桁架结构的节点是有一定刚性的整体节点, 图3-11 钢桁架结构的节点 它们都有一定的弹性变形,杆件的中心线也不可能是绝对直的,但上述三点假定已反映了实际桁架的主要受力特征,其计算结果可满足工程实际的需要。 分析静定平面桁架内力的基本方法有节点法和截面法,下面分别予以介绍。 一、节点法 因为桁架中各杆都是二力杆,所以每个节点都受到平面汇交力系的作用,为计算各杆内力,可以逐个地取节点为研究对象,分别列出平衡方程,即可由已知力求出全部杆件的内力,这就是节点法。由于平面汇交力系只能列出两个独立平衡方程,所以应用节点法往往从只含两个未知力的节点开始计算。 例3-8 平面桁架的受力及尺寸如图3-12a所示,试求桁架各杆的内力。

abaqus实例

一.创建部件 1.打开abaqus; 开始/程序/Abaqus6.10-1/Abaque CAE 2.Model/Rename/Model-1,并输入名字link4

3.单击Create part弹出Create part对话框, Name输入link-4; Modeling Space 选择2D Planar Type 选择Deformable Base Feature 选择Wire Approximate size 输入800;然后单击continue 4.单击(Create Lines:connected)通过点(0,0)、(400,0)、(400,300)、(0,300)单击(Create Lines:connected)连接(400,300)和(0,0)两点,单击提示区中的Done按钮(或者单击鼠标滚轮,也叫中键),形成四杆桁架结构

5.单击工具栏中的(Save Model Database),保存模型为link4.cae 二.定义材料属性 6.双击模型树中的Materials(或者将Module切换到Property,单击Create Material -ε) 弹出Edit Material对话框后。 执行对话框中Mechanical/Elasticity/Elastic命令, 在对话框底部出现的Data栏中输入Young’s Module为29.5e4, 单击OK.完成材料设定。

7.单击“Create Section ”,弹出Create Section对话框, Category中选择Beam; Type中选择Truss; 单击continue按钮 弹出Edit Section对话框, 材料选择默认的Material-1,输入截面积(Cross-sectional area)为100,单击ok按钮。

ABAQUS实例分析论文

目录 第一章Abaqus简介 (1) 一、Abaqus总体介绍 (1) 二、Abaqus基本使用方法 (2) 1.2.1 Abaqus分析步骤 (2) 1.2.2 Abaqus/CAE界面 (3) 1.2.3 Abaqus/CAE的功能模块 (3) 第二章基于Abaqus的通孔端盖分析实例 (4) 一、工作任务的明确 (5) 二、具体步骤 (5) 2.2.1 启动Abaqus/CAE (4) 2.2.2 导入零件 (5) 2.2.3 创建材料和截面属性 (6) 2.2.4 定义装配件 (7) 2.2.5 定义接触和绑定约束(tie) (10) 2.2.6 定义分析步 (14) 2.2.7 划分网格 (15) 2.2.8 施加载荷 (19) 2.2.9 定义边界条件 (20) 2.2.10 提交分析作业 (21) 2.2.11 后处理 (22) 第三章课程学习心得与作业体会 (22)

第一章: Abaqus简介 一、Abaqus总体介绍 Abaqus是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。 Abaqus使用起来十分简便,可以很容易的为复杂问题建立模型。Abaqus具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。 Abaqus主要具有以下分析功能: 1.静态应力/位移分析 2.动态分析 3.非线性动态应力/位移分析 4.粘弹性/粘塑性响应分析 5.热传导分析 6.退火成形过程分析 7.质量扩散分析 8.准静态分析 9.耦合分析 10.海洋工程结构分析 11.瞬态温度/位移耦合分析 12.疲劳分析 13.水下冲击分析 14.设计灵敏度分析 二、Abaqus基本使用方法 1.2.1 Abaqus分析步骤 有限元分析包括以下三个步骤: 1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生

桁架受力分析报告

3.4静定平面桁架 教学要求 掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内力计算方法结点法、截面法、联合法 3.4.1桁架的特点和组成 341.1静定平面桁架 桁架结构是指若干直杆在两端铰接组成的静定结构。这种结构形式在桥梁和房屋建筑 中应用较为广泛,如南京长江大桥、钢木屋架等。 实际的桁架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。但根据对桁架的实际工作情况和对桁架进行 结构实验的结果表明,由于大多数的常用桁架是由比较细长的杆件所组成,而且承受的荷 载大多数都是通过其它杆件传到结点上,这就使得桁架结点的刚性对杆件内力的影响可以 大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯 矩和剪力很小,可以忽略不计。因此,为了简化计算,在取桁架的计算简图时,作如下三个方面的假定:(1)桁架的结点都是光滑的铰结点。 (2)各杆的轴线都是直线并通过铰的中心。

(3)荷载和支座反力都作用在铰结点上。 通常把符合上述假定条件的桁架称为理想桁架。 341.2桁架的受力特点 桁架的杆件只在两端受力。因此,桁架中的所有杆件均为二力杆。在杆的截面上只有轴力。 3.4.1.3桁架的分类 (1 简单桁架:由基础或一个基本铰接三角形开始,逐次增加二兀体所组成的几何不变 ) 体。(图3-14a) (2 联合桁架:由几个简单桁架联合组成的几何不变的铰接体系。(图3-14b )) (3 )复杂桁架: 不属于前两类的桁架。(图3-14C ) 342桁架内力计算的方法 桁架结构的内力计算方法主要为:结点法、截面法、联合法

多体分析实例

第八章多体分析实例 多体分析:由多个刚体或柔体组成,各实体之间具有一定的约束关系和相对运动关系。Abaqus 的多体分析可以模拟系统的运动状况和系统各部分之间的相互作用,得到所关系部位的位移、速度、加速度、力和力矩等。如果是柔体,还可以得到柔体的应力、应变等分析结果。 8.1多体分析的主要方法 Abaqus模拟多体分析的 基本思路: abaqus使用两节点连接单元在系统各部分之间建立连接,并通过定义连接属性来描述各部分之间的相对运动约束关系。 基本步骤: 1.在PART 、ASSEMBLY或INTERACTION功能模块中,定义连接单元和约束所要用到的参 考点和基准坐标系 2.在INTERACTION模块中,设置连接单元、连接属性和约束 3.在STEP模块中,设置单元的历史变量输出;如果模型中出现较大的位移或转动,应将 几何非线性参数NLGEOM设置为ON 4.在LOAD模块中,定义边界条件和载荷,以及连接单元的边界条件和载荷 5.在VISUALIZATION模块中,查看连接单元的历史变量输出、控制连接单元的显示方式。8.1.1连接单元 用来模拟模型中的两个点或一个点和地面之间的运动和力学关系,所涉及到的点称为连接点。 8.1.2连接属性 分类:基本连接属性和组合连接属性 基本连接属性:平移连接属性和旋转连接属性 两个节点上的局部坐标系有如下三种情况: REQUIRED;IGNORED;OPTIONAN 两个连接点之间的相对运动分量:平移运动分量和旋转运动分量;又可以分为受约束的相对

运动分量和可用的相对运动分量。 几种常用的连接属性: JOIN;LINK;SLOT;REVOLVE;HINGE 8.1.3输出单元的分析结果 连接单元的作用:在两个连接点之间施加运动约束,度量两个连接点之间的相对运动、力和力矩 分析结果:运动分析结果和力与力矩的分析结果 8.2实例1:圆盘的旋转过程模拟

简单平面桁架受力分析

简单平面桁架受力分析 仪22 廖嵩松 020854 内容摘要:桁架使工程中常用的一种结构,求解桁架受力有三种方法:虚位移法、节点法、截面法,他们个又有缺点,适用于不同情况,更多情况是将它们综和运用。 关键词:桁架——虚位移法——节点法——截面法——载荷 参考书目: 李俊峰,张雄,任革学,高云峰编.理论力学.北京:清华大学出版社,2001 西北工业大学理论力学教研室编.和兴锁主编.理论力学.西安:西北工业大学出版社,2001 牛学仁主编.理论力学.北京:机械工业出版社,2000 一、 桁架简化模型 桁架是工程中常用的一种结构,各构件在同一平面内的桁架称为平面桁架。简单平面桁架是指在一个基本三角框架上每增家两各杆件的同时增加一个节点而形成的桁架。它始终保持其坚固性,且在这种桁架中除去任何一个杆件都会使桁架失去稳固性。 在简单平面桁架中,杆件的数目m 与节点数目n 之间有确定关系。基本三角框家的杆件书和节点数都等于3。此后增加的杆件数(m-3)节点数(n-3)之间的比例是2:1,故有 323-=-n m 即 n m 23=+ 在计算载荷作用下平面桁架各杆件的所受力时,为简化计算,工程上一般作如下规定: (1) 各杆件都是直杆,并用光滑铰链连接; (2) 杆件所受的外载荷都作用在各节点上,各力作用线都在桁架平面内; (3) 各杆件的自重忽略不计; 在以上假设下,每一杆件都是二力构件,故所受力都沿其轴线,或为拉力,或为压力。为便于分析,在受力图中总是假设杆件承受拉力,若计算结果为负值,则表示杆件承受压力。 二、 计算桁架受力的三种方法 1、 虚位移法 接触所求杆的约束,用约束反力 代替,系统仍处于平衡状态,但有一 个自由度。假设系统沿此自由度的方 向有一微小的运动,可得出各主动力 作用点及所加约束力的一组虚位移, 根据虚位移原理可列出一个方程,解 出约束反力的大小。 例1.求解图1所示平面桁架中1 杆的约束力。 解:去掉1杆,用N1和N1’代替。假

ANSYS WORKBENCH 11.0静力结构分析

ANSYS WORKBENCH 11.0培训教程(DS)

第四章 静力结构分析

序言 ?在DS中关于线性静力结构分析的内容包括以下几个方面: –几何模型和单元 –接触以及装配类型 –环境(包括载荷及其支撑) –求解类型 –结果和后处理 ?本章当中所讲到的功能同样适用与ANSYS DesignSpace Entra及其以上版本. –本章当中的一些选项可能需要高级的licenses,但是这些都没有提到。 –模态,瞬态和非线性静力结构分析在这里没有讨论,但是在相关的章节当中将会有所阐述。

线性静力分析基础 ?在线性静力结构分析当中,位移矢量{x} 通过下面的矩阵方程得到: 在分析当中涉及到以下假设条件: –[K] 必须是连续的 ?假设为线弹性材料?小变形理论 ?可以包括部分非线性边界条件–{F} 为静力载荷 ?不考虑随时间变化的载荷 ?不考虑惯性(如质量,阻尼等等)影响 ?在线性静力分析中,记住这些假设是很重要的。非线性分析和动力学分析将在随后的章节中给予讨论。 []{}{} F x K =

A. 几何结构 ?在结构分析当中,可以使用所有DS 支持的几何结构类型. ?对于壳体,在几何菜单下厚度选项是必须要指定的。 ?梁的截面形状和方向在DM已经指定并且可以自动的传到DS模型当中。 –对于线性体,仅仅可以得到位移结果. ANSYS License Availability DesignSpace Entra x DesignSpace x Professional x Structural x Mechanical/Multiphysics x

abaqus6.12 典型实例解析

(北京) CHINA UNIVERSITY OF PETROLEUM 《工程分析软件应用基础》保险杠撞击刚性墙的实例分析 院系名称:机械与储运工程学院 专业名称:机械工程 学生姓名: 学号: 指导教师: 完成日期2014年5月1日

1.应用背景概述 随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。而本案例就是取材于汽车碰撞模拟分析中的一个小案例―――保险杠撞击刚性墙。 2.问题描述 该案例选取的几何模型是通过导入已有的*.IGS文件来生成的(已经通过Solidworks软件建好模型的),共包括刚性墙(PART-wall)、保险杠(PART-bumper)、平板(PART-plane)以及横梁(PART-rail)四个部件,该分析案例的关注要点就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其是否能够对车体有足够的保护能力?这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源和时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠和刚性墙之间的接触采用接触对算法来定义。 1.横梁(rail) 2.平板(plane) 3.保险杠(bumper) 4.刚性墙(wall) 图2.1 碰撞模型的SolidWorks图

于玲玲结构力学第二章__静定结构的受力分析(精)

第二节静定平面桁架 一、桁架的内力计算中采用的假定 (1桁架的结点都是光滑的铰结点; (2各杆的轴线都是直线并通过铰的中心; (3荷载和支座反力都作用在结点上。 二、桁架的分类 (1简单桁架:由基础或一基本三角形开始,依次增加二元体形成。 (2联合桁架:由几个简单桁架按几何不变体系的组成规则形成。 (3复杂桁架:不属于前两类的桁架。 三、桁架的内力计算方法 1、结点法 取结点为隔离体,建立平衡方程求解的方法,每个结点最多只能含有两个未知力。该法最适用于计算简单桁架。 根据结点法,可以得出一些结点平衡的特殊情况,能使计算简化: (1两杆交于一点,若结点无荷载,则两杆的内力都为零(图2-2-1a 。 (2三杆交于一点,其中两杆共线,若结点无荷载,则第三杆是零杆,而共线的两杆内力大小相等,且性质相同(同为拉力或压力(图2-2-1b。 (3四杆交于一点,其中两两共线,若结点无荷载,则在同一直线上的两杆内力大小相等,且性质相同(图2-2-1c 。推论,若将其中一杆换成力F P ,则与F P 在同一直线上的杆的内力大小为F P ,性质与F P 相同(图2-2-1d 。 F N3

F N3=0 F N1=F N2=0 F N3=F N4(a (b(cF N4 (dF N3=F P F P N1F F N2 F N1 F N2 F N1 F N2 F N1 F N2 F N3 F N3 F N1=F N2,F N1=F N2, F N1=F N2, 图2-2-1

(4对称结构在正对称荷载作用下,对称轴处的“K ”型结点若无外荷载作用,则斜杆为零杆。例如 图2-2-2所示对称轴处与A 点相连的斜杆1、2都是零杆。 1A 2 F P F P A F P F P B F P F P B A (b(a X =0 图2-2-2 图2-2-3

相关主题
文本预览
相关文档 最新文档