当前位置:文档之家› 电子系10级01班-数学物理方程复习

电子系10级01班-数学物理方程复习

电子系10级01班-数学物理方程复习
电子系10级01班-数学物理方程复习

一、填空题

1、物理规律反映同一类物理现象的共同规律,称为___________。

2、若函数f(x)是周期性的,则可展开为_______________级数。

3、周期性函数f(x)为奇函数,则可展为____________傅里叶级数。

4、在给定条件下求解数学物理方程,叫作____________________。

5、方程20tt xx u a u -=称为_________方程

6、方程20t xx u a u -=称为_________方程

7、静电场的电场强度E

是无旋的,可用数学表示为_____________。

8、方程0j ??=称为_____________的连续性方程。

9、第二类边界条件,就是______________________________________。 10、第一类边界条件,就是______________________________________。 11、00(0,)(0,)x x u x t u x t -=+称为所研究物理量u 的_____________。 12、00(0,)(0,)u x t u x t -=+称为所研究物理量u 的_____________。 13、对于两个自变量的偏微分方程,可分为双曲型、________和椭圆型。 14、对于两个自变量的偏微分方程,可分为双曲型、抛物线型和________。 15、分离变数过程中所引入的常数λ不能为_____________。

16、方程中,特定的数值λ叫作本征值,相应的解叫作_____________。 17、傅里叶级数法适用于________________方程和齐次边界条件的定解问题。 18、分离变数法的关键是________________________代入微分方程。 19、非齐次振动方程可采用______________和冲量定理法求解。

20、处理非齐次边界条件时,可利用叠加原理,把非齐次边界条件问题转化另一_________的齐次边界条件问题。

21、处理非齐次边界条件时,可利用叠加原理,把非齐次边界条件问题转化另一_________的齐次边界条件问题。

22、对于边界是圆柱型的定解问题,常采用_______系求解。 23、对于边界是球型的定解问题,常采用_______系求解。

24、方程22

2

221[()]02

d R dR x

x x l R dx dx ++-+=称为__________________。

25、方程22

222

()0d R dR

x x x m R dx dx

++-=称为__________________。 26、方程()()()()()0y x p x y x q x y x '''++=,其中0()()x p x q x 是和的常点,则其解可写成__________________形式。

27、连带勒让德函数的微分表达式为,______________________。 28、勒让德多项式的微分达式为______________________。

29、拉普拉斯方程在球形区域的定解问题,如果是非轴对称的,问题与___有关,其解往往用一般的球函数表示。

30、贝塞尔函数()J x ν,当0x →时,()v J x →________。

二、单选题

1、已知函数f(x)=x ,定义在(-π,π),则其傅里叶级数在x=π的数值f(π)=______。

10A B C D π、、、、不存在

2、非周期函数()f x 的傅里叶变换式是( )

21()()cos ()()cos 21()()sin ()()sin 2()()cos ()()cos 2()()sin A f d A f d A B

B f d B f d A f d

C D

f x A xd B f d ωξωξξωξωξξππωξωξξωξωξξ

ππξξωξωπωωω

ξξωξωπ∞∞

-∞-∞∞∞

-∞-∞

∞∞

-∞∞-∞??

==?????

?

??==???

?

?

=??=?

?=??

????

???

3、下列方程中,属于输运方程的是( )

22000

tt xx t xx tt xx A u a u B u a u C u D u Eu ρ-=-=?=-=、、、、

4、下列方程中,属于稳定场方程的是( )

22000

tt xx t xx tt xx A u a u B u a u C u D u Eu ρ-=-=?=-=、、、、

5、方程1112221220xx xy yy x y a u a u a u bu b u cu f ++++++=属于双曲型类型,则有( )

2

2

1211221211222

12

11221200

A a a a

B a a a

C a a a

D b b c -=->-<-=、、、、

6、方程1112221220xx xy yy x y a u a u a u bu b u cu f ++++++=属于椭圆型类型,则有( )

2

2

1211221211222

12

1122120

A a a a

B a a a

C a a a

D b b c -=->-<-=、、、、

7、边界条件属于第一类边界条件是( )

0000000000x x x l x l x t x x x t x l x l u u A B u u u u u C D u u u u ================、、、

8、边界条件属于第二类边界条件是( )

0000

00000x x x l x l x t x x x t x l x l u u A B u u u u u C D u u u u ================、、、

9、属于初始条件的表达式是( )

0000

(,0)(0,)x x

t x A u u B u x u C u u D u t u ======、、、、

10、属于初始条件的表达式是( )

0000

(,0)(0,)x x

t x A u u B u x u C u u D u t u ======、、、、

11、方程22

2

2(1)0d R dR

r r l l R dr dr

+-+=在0r r <的解为( ) 1

1

1()()1()()l

l

l l l l

l A R r Cr D B R r C r r C R r D

D R r Cr r

+=+=+===∑、、、、

12、方程22

2

2(1)0d R dR

r r l l R dr dr

+-+=在0r r >的解为( )

1

1

1()()1()()l

l

l l l l

l A R r Cr D B R r C r r C R r D

D R r Cr r ∞

+=+=+===∑、、、、

13、0020x xy xy y '''=-+=在邻域求解微分方程:,其解为( )

1

1

00

1

1

00

()()()ln ()k k

k k k k k k k k k k

k k k k k k k

k k A y x a x

b x

B y x a x

C y x a x

A a x x b x D y x b x ∞

++===∞

++===∞

==+==++=∑∑∑∑∑∑∑、、、()、

14、000x xy xy y '''=-+=在邻域求解微分方程:,其解为( )

1

1

00

1

1

00

()()()ln ()k k

k k k k k k k k k k

k k k k k k k

k k A y x a x

b x

B y x a x

C y x a x

A a x x b x D y x b x ∞

++===∞

++===∞

==+==++=∑∑∑∑∑∑∑、、、()、

15、以勒让德多项式为基,在区间[-1,1],43()2f x x x =+的展开式是( )

0123

40123

602341234

516448

()()()()()55753516448()()()()()557535

1448

()()()()5753564481()()()()()575355

A P x P x P x P x P x

B P x P x P x P x P x

C P x P x P x P x

D P x P x P x P x P x +++++++++++++++、、、、

16、以勒让德多项式为基,在区间[-1,1],3()234f x x x =++的展开式是( )

01302602313

4214

4()()())55214

()()()

55

144

()()()575148()()()5535A P x P x P x B P x P x P x C P x P x P x D P x P x P x +

+++++++、、4、、

17、1

01

()P x dx -?的值是( )

A B C D π、、2、1、2

18、111

()P x dx -?的值是( )

A B C D π

、2、2、1、0

19、方程22

222

2[(1)]0d R dR

r r k r l l R dr dr

++-+=称为( ) 1

2

A B C l D l +、欧拉方程

、贝塞尔方程

、阶的勒让德方程

、()阶球贝塞尔方程

20、方程22

222

2[(1)]0d R dR

r r k r l l R dr dr

++-+=称为( ) A B C l D l 、欧拉方程、贝塞尔方程

、阶的勒让德方程

、阶球贝塞尔方程

21、勒让德多项式中,2(0)n P 的数值为( )

22

(21)!!

(2)!0

1

(-1)(2)!!

2(2!)n

n n n A B C D n n -、、、、 22、勒让德多项式的母函数为( )

[/2]

2222

(22)!(2)!(1)2!()!(2)!

2(2!)11l k

l k

n

l n k l k n A x

B x k l k l k n

C

D r -=-----∑、、、

三、计算题

1、把函数4()sin f x x =展开为傅里叶级数。

2、在区间(0,)l 上定义函数()f x x =,试根据边界条件(0)0f =和()0f l =,把函数()f x 展开为傅里叶级数。

3、在00x =的邻域上求解微分方程20y y ω''+=(ω是常数)。

4、在圆域0ρρ<上求0

40u u ρρ=?=-=,边界条件。

5、长为l 的弦,两端固定。弦中张力为T ,在距一端为0x 的一点以力F 0把弦拉开,然后突然撤除这力,求解弦的振动。

6、利用分离变数法求解泛定方程的定解。其中A 为常数。

20(0)

(0,)(,)0

(,0)sin ,

(,0)0

(0)

tt xx t u a u x l u t u l t x

u x A u x x l l π-=<<====<<

7、用一层不导电的物质把半径为0r 的导体球壳分隔为两个半球壳,使半球壳各自充电到电势为1v 和2v 。试计算球壳内的电场分布。

8、均匀介质球,半径为0r ,介电常数为ε,把介质球放在点电荷04q πε的电场中,球心与点电荷相距为0()d d r >,求解这个静电场的电势。

成都理工大学数学物理方程试题

《数学物理方程》模拟试题 一、填空题(3分10=30分) 1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ). 2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 是第 ( )类边界条件,其中为边界. 5.设函数的傅立叶变换式为,则方程的傅立叶变换 为 ( ) . 6.由贝塞尔函数的递推公式有 ( ) . 7.根据勒让德多项式的表达式有= ( ). 8.计算积分 ( ) . 9.勒让德多项式的微分表达式为( ) . ?f u n u S =+??)(σS ),(t x u ),(t U ω2 2 222x u a t u ??=??=)(0x J dx d )(3 1)(3202x P x P +=?-dx x P 2 1 12)]([)(1x P

10.二维拉普拉斯方程的基本解是() . 二、试用分离变量法求以下定解问题(30分):1. 2.? ? ? ? ?? ? ? ? < < = ? ? = = = > < < ? ? = ? ? = = = = 3 0,0 , 3 ,0 0 ,3 0, 2 3 2 2 2 2 2 ,0 x t u x x t x x u t u t t x u u u ? ? ? ? ?? ? ? ? = = = > < < ? ? = ? ? = = = x t x x u t u u u u t x x 2 ,0 ,0 ,4 0, 4 2 2

3. ???? ? ????<<=??===><<+??=??====20,0,8,00,20,162002022 222x t u t x x u t u t t x x u u u

数学物理方法 (2)

数学物理方法 课程类别校级优秀□省级优质√省级精品□国家精品□项目主持人李高翔 课程建设主要成员陈义成、王恩科、吴少平、刘峰数学物理方法是理科院校物理类学生的一门重要基础课,该课程所涉内容,不仅为其后续课程所必需,而且也为理论和实际研究工作广为应用。因此,本课程教学质量的优劣,将直接影响到学生对后续课程的学习效果,以及对学生分析问题和解决问题的能力的培养。数学物理方法是物理专业师生公认的一门“难教、难学、难懂”的课程,为了将其变为一门“易教、易学、易懂”的课程,我们对该课程的课程体系、内容设置、教学方法等方面进行了改革和建设,具体做法如下: 一、师资队伍建设 优化组合的教师队伍,是提高教学质量的根本保证。本课程师资队伍为老、中、青三结合,其中45岁以下教师全部具有博士学位,均具有高级职称。课程原责任教师汪德新教授以身作则,有计划地对青年教师进行传、帮、带,经常组织青年教师观摩老教师的课堂教学、参与数学物理方法教材编写的讨论;青年教师主动向老教师学习、请教,努力提高自身素质和教学水平。现在该课程已拥有一支以中青年教师为主的教师队伍。同时,系领导对该课程教师队伍的建设一直比较重视,有意识地安排青年教师讲授相关的后续课程,例如,本课程现责任教师李高翔教授为物理系本科生和函授生多次主讲过《电动力学》、《量子力学》、《热力学与统计物理》等课程,使得他们熟知本门课程与后续专业课程的连带关系,因此在教学中能合理取舍、突出重点,并能将枯燥的数学结果转化为具体的物理结论,有利于提高学生的学习兴趣。培养学生独立分析问题和解决问题能力的一个重要前提是教师应该具有较强的科研能力,该课程的任课教师都是活跃在国际前沿的学术带头人或学术骨干,近5年来,他们承担国家自然科学基金项目共8项,在国内外重要学术刊物上发表科研论文60余篇,并将科研成果注入教学中。此外,本课程大多数教师有多次出国合作研究的经历,并且在学校教务处和外事处的支持下,吴少平副教授参加了由国家留学基金委员会组织的赴英“双语教学研修项目”,为本课程双语教学的开展打下了良好的基础。 二、教学内容 数学物理方法是联系高等数学和物理专业课程的重要桥梁,本课程的重要任务是教会学生如何把各种物理问题翻译成数学的定解问题,并掌握求解定解问题的多种方法。本门课程的基本教学内容主要包括复变函数论、数学物理方程两部分。与国内流行的教材和教学内容相比,在讲解数理方程的定解问题时,本门课程教学内容的特色之一是按解法分类而不按方程的类型分类,这样,可以避免同一方法的多次重复介绍;特色之二是把线性常微分方程的级数解法和特殊函数置于复变函数论之后、数学物理方程之前,一方面可将这些内容作为复变函数理论的一个直接应用,使学生进一步巩固已学的相关知识,另一方面可使正交曲线坐标系中分离变量法的叙述更加流畅,并通过与直角坐标系中分

初中物理公式大全

想要学好初中物理,熟记物理公式是前提。下面是初中物理公式大全,包括初中物理力学公式、热学公式、电学公式以及一些常用的物理量: 力学部分 一、速度公式 火车过桥(洞)时通过的路程s=L桥+L车 声音在空气中的传播速度为340m/s 光在空气中的传播速度为3×108m/s 二、密度公式 (ρ水=1.0×103 kg/ m3) 冰与水之间状态发生变化时m水=m冰ρ水>ρ冰v水<v冰 同一个容器装满不同的液体时,不同液体的体积相等,密度大的质量大 空心球空心部分体积V空=V总-V实 三、重力公式 G=mg (通常g取10N/kg,题目未交待时g取9.8N/kg) 同一物体G月=1/6G地m月=m地 四、杠杆平衡条件公式 F1l1=F2l2 F1 /F2=l2/l1

五、动滑轮公式 不计绳重和摩擦时F=1/2(G动+G物)s=2h 六、滑轮组公式 不计绳重和摩擦时F=1/n(G动+G物)s=nh 七、压强公式(普适) P=F/S固体平放时F=G=mg S的国际主单位是m2 1m2 =102dm2 =106mm2 八、液体压强公式P=ρgh 液体压力公式F=PS=ρghS 规则物体(正方体、长方体、圆柱体)公式通用 九、浮力公式 (1)F浮=F’-F (压力差法) (2)F浮=G-F (视重法) (3)F浮=G (漂浮、悬浮法) (4)阿基米德原理:F浮=G排=ρ液gV排(排水法)十、功的公式

W=FS把物体举高时W=GhW=Pt 十一、功率公式 P=W/tP=W/t=Fs/t=Fv(v=P/F) 十二、有用功公式 举高W有=Gh水平W有=FsW有=W总-W额 十三、总功公式 W总=FS(S=nh)W总=W有/ηW总=W有+W额W总=P总t 十四、机械效率公式 η=W有/W总η=P有/ P总 (在滑轮组中η=G/Fn) (1)η=G/ nF(竖直方向) (2)η=G/(G+G动) (竖直方向不计摩擦) (3)η=f / nF (水平方向) 热学部分 十五、热学公式 C水=4.2×103J/(Kg·℃) 1.吸热:Q吸=Cm(t-t0)=CmΔt

数学物理方程第二版答案解析(平时课后知识题作业任务)

数学物理方程第二版答案 第一章. 波动方程 §1 方程的导出。定解条件 4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。 解:如图2,设弦长为l ,弦的线密度为ρ,则x 点处的张力)(x T 为 )()(x l g x T -=ρ 且)(x T 的方向总是沿着弦在x 点处的切线方向。仍以),(t x u 表示弦上各点在时刻t 沿垂直于x 轴方向的位移,取弦段),,(x x x ?+则弦段两端张力在u 轴方向的投影分别为 )(sin ))(();(sin )(x x x x l g x x l g ?+?+--θρθρ 其中)(x θ表示)(x T 方向与x 轴的夹角 又 . sin x u tg ??=≈θθ 于是得运动方程 x u x x l t u x ???+-=???)]([22ρ∣x u x l g x x ??--?+][ρ∣g x ρ 利用微分中值定理,消去x ?,再令0→?x 得 ])[(2 2x u x l x g t u ??-??=??。 5. 验证 2 221),,(y x t t y x u --= 在锥2 22y x t -->0中都满足波动方程 222222y u x u t u ??+??=??证:函数2221),,(y x t t y x u --=在锥2 22y x t -->0内对变量t y x ,,有

二阶连续偏导数。且 t y x t t u ?---=??-2 3 222)( 22 52222 32222 2) (3) (t y x t y x t t u ?--+---=??- - )2()(2 2223 222y x t y x t ++?--=- x y x t x u ?--=??- 23 222)( ()() 225222232222 23x y x t y x t x u - ---+--=?? ( )()222 252222y x t y x t -+- -=- 同理 ()()222 25 2222 22y x t y x t y u +---=??- 所以 ()() .22 22 2225222222 2t u y x t y x t y u x u ??=++--=??+ ??- 即得所证。 §2 达朗贝尔公式、 波的传抪 3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) ??? ? ???==??=??=+=-).()(0022222x u x u x u a t u at x at x ψ? ())0()0(ψ?= 解:u(x,t)=F(x-at)+G(x+at) 令 x-at=0 得 )(x ?=F (0)+G (2x ) 令 x+at=0 得 )(x ψ=F (2x )+G(0)

数学物理方程有感

书本个人总结: 由于物理学,力学和工程技术等方面的许多问题都可以归结为偏微分方程的定解问题,而在数学物理方程这门课上,我们的主要任务便是求解这些定解问题,也就是说在已经列出的方程与定解条件之后,怎样去求既满足方程又满足定解条件的解。 而我们的常用的解决偏微分方程的方法的统一思路是将一个偏微分方程的求解设法转化成一个常微分方程问题的求解。 而我们在学习过程中接触到的常用方法有:分离变量法,行波法,积分变换法和拉普拉斯方程的格林函数法 第二章: 本章主要介绍了分离变量法,介绍了有界弦的自由振动,有限长杆上的热传导,圆域内的二维拉普拉斯方程的定解问题等泛定方程和边界条件都是齐次的偏微分方程的求解,还介绍了非齐次方程的解法,非齐次边界条件的处理等等。 A . 其中泛定方程和边界条件都是齐次的偏微分方程的求解步骤,取有界弦的自由振动的方程求解作为例子,定解问题为: 第一步:分离变量 目标:分离变量形式的非零解)()(),(t T x X t x u = 结果:函数)(x X 满足的常微分方程和边界条件以及)(t T 满足的常微分方程 条件:偏微分方程和边界条件都是齐次的 第二步:求解本征值问题 利用0)()(''=+x X x X λ和边界条件0)0(=X 和0)(=l X 求出本征值和本函数: 本征值: 本征函数: 第三步:求特解,并叠加出一般解 ? ??????====<<>??=??) ()0,(),()0,(,0),(),0(0 ,0 ,22222x x u x x u t L u t u L x t x u a t u t ψ?0 )(2 )(''=+t T a t T λ ,3,2,1 2)(==n l n n πλx l n πsin (x)X n =x l n at l n D at l n C t x u n n n πππsin )cos sin (),(1∑∞ =+=

初中物理所有公式总结

1. 电功(W):电流所做的功叫电功, 2. 电功的单位:国际单位:焦耳。常用单位有:度(千瓦时),1度=1千瓦时= 3.6×106焦耳。 3. 测量电功的工具:电能表(电度表) 4. 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安 (A);t→秒)。 5. 利用W=UIt计算电功时注意:①式中的W.U.I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。 6. 计算电功还可用以下公式:W=I2Rt ;W=Pt;W=UQ(Q是电量); 7. 电功率(P):电流在单位时间内做的功。单位有:瓦特(国际);常用单位有:千瓦 8. 计算电功率公式: (式中单位P→瓦(w);W→焦;t→秒;U→伏(V); I→安(A) 9. 利用计算时单位要统一,①如果W用焦、t用秒,则P的单位是瓦;②如果W用千瓦时、t用小时,则P的单位是千瓦。 10.计算电功率还可用右公式:P=I2R和P=U2/R 11.额定电压(U0):用电器正常工作的电压。 12.额定功率(P0):用电器在额定电压下的功率。 13.实际电压(U):实际加在用电器两端的电压。 14.实际功率(P):用电器在实际电压下的功率。 当U > U0时,则P > P0 ;灯很亮,易烧坏。当U < U0时,则P < P0 ;灯很暗,当U = U0时,则P = P0 ;正常发光。 (同一个电阻或灯炮,接在不同的电压下使用,则有 ;如:当实际电压是额定电压的一半时,则实际功率就是额定功率的1/4。例220V100W是表示额定电压是220伏,额定功率是100瓦的灯泡如果接在110伏的电路中,则实际功率是25瓦。) 15.焦耳定律:电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比。 16.焦耳定律公式:Q=I2Rt ,(式中单位Q→焦; I→安(A);R→欧

数学物理方程期末考试试题(A)答案

孝感学院

解:设)()(t T x X u =代于方程得: 0''=+X X λ,0)1(''2=++T a T λ(8’) x C x C X λλsin cos 21+=,t a C t a C T 22211sin 1cos λλ+++= 由边值条件得: 22)( ,0l n C πλ== l x n t a A t a B u n n n πλλcos )1sin 1cos (221+++=∑∞= ?= l n dx l x n x l B 0cos )(2π?,?+=l n dx l x n x a l A 02cos )(12πψλ(15’) 证明:设代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。(15’)

解:设),(ηξp 是第一象限内一点,在该点放置单位点电荷,其对称点),(ηξ-p 格林函数: 22)()(1ln 21),,,(ηξπηξ-+-= y x y x G 22)()(1ln 21ηξπ++--y x (8’) ] )[(22220ηξπη+-=??-=??=x y G n G y 方程的解:dx x x f u ?+∞∞-+-=22)()(),(ηξπ ηηξ(15’) 五、证明下列初边值问题解的唯一性.(20分) ),,,()(2t z y x f u u u a u zz yy xx tt =++- ),,,(0z y x u t ?== ),,,(0 z y x u t t ψ== ).,,,(t z y x g u =Γ 其中,),,(,0Ω∈>z y x t Γ为Ω的边界. 解:设21,u u 都是方程的解设21u u u -=代入方程得: 0)(2=++-zz yy xx tt u u u a u 00==t u 00 ==t t u .0=Γu 设dxdydz u u u a u t E z y x t ])([21)(22222???Ω +++= =dt t dE )(dxdydz u u u u u u a u u zt z yt y xt x tt t ])([22???Ω +++ dxdydz u u u a u u zz yy xx tt t ])([[2 2??? Ω++-= 0=(10’)

《数学物理方程讲义》课程教学大纲

《数学物理方程讲义》课程教学大纲第一部分大纲说明 一、课程的作用与任务 本课程教材采用的是由高等教育出版社出版第二版的《数学物理方程讲义》由姜礼尚、陈亚浙、刘西垣、易法槐编写 《数学物理方程讲义》课程是中央广播电视大学数学与应用数学专业的一门限选课。数学物理方程是工科类及应用理科类有关专业的一门基础课。通过本课程的学习,要求学生了解一些典型方程描述的物理现象,使学生掌握三类典型方程定解问题的解法,重点介绍一些典型的求解方法,如分离变量法、积分变换法、格林函数法等。本课程涉及的内容在流体力学、热力学、电磁学、声学等许多学科中有着广泛的应用。为学习有关后继课程和进一步扩大数学知识面奠定必要的数学基础。该课程所涉内容,不仅为其后续课程所必需,而且也为理论和实际研究工作广为应用。它将直接影响到学生对后续课的学习效果,以及对学生分析问题和解决问题的能力的培养。数学物理方程又是一门公认的难度大的理论课程。 二、课程的目的与教学要求 1 了解下列基本概念: 1) 三类典型方程的建立及其定解问题(初值问题、边值问题和混合问题)的提法,定解条件的物理意义。 2) 偏微分方程的解、阶、维数、线性与非线性、齐次与非齐次的概念,线性问 题的叠加原理。 3) 调和函数的概念及其基本性质(极值原理、边界性质、平均值定理)。 2 掌握下列基本解法

1) 会用分离变量法解有界弦自由振动问题、有限长杆上热传导问题以及矩形域、 圆形域内拉普拉斯方程狄利克雷问题;会用固有函数法解非齐次方程的定值问题,会用辅助函数和叠加原理处理非齐次边值问题; 2) 会用行波法(达郎贝尔法)解无界弦自由振动问题,了解达郎贝尔解的物理 意义;了解齐次化原理及其在解无界弦强迫振动问题中的应用; 3) 会用傅立叶变换法及拉普拉斯变换法解无界域上的热传导问题及弦振动问 题; 4) 了解格林函数的概念及其在求解半空间域和球性域上位势方程狄利克雷问题中的应用; 5)掌握二阶线性偏微分方程的分类 二、课程的教学要求层次 教学要求层次:有关定义、定理、性质等概念的内容按“知道、了解、理解”三个层次要求;有关计算、解法、公式和法则等方法的内容按“会、掌握、熟练掌握” 三个层次要求。 第二部分学时、教材与教学安排一、学时分配 本课程共3学分,讲授54学时(包括习题课)学时分配如下: 项目内容学时电视学时 IP课学时 第一章方程的导出和定解条件 6 第二章波动方程 14 第三章热传导方程 14 第四章位势方程 14 第五章二阶线性偏微分方程的分类 6 合计 54 二、教学安排

数学物理方程总结

数学物理方程总结 Revised by Jack on December 14,2020

浙江理工大学数学系 第一章:偏微分方程的基本概念 偏微分方程的一般形式:221 1 (,,, ,,,)0n u u u F x u x x x ???=??? 其中12(,,...,)n x x x x =是自变量,12()(,,...,)n u x u x x x =是未知函数 偏微分方程的分类:线性PDE 和非线性PDE ,其中非线性PDE 又分为半线性PDE ,拟线性PDE 和完全非线性PDE 。 二阶线性PDE 的分类(两个自变量情形): 2221112222220u u u u u a a a a b cu x x y y x y ?????+++++=?????? (一般形式 记为 PDE (1)) 目的:可以通过自变量的非奇异变换来化简方程的主部,从而据此分类 (,) (,)x y x y ξξηη=?? =? 非奇异 0x y x y ξξηη≠ 根据复合求导公式最终可得到: 22211122222 20u u u u u A A A A B Cu ξξηηξη ?????+++++=??????其中: 考虑22111222( )2()0z z z z a a a x x y y ????++=????如果能找到两个相互独立的解 那么就做变换(,) (,)x y x y ξφηψ=??=? 从而有11220A A == 在这里要用到下面两个引理: 引理1:假设(,)z x y φ=是方程22111222( )2()0z z z z a a a x x y y ????++=???? (1)的特解,则关系式(,)x y C φ=是常微分方程:22111222()2()0a dy a dxdy a dx -+= (2)的一般积分。 主

数学物理方法 课程教学大纲

数学物理方法课程教学大纲 一、课程说明 (一)课程名称:数学物理方法 所属专业:物理、应用物理专业 课程性质:数学、物理学 学分:5 (二)课程简介、目标与任务 这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ-函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。 这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。 (四)教材:《数学物理方法》杨孔庆编 参考书:1. 《数学物理方法》柯朗、希尔伯特著 2. 《特殊函数概论》王竹溪、郭敦仁编著 3. 《物理中的数学方法》李政道著 4. 《数学物理方法》梁昆淼编 5. 《数学物理方法》郭敦仁编 6. 《数学物理方法》吴崇试编 二、课程内容与安排 第一部分线性空间及线性算子 第一章R3空间的向量分析 第一节向量的概念 第二节R3空间的向量代数

第三节R3空间的向量分析 第四节R3空间的向量分析的一些重要公式 第二章R3空间曲线坐标系中的向量分析 第一节R3空间中的曲线坐标系 第二节曲线坐标系中的度量 第三节曲线坐标系中标量场梯度的表达式 第四节曲线坐标系中向量场散度的表达式 第五节曲线坐标系中向量场旋度的表达式 第六节曲线坐标系中Laplace(拉普拉斯)算符▽2的表达式第三章线性空间 第一节线性空间的定义 第二节线性空间的内积 第三节Hilbert(希尔伯特)空间 第四节线性算符 第五节线性算符的本征值和本征向量 第二部分复变函数 第四章复变函数的概念 第一节映射 第二节复数 第三节复变函数 第五章解析函数 第一节复变函数的导数 第二节复变函数的解析性 第三节复势 第四节解析函数变换 第六章复变函数积分 第一节复变函数的积分 第二节Cauchy(柯西)积分定理 第三节Cauchy(柯西)积分公式 第四节解析函数高阶导数的积分表达式 第七章复变函数的级数展开

初中物理公式总结大全(最新归纳)

初中物理公式汇总 速度公式: t s v = 公式变形:求路程——vt s = 求时间——t=s/v 重力与质量的关系: G = mg 密度公式: V m = ρ 浮力公式: F 浮= G 物 – F 示 F 浮= G 排=m 排g F 浮=ρ液gV 排 F 浮= G 物 压强公式:P=F/S (固体) 液体压强公式: p =ρgh 物理量 单位 p ——压强 Pa 或 N/m 2 ρ——液体密度 kg/m 3 h ——深度 m g=9.8N/kg ,粗略计算时取g=10N/kg 面积单位换算: 1 cm 2 =10--4m 2 1 mm 2 =10--6m 2 注意:S 是受力面积,指有受到压力作用的那部分面积 注意:深度是指液体内部某一点到自由液面的竖直距离; 单位换算:1kg=103 g 1g/cm 3=1×103kg/m 3 1m 3=106cm 3 1L=1dm 3=10-3m 3 物理量 单位 p ——压强 Pa 或 N/m 2 F ——压力 N S ——受力面积 m 2 物理量 单位 F 浮——浮力 N G 物——物体的重力 N 提示:[当物体处于漂浮或悬浮时] 物理量 单位 v ——速度 m/s km/h s ——路程 m km t ——时间 s h 单位换算: 1 m=10dm=102cm=103mm 1h=60min=3600 s ; 1min=60s 物理量 单位 G ——重力 N m ——质量 kg g ——重力与质量的比值 g=9.8N/kg ;粗略计算时取 物理量 单位 ρ——密度 kg/m 3 g/cm 3 m ——质量 kg g V ——体积 m 3 cm 3 物理量 单位 F 浮——浮力 N ρ ——密度 kg/m 3 V 排——物体排开的液体的体积 m 3 g=9.8N/kg ,粗略计算时取g=10N/kg G 排——物体排开的液体 受到的重力 N m 排——物体排开的液体 的质量 kg

最新数学物理方程期末考试试题及答案

数学物理方程期末考试试题及答案 一、求解方程(15分) ?????===-=+=-. )()(0002x u x u u a u at x at x xx tt ψ? 其中)0()0(ψ?=。 解:设? ??+=-at x at x ηξ=则方程变为: 0=ξηu ,)()(at x G at x F u ++-=(8’)由边值条件可得: )()0()2(),()2()0(x G x F x x G F ψ?=+=+ 由)0()0(ψ?=即得: )0()2 ()2( ),(?ψ?--++=at x at x t x u 。 二、利用变量分离法求解方程。(15分) ?????==≥==∈=-====)(,)(, 0,0,),(,00002x u x u t u u Q t x u a u t t t l x x xx tt ψ? 其中l x ≤≤0。0>a 为常数 解:设)()(t T x X u =代于方程得: 0''=+X X λ,0''2=+T a T λ(8’) x C x C X λλsin cos 21+=,at C at C T λλsin cos 21+= 由边值条件得:

21)( ,0l n C πλ== l x n at A at B u n n n πλλsin )sin cos (1+=∑∞= ?=l n dx l x n x l B 0sin )(2π?,?=l n dx l x n x an A 0sin )(2πψπ 三.证明方程02=--cu u a u xx t )0(≥c 具有狄利克雷边界条件的初边值问题解的唯一性与 稳定性. (15分) 证明:设u e v ct -=代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。 四.求解二维调和方程在半平面上的狄利克雷问题(15分). ,0,0>=++=?z u u u u zz yy xx ).(0x f u z == 解:设),,(ζηξp 是上半平面内一点,在该点放置单位点电荷,其对称点 ),,(?ηξ-p 格林函数: 222)()()(141 ),,,(?ηξπ ηξ-+-+--=z y x y x G 222)()()(141 ?ηξπ++-+-+z y x

[方程,物理,课程]数学物理方程课程教学的实践与认识

数学物理方程课程教学的实践与认识 数学物理方程主要指从物理学和其他各门自然科学、技术科学中所产生的偏微分方程[1]。它是数学理论联系实际问题的一个重要桥梁。数学物理方程课程就是通过讲授三类典型的数学物理方程(即波动方程,热传导方程和调和方程)的导出、定解问题的求解以及解的性质的探讨来培养学生掌握基本的数学物理方程的理论、方法和技巧,形成理性思维品质以及具有较高的分析和解决实际问题的能力,为后续课程的学习或者从事相关工作奠定基础。 目前,数学物理方程课程是国内众多高校数学类有关专业本科生的一门重要的专业基础课,同时也是物理、力学和土木等理工科专业本科生或研究生的一门专业必修课。然而在这门课教与学的过程中,学生普遍反映难学,教师普遍反映难教。究其原因,主要有以下几个方面:(1)该课程涉及的专业知识多。学习这门课程需要学生事先掌握数学分析线性代数常微分方程复变函数与大学物理等课程的有关知识。(2)该课程的理论性强、计算量大。在介绍三类典型方程定解问题的求解过程中,会有许多数学理论和方法,其计算过程往往复杂、冗长,学生易产生畏难情绪。(3)学生缺乏运用数学知识解决实际问题的能力。这直接导致学生反映作业难度大。针对这些问题,笔者结合自身的教学实践,谈谈对这门课教学的一些做法和体会。 1 督促学生复习相关基础知识 学习数学物理方程课程,需要学生具备较好的数学和物理基础,即要预先掌握上面提到的一些基础课程的相关知识。例如在讲授三类典型方程的导出时,频繁用到数学分析中二重与三重积分、曲面积分、Green公式和场论初步等知识;讲授用分离变量法求解三类方程的定解问题时,需要求解二阶齐次常微分方程的特征值问题;讲授用Fourier变换法求解热传导方程的Cauchy问题时,需要学生会利用复变函数中的Cauchy积分定理来求解已知函数的Fourier逆变换。学生虽已学过这些知识,但可能没有学好或者遗忘。因此在讲授这些内容前,都要督促学生提前复习有关基础知识,这对课堂教学起到了重要的铺垫作用。否则,学生听课就会感到费解,从而逐渐失去学习兴趣。另外,教师在介绍三类方程的导出时,应带领学生及时回顾有关物理知识,如冲量定理和热量守恒定律等,这都有利于学生的理解。 2 结合课程特点讲授内容,突出重点 2.1 突出课程的主要内容 在课程内容的选择上,应根据专业特点及培养方案,精选经典的内容,淘汰复杂难懂的内容。在课时较少的情况下,更应如此。以数学系信息与计算科学专业该课程的教学为例,应重点讲授三类方程的导出、定解问题的提法、定解问题的适定性理论、解的性质以及解的物理意义这些内容;详细讲解行波法、分离变量法、Fourier变换法和格林函数法。通过例题讲解和习题训练让学生牢固掌握这些方法,这有利于培养学生分析、解决实际问题的能力。 2.2 突出讲授最基本的数学思想 在讲授课程内容的过程中,应突出讲授其中蕴含的最基本的数学思想,即转化思想。它是将各种复杂的或者未知的问题通过适当的变换转化为简单的或者已知的问题,从而最终解

初中物理公式大全

初中物理公式大全速度:V(m/S)v=S:路程/t:时间? 重力G(N)G=m g(m:质量;g:k g或者10N/k g)密度:ρ(k g/m3)ρ=m/v(m:质量;V:体积)合力:F合(N)方向相同:F合=F1+F2;方向相反:F合=F1—F2方向相反时,F1>F2? 浮力:F浮(N)F浮=G物—F拉(G视:物体在液体的重力)浮力:F浮(N)F浮=G物(此公式只适用物体漂浮或悬浮)浮力:F浮(N)F浮=G排=m排g=ρ液gV排(G排:排开液体的重力;m排:排开液体的质量;ρ液:液体的密度;V排:排开液体的体积(即浸入液体中的体积))杠杆的平衡条件:F1L1=F2L2(F1:动力;L1:动力臂;F2:阻力;L2:阻力臂)定滑轮:F=G物S=h(F:绳子自由端受到的拉力;G物:物体的重力;S:绳子自由端移动的距离;h:物体升高的距离)动滑轮:F=(G物+G轮)/2S=2h(G物:物体的重力;G轮:动滑轮的重力)滑轮组:F=(G物+G轮)S=n h(n:通过动滑轮绳子的段数)机械功:W(J)W=F s(F:力;s:在力的方向上移动的距离)有用功:W有=G物h? 总功:W总W总=F s适用滑轮组竖直放置时?

机械效率:η=W有/W总×100%? 功率:P(w)P=w/t(W:功;t:时间) 压强p(P a)P=F/s(F:压力;S:受力面积)液体压强:p(Pa)P=ρgh(ρ:液体的密度;h:深度【从液面到所求点的竖直距离】)热量:Q(J)Q=c m△t(c:物质的比热容;m:质量;△t:温度的变化值)燃料燃烧放出的热量:Q(J)Q=m q(m:质量;q:热值)? 常用的物理公式与重要知识点? 串联电路电流I(A)I=I1=I2=……电流处处相等? 串联电路电压U(V)U=U1+U2+……串联电路起分压作用? 串联电路电阻R(Ω)R=R1+R2+……? 并联电路电流I(A)I=I1+I2+……干路电流等于各支路电流之和(分流)? 并联电路电压U(V)U=U1=U2=……? 并联电路电阻R(Ω)1/R=1/R1+1/R2+……? 欧姆定律:I=U/I? 电路中的电流与电压成正比,与电阻成反比? 电流定义式I=Q/t(Q:电荷量(库仑);t:时间(S))

数学物理方程公式总结-14页文档资料

无限长弦的一般强迫振动定解问题 200(,)(,0)() () tt xx t t t u a u f x t x R t u x u x ?ψ==?=+∈>? =?? =? 解()()().() .0()1 11(,)(,)222x at t x a t x at x a t u x t x at x at d f d d a a ττ??ψξξατατ++----??=++-+ +??????? ???? 三维空间的自由振动的波动方程定解问题 ()22 22222220001,,,,0(,,) (,,)t t u u u a x y z t t x y z u x y z u x y z t ??==???????=++-∞<<+∞>? ????????? =????=??? 在球坐标变换 sin cos sin sin (0,02,0)cos x r y r r z r θ?θ??πθπθ=?? =≤<+∞≤≤≤≤??=? L 21()1 () (,)44M M at r S S M M u M t dS dS a t r a r ?ψππ??''?=+??????????? 乙 (r=at) 221()1() (,)44M M at at S S M M u M t dS dS a t t a t ?ψππ??''?=+??????? ???? 乙无界三维空间自由振动的泊松公式 ()sin cos ()sin sin (02,0)()cos x x at y y at z z at θ?θ??πθπθ'=+?? '=+≤≤≤≤??'=+? L 2()sin dS at d d θθ?= 二维空间的自由振动的波动方程定解问题 ()22 2222200,,,0(,)(,)t t u u u a x y t t x y u u x y x y t ?ψ==??????=+-∞<<+∞>? ???????? ?? ==??? 22000011(,,)22at at u x y t a t a ππθθππ?????= +????????? ???? 傅立叶变换

初三物理公式总结

物理公式汇总 一、密度(ρ): 1、定义:单位体积的某种物质的质量叫做这种物质的密度。 2、公式: 变形 m 为物体质量,主单位kg ,常用单位:t g mg ; v 为物体体积,主单位cm 3 m 3 3、单位:国际单位制单位: kg/m 3 常用单位g/cm 3 单位换算关系:1g/cm 3=103kg/m 3 1kg/m 3=10-3g/cm 3水的密度为1.0×103kg/m 3,读作1.0×103千克每立方米,它表示物理 意义是:1立方米的水的质量为1.0×103千克。 二、速度(v ): 1、定义:在匀速直线运动中,速度等于运动物体在单位时间内通过的路程。 物理意义:速度是表示物体运动快慢的物理量 2、计算公式: 变形 , S 为物体所走的路程,常用单位为km m ;t 为物体所用的时间,常用单位为s h 3、单位:国际单位制: m/s 常用单位 km/h 换算:1m/s=3.6km/h 。 三、重力(G ): 1、定义:地面附近的物体,由于地球的吸引而受的力叫重力 2、计算公式: G=mg m 为物理的质量;g 为重力系数, g=9.8N/kg ,粗略计算的时候g=10N/kg 3、单位:牛顿简称牛,用N 表示 四、杠杆原理 1、定义:杠杆的平衡条件为动力×动力臂=阻力×阻力臂 2、公式:F 1l 1=F 2l 2 也可写成:F 1 / F 2=l 2 / l 1 其中F 1为使杠杆转动的力,即动力;l 1为从支点到动力作用线的距离,即动力臂; F 2为阻碍杠杆转动的力,即阻力;l 2为从支点到阻力作用线的距离,即阻力臂 五、压强(P ): 1、定义:物体单位面积上受到的压力叫压强。 物理意义:压强是表示压力作用效果的物理量。 2、计算公式: P=F/S F 为压力,常用单位牛顿(N );S 为受力面积,常用单位米2(m 2 ) 3、单位是:帕斯卡(Pa ) 六、液体压强(P ): 1、计算公式:p =ρgh 其中ρ为液体密度,常用单位kg/m 3 g/cm 3 ;g 为重力系数,g=9.8N/kg ; h 为深度,常用单位m cm 2、单位是:帕斯卡(Pa ) ρ m V = V m ρ = V m ρ = v s t = t s v = v t s =

数学物理方程期末试卷

2012学年第二学期数学与物理方程期末试卷 出卷人:欧峥 1、长度为 l 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题。(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2 x l x -,试写出其定解问题。(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分):

???????==??=??=+=-).()(002 22 2 2x u x u x u a t u at x at x ψ? ())0()0(ψ?= 6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 22220 0, y 0, () , .y u u x y u f x x =???+=

初中物理公式大全(人教版)

初中物理公式 物理量符号国际单位符号单位换算 质量m千克kg1t=103kg1kg=103g=106mg 体积v立方米m31m3=103dm3=106cm3=109mm31L=1dm31ml=1cm3温度t摄氏度°C 速度v米/秒m/s1m/s=3.6km/h 路程s米m1km=103m1m=10dm=100cm=1000mm=106μm=109nm 密度ρ千克/米3kg/m31g/cm3=103kg/m3 力F牛顿(牛)N 重力G牛顿(牛)N 压强P帕斯卡(帕)Pa1Mpa=106pa1kpa=103pa 面积s平方米m21m2=100dm2=104cm2=106mm2 功W焦耳(焦)J1kw?h=3.6×106J 功率P瓦特(瓦)w1Mw=106w1kw=103w 电流I安培(安)A1A=103mA=106μA 电压U伏特(伏)V1Mv=106v1kv=103v 电阻R欧姆(欧)Ω1MΩ=106Ω1kΩ=103Ω 电功W焦耳(焦)J 电功率P瓦特(瓦)w1Mw=106w1kw=103w 热量Q焦耳(焦)J 比热容c焦/(千克?摄氏度)J/(kg?℃) 时间t秒s1h=60min=3600s 初中物理公式汇编 【力学部分】 1、速度:V=S/t S----路程-----m km t----时间-----s h v---速度-----m/s km/h 2、重力:G=mg m----质量----kg- g----重力与质量的比值-----9、8N/kg G-----重力-----N 3、密度:ρ=m/V m----质量----kg g v-----体积m3cm3 ρ---密度----kg/m3g/cm3 4、压强:p=F/S F----压力----N s----受力面积-----m2 p----压强----pa或N/m2 5、液体压强:p=ρgh ρ-----液体密度-----kg/m3g------9.8N/kg或10N/kg h-----深度-----m P----液体压强------pa

数学物理方程结课论文

N-S方程在平板间脉冲流动中的应用 摘要 粘性流体力学是一个历史悠久而又富有新生命力的学科。它与人们日常生活、健康和旅行无不息息相关。早在纪元前希腊学者阿基米德即建立了液体载物的浮力理论,其领先远超于力学建基之始。二千二百年前在冰父子创导下,我国也建利灌舒洪的都江堰,这个伟大工程当时确已掌握现今的水力学原则和近代的工程设计理论。在流体粘性效应的问题上,不乏先进接连攻关,终难胜克,足见其艰困之甚。 近数年代里,由于工业发展的迫切需求,已促进不少新学科的萌芽滋长。诸如能源发展;海洋、大气和陆地交应干扰和持恒;农林牧业的生物科技新探索;城市、河流和山岳的环境保护;疾病防治的医疗科学以及自然灾害的消减和救援等都赋予流体力学新的生命。 纳维-斯托克斯方程又称为N-S方程,是描述实际流体运动的微分方程式,纳维-斯托克斯方程在流体力学中有十分重要的意义。本文将在阐述粘性流体力学的基本方程的基础上,借助于数学软件MAPLE,应用N-S方程解决平行平板间的脉冲流动问题。 关键词:N-S方程,平行平板,脉冲流动,Maple

第一章数学及物理背景 数学物理方程以具有物理背景的偏微分方程(组)作为研究的主要对象,主要是指力学、天文学、物理学及工程技术中提出来的偏微分方程,它是随着17世纪工业生产的发展,伴随着天文学、物理学等自然科学的发展而逐步形成的一门独立学科。描述许多自然现象的数学形式都可以是偏微分方程式,特别是很多重要的物理力学及工程过程的基本规律的数学描述都是偏微分方程,例如流体力学、电磁学的基本定律都是如此。所以数学物理方程在推动数学理论发展对于推动数学理论的发展,加强理论与实际的联系,帮助人们认识世界和改造世界都起着重要作用。但是在使用函数和解方程中,针对表达式和符号运算的问题一直困扰着我们,只能依赖铅笔和演草纸进行纯手工计算,现在这些工作都可以借助计算机代数系统来完成。 计算机代数系统包括数值计算、符号计算、图形演示和编程等四部分。在科学研究、教育教学等各个领域得到广泛应用。Maple是一种计算机代数系统,是目前广泛使用的数学计算工具之一。用Maple不但可以进行简单的加减乘除运算,也可以求解代数方程、微分方程,进行微分运算或处理线性代数问题。 纳维—斯托克斯方程是一组描述像液体和空气这样的流体物质的方程。这些方程建立了流体的粒子动量的改变率和作用在液体部的压力的变化和耗散粘滞力以及引力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维—斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。纳维—斯托克斯方程依赖于微分方程来描述流体的运动。这些方程和代数方程不同,不寻求建立所研究的变量的关系,而是建立这些变量的变化率或通量之间的关系。用数学术语来讲,这些变化量对应于变量的导数。这表示对于给定的物理问题的纳维—斯托克斯方程的解必须用微积分的帮助才能取得。

相关主题
文本预览
相关文档 最新文档