当前位置:文档之家› 高中化学二轮复习试题离子交换膜在交换膜里的应用

高中化学二轮复习试题离子交换膜在交换膜里的应用

2020 届高考化学二轮题型对题必练

离子交换膜在交换膜里的应用

1. 电解法制备MnO2 的装置如图所示。下列说法不正确的是

A. 离子交换膜可选用质子交换膜

B. 阳极反应式为Mn 2+ + 2H2O- 2e- = MnO2 + 4H+

C. 阴极区溶液的pH 增大

D. 导线中通过1mole -时,理论上阳极区溶液的质量减少44.5g

2. 双隔膜电解池的结构示意简图如图所示, 利用该装置可电解硫酸钠溶液以制取硫

酸和氢氧化钠, 并得到氢气和氧气。对该装置及其原理判断正确的是()

A. a气体为氢气,b 气体为氧气

B. A 溶液为氢氧化钠,B 溶液为硫酸

C. C隔膜为阳离子交换膜,d 隔膜为阴离子交换膜

D. 该电解反应的总方程式可以表示为2Na2SO4 +

电解

6H2O = 2H2SO4+ 4NaOH + O2 ↑+2H 2 ↑

3. 如图装置(Ⅰ)为一种可充电电池的示意图, 其中的离子交换膜只允许K+通过,

该放电

电池充放电的化学方程式为;K2S4+3KI ? 2K2S2+KI 3 ,装置(Ⅱ)为电解池的示

充电

意图当闭合开关K 时, X 附近溶液先变红.则下列说法正确的是()

A. 闭合K 时,K十从左到右通过离子交换膜

B. 闭合K 时,A 的电极反应式为:3I- - 2e- = I-2

C. 闭合K 时,X 的电极反应式为:2CI- - 2e- = Cl2 ↑

D. 闭合K时,当有0.1mo1K +通过离子交换膜,X 电极上产生标准状况下气体

2.24L

4. 如图所示,某同学设计了一个燃料电池并探究氯碱工业原理和粗铜的精炼原理,其中

乙装置中X 为阳离子交换膜。下列有关说法正确的是()

A. 反应一段时间后,乙装置中在铁电极区生成氢氧化钠

B. 乙装置中铁电极为阴极,电极反应式为Fe- 2e-=F e2+

C. 通入氧气的一极为正极,发生的电极反应为O2-4e-+2H2O= 4OH-

D. 反应一段时间后,丙装置中硫酸铜溶液浓度保持不变

5. 高铁酸盐在能源环保领域有广泛用途。用镍(Ni)、铁作电极电解浓NaOH 溶液制备

高铁酸钠(Na2FeO4)的装置如图所示。下列说法正确的是

A. 铁是阳极 ,电极反应为 Fe- 2e - + 2OH - = Fe(OH) 2 ↓

B. 电解一段时间后 ,镍电极附近溶液的 pH 减小

C. 每制得 1molNa 2FeO 4,理论上可以产生 67.2L 气体

D. 若离子交换膜为阴离子交换膜 ,则电解结束后左侧溶液中含有 FeO 42- 6. 实验室采用电解法将 CuCl 转化为 Cu 和 CuCl 2, 实验装置如下所示。下列说法正确

的是

A. 若隔膜为阴离子交换膜 ,则电解过程中 ,隔膜两侧盐酸的物质的量基本不变 (忽略 盐酸的挥发 )

B. M 极可能为石墨 ,N 极可能为铜

C. M 极的电极反应式为 CuCl- e - = Cu 2+ + Cl

D. 每处理 1 mol CuCl, 理论上消耗 N 2H 4的质量为 8 g

Cu2++4NH 3 ? [Cu(NH 3)4]2+ΔH <0下列说法正确的是

B. 放电时 ,负极反应为 NH 3 - 8e - + 9OH - = no -3 + 6H 2O

C. a 为阳离子交换膜

D. 放电时 ,左池 Cu 电极减少 6.4g 时 ,右池溶液质量减少

18.8g

8. 乙醛酸(HOOC-CHO) 是一种重要的有机合成中间体。 在乙二酸 ( HOOC-COOH) 电还

原法合成乙醛酸的基础上化学工作者创新性地提出双极室 成

对电解法装置模型及工作原理如图所示。下列说法中错 误的

B. HCl 是制取乙醛酸反应的催化剂 ,并起导电作用 第 2 页,共

14

7. 某热再生电池工作原理如图所示。 放电后 , 可利用废热进行充电。 已知电池总反应:

A. 充电时 ,能量转化形式主要为电能 →化学能

A. 该离子交换膜应选择阳离子交换膜

C. 该方法的总反应为OHC- CHO+ HOOC- COOH = 2HOOC - CHO

D. 乙二醛、乙二酸分别在阴、阳电极表面放电,故称为双极室成对电解法

9. 国内某科技研究小组首次提出一种新型的Li +电池体系, 该体系征集采用含有I-、Li+

的水溶液, 负极采用固体有机聚合物, 电解质溶液采用LiNO 3溶液, 聚合物离子交换膜作为隔膜将液态正极和固态负极分隔开(原理示意图如图)。已知:I-+I2=I3-, 则下列有关判断正确的是

A. 图甲是原电池工作原理图,图乙是电池充电原理图

B. 放电时,正极液态电解质溶液的颜色变浅

C. 充电时,Li+从右向左通过聚合物离子交换膜

D. 放电时,负极的电极反应式

为:

10. 铬及其化合物在工农业生产中用途广泛,工业上常用双膜电解法制备铬,其电解示意

图如下,下列说法错误的是()

A. 石墨电极为阳极,膜 B 为阳离子交换膜

B. 为了使电解反应持续进行,一段时间后,阳极室需要补充H2O

C. 阴极发生的电极反应式:Cr3+ + 3e- = Cr

D. CrO3 与CH3OH反应,每转移3N A e- ,生成标况下11.2LCO2

11. Kolbe 法制取乙烯的装置如图所示, 电极 a 上的产物为乙烯和

碳酸根离子。下列说法正确的是

A. 该装置将化学能转化为电能

B. 图中为阳离子交换膜

C. 阴极周围溶液的pH 不断减小

D. 每生成1mol 乙烯,电路中转移2mol 电子

12. 实验室采用电解法将CuCl转化为Cu和CuCl2, 实验装置如下图所示。下列说法正确的

是()

A. 若隔膜为阴离子交换膜 ,则电解过程中 ,隔膜两侧盐酸的 物质的量基本不变 (忽略盐酸的挥发 )

B. M 极可能为石墨 ,N 极可能为铜

C. M 极的电极反应式为 CuCl- e - =Cu 2+ +Cl -

D. 每处理 1molCuCl, 理论上消耗 N 2H 4的质量为 8g

放电

13. 装置(Ⅰ )为铁镍(Fe-Ni)可充电电池: Fe+NiO 2+2H 2O ? Fe(OH)2+Ni(OH) 2;装置(Ⅱ) 充

电 为电解示意图。当闭合开关 K 时,Y 附近溶液先变红。下列说法正确的是()

A. 闭合 K 时 ,X 的电极反应式为: 2H + + 2e - = H 2 ↑

B. 闭合K 时,A 电极反应式为:NiO 2+2e - + 2H += Ni(OH) 2

C. 给装置 (Ⅰ)充电时,B 极参与反应的物质被氧化

D. 给装置 (Ⅰ)充电时 ,OH - 通过阴离子交换膜 ,移向 A 电极 A. 硫酸工业中 ,为了提高 SO 2 的转化率 ,使用五氧化二钒作催化剂

B. 合成氨中通过及时分离液态氨来提高化学反应速率

C. 电解精炼铜时 ,同一时间内阳极溶解铜的质量比阴极析出铜的质量小

D. 电解饱和食盐水制烧碱采用离子交换膜法 ,可防止阴极室产生的 Cl 2进入阳极室 15. 通过电解法分离 NaHSO 3与Na 2SO 3混合物 ,其装置如下图。下列说法不正确的是 ( ) A. 阳极的电极反应式为 4OH ?- - 4e?- = 2H 2O+ O 2 ↑

B. 阳极区 c(H + )增大,H +由 a 室经阳离子交换膜进入 b 室

C. 外电路每转移 0.2mol 电子,有0.2molNa +从 b 室进入 c 室

D. c 室得到 Na 2SO 3的原因是 OH - + HSO -3 = H 2O+ SO 32- 16. 实验室采用电解法将 CuCl 转化为 Cu 和 CuCl 2, 实验装置如下所示。下列说法正确

的是( )

14. 下列有关工业生产的叙述中正确的是( )

电渗析水处理技术的优点和不足

电渗析水处理技术的优点和不足 1、能量消耗少: 电渗析器在运行中,不发生相的变化,只是用电能来迁移水中已解离的离子。它耗用的电能一般是与水中含盐量成正比的。大多数人认为,对含盐量4000~5000mg/L以下的苦咸水的变化,电渗析技术是耗能少的较经济的技术。 2、药剂耗量少,环境污染小: 离子交换技术在树脂交换失效后要用大量酸、碱进行再生,水洗时有大量废酸、碱排放,而电渗析系统仅酸洗时需要少量酸。 3、设备简单,操作方便: 电渗析器是用塑料隔板与离子交换膜剂电极板组装而成的,它的主体配套设备都比较简单,而且膜和隔板都是高分子材料制成,因此,抗化学污染和抗腐蚀性能均较好。在运行时通电即可得淡水,不需要用酸碱进行繁复的再生处理。 4、设备规模和除盐浓度适应性大: 电渗析水处理设备可以从每日几吨的小型生活饮用水淡化水站到几千吨的大、中型淡化水站。 5、用电较易解决、运行成本较低:电渗析技术也存在以下不足:

1、对离解度小的盐类及不离解的物质难以去除,例如,对水中的硅酸和不离解的有机物就不能去除掉,对碳酸根的迁移率就小一些。 2、电渗析器是由几到几百张较薄的隔板和膜组成。部件多,组装要求较高,组装不好,会影响配水均匀。 3、电渗析设备是使水流在电场中流过,当施加一定电压后,靠近膜面的滞留层中电解质的盐类含量较少。此时,水的离解度增大,易产生极化结垢和中性扰乱现象,这是电渗析水处理技术中较难掌握又必须重视的问题。 4、电渗析器本身耗水量还是较大的。虽然采取极水全部回收,浓水部分回收或降低浓水进水比例等措施,但本身的耗水量仍达20%~40%。因此,缺水地区,应用电渗析水处理技术会受到一定限制。 5、电渗析水处理对原水净化处理要求较高,需增加精密过滤设备。

高考中有关离子交换膜的电化学试题

高考中有关离子交换膜的电化学试题 离子交换膜是一种对溶液里的离子具有选择透过能力的高分子膜。因在应用时主要是利用它的离子选择透过性,又称为离子选择透过性膜.离子交换膜法在电化学工业中应用十分广泛。教材中并未专门介绍,一般是在讲解氯碱工业时介绍阳离子交换膜的应用,但在近年考试中涉及离子交换膜原理的考题屡见不鲜.一、交换膜的功能: 使离子选择性定向迁移(目的是平衡整个溶液的离子浓度或电荷)。 二、交换膜在中学电化学中的作用: 1.防止副反应的发生,避免影响所制取产品的质量;防止引发不安全因素。(如在电解饱和食盐水中,利用阳离子交换膜,防止阳极产生的氯气进入阴极室与氢氧化钠反应,导致所制产品不纯;防止与阴极产生的氢气混合发生爆炸)。 2.用于物质的制备、分离、提纯等。 三、离子交换膜的类型: 常见的离子交换膜为:阳离子交换膜、阴离子交换膜、特殊离子交换膜等。 四、试题赏析: 1.某同学按如图所示装置进行试验,A、B为常见金属,它们的硫酸盐可溶于水。当K闭合时,SO42-从右向左通过阴离子交换膜移向A极.下列分析正确的是 A.溶液中c(A2+)减小 B.B极的电极反应:B-2e-= B2+ C.Y电极上有H2产生,发生还原反应

D.反应初期,X电极周围出现白色胶状沉淀,不久沉淀溶解 2.(2014·全国大纲版理综化学卷,T9)右图是在航天用高压氢镍电池基础上发展起来的一种金属氢化物镍电池(MH-Ni电池)。下列有关说法不正确的是 A.放电时正极反应为:NiOOH+H 2O+e-→Ni(OH) 2 +OH- B.电池的电解液可为KOH溶液 C.充电时负极反应为:MH+OH-→M+H 2 O+e- D.MH是一类储氢材料,其氢密度越大,电池的能量密度 越高 3.(2014·福建理综化学卷,T11)某原电池装置如右图所示,电池总反应为 2Ag+Cl 2 =2AgCl。下列说法正确的是 A.正极反应为AgCl +e-=Ag +Cl- B.放电时,交换膜右侧溶液中有大量白色沉淀生成 C.若用NaCl溶液代替盐酸,则电池总反应随之改变 D.当电路中转移0.01 mol e-时,交换膜左侧溶液中约减少0.02 mol离子4.(2013·浙江高考·11)电解装置如图所示,电解槽内装有KI及淀粉溶液,中间用阴离子交换膜隔开。在一定的电压下通电,发现左侧溶液变蓝色,一段时间后, 蓝色逐渐变浅。已知:3I 2+6OH-=I+5I-+3H 2 O 下列说法不正确的是( ) A.右侧发生的电极反应式:2H 2O+2e-=H 2 ↑+2OH-

高考化学复习 专题7-离子交换膜在电化学装置中的应用 (2)

专题7 离子交换膜在电化学装置中的应用 日期:2019年11月10日 学号姓名 1.(2018年11月浙江选考17题)最近,科学家研发了“全氢电池”,其工作原理如图所示。 下列说法不正确 ...的是() A.右边吸附层中发生了还原反应 B.负极的电极反应是H2-2e-+2OH-=2H2O C.电池的总反应是2H2 +O2=2H2O D.电解质溶液中Na+向右移动,ClO4-向左移动 2.(2019年高考天津卷6题)我国科学家研制了一种新型的高比能量锌--碘溴液流电池,其工作原理示意图如下。图中贮液器可储存电解质溶液,提高电池的容量。下列叙述不正确的是 A.放电时,a电极反应为I2Br-+ 2e-=2I-+ Br- B.放电时,溶液中离子的数目增大

C.充电时,b 电极每增重0.65 g ,溶液中有0.02mol I - 被氧化 D.充电时,a 电极接外电源负极 3.(2019 年全国卷 I 12) 利用生物燃料电池原理研究室温下氨的合成,电池工作时MV 2+/MV +在电极与酶之间传递电子,下列说法错误的是 A .相比现有工业合成氨,该方法条件温和,同时还可提供电能 B .阴极区,在氢化酶作用下发生反应H 2 + 2MV 2+ = 2H + + 2MV + C .正极区,固氮酶为催化剂,N 2发生还原反应生成NH 3 D .电池工作时,质子通过交换膜由负极区向正极区移动 4.(2016年全国卷 I 11)三室式电渗析法处理含 Na 2SO 4 废水的原理如图3所示,采用惰性电极,ab 、cd 均为离子交换膜,在直流电场的作用下,两膜中间的Na +和SO 42- 可通过离子交换膜,而两端隔室中离子被阻挡不能进入中间隔室.下列叙述正确的是(B ) A .通电后中间隔室的SO 42-向正极迁移,正极区溶液pH 增大 B .该法在处理含Na 2SO 4。废水时可以得到NaOH 和H 2SO 4产品 C .负极反应为2H 2O - 4e - = O 2+ 4H +,负极区溶液pH 降低 D .当电路中通过1mol 电子的电量时,会有0.5 mol 的O 2生成 5.(2018年全国卷Ⅰ 27节选)焦亚硫酸钠(Na 2S 2O 5)在医药、橡胶、印染、食品等方面应有广泛,加答下列问题: MV + MV 2+ N 2 NH 3 H 2 H + MV + MV 2+ 电 极 电 极 氢化酶 固氮酶 2SO 4负极区正极区 浓Na 2SO 4溶液a b c d +-

最新高考化学二轮题型必练——离子交换膜在交换膜里的应用

2020届高考化学二轮题型对题必练 ——离子交换膜在交换膜里的应用 1. 电解法制备MnO 2的装置如图所示。下列说法不正确的是 A. 离子交换膜可选用质子交换膜 B. 阳极反应式为Mn 2++2H 2O ?2e ?=MnO 2+4H + C. 阴极区溶液的pH 增大 D. 导线中通过1mole ?时,理论上阳极区溶液的质量减少44.5g 2. 双隔膜电解池的结构示意简图如图所示,利用该装置可电解硫酸钠溶液以制取硫酸 和氢氧化钠,并得到氢气和氧气。对该装置及其原理判断正确的是() A. a 气体为氢气,b 气体为氧气 B. A 溶液为氢氧化钠,B 溶液为硫酸 C. C 隔膜为阳离子交换膜,d 隔膜为阴离子交换膜 D. 该电解反应的总方程式可以表示为2Na 2SO 4+ 6H 2O =电解2H 2SO 4+4NaOH +O 2↑+2H 2↑ 3. 如图装置(Ⅰ)为一种可充电电池的示意图,其中的离子交换膜只允许K +通过, 该电池充放电的化学方程式为;K 2S 4+3KI ?放电 充电 2K 2S 2+KI 3 ,装置(Ⅱ)为电解池的 示意图当闭合开关K 时,X 附近溶液先变红.则下列说法正确的是( ) A. 闭合K 时,K 十从左到右通过离子交换膜 B. 闭合K 时,A 的电极反应式为:3I ??2e ?=I 2 ? C. 闭合K 时,X 的电极反应式为:2CI ??2e ?=Cl 2↑ D. 闭合K 时,当有0.1mo1K +通过离子交换膜,X 电极上产生标准状况下气体2.24L 4. 如图所示,某同学设计了一个燃料电池并探究氯碱工业原理和粗铜的精炼原理,其中 乙装置中X 为阳离子交换膜。下列有关说法正确的是( ) A. 反应一段时间后,乙装置中在铁电极区生成氢氧化钠 B. 乙装置中铁电极为阴极,电极反应式为Fe ?2e -=F e 2+ C. 通入氧气的一极为正极,发生的电极反应为 O 2-4e -+2H 2O =4OH - D. 反应一段时间后,丙装置中硫酸铜溶液浓度保持不变 5. 高铁酸盐在能源环保领域有广泛用途。用镍 (Ni)、 铁作电极电解浓NaOH 溶液制备高铁酸钠(Na 2FeO 4)的装置如图所示。下列说法正确的是

离子交换法应用总结

离子交换法的发展趋势及应用 1、离子交换分离法的发展 离子交换技术有相当长的历史,早在1850 年就发现了土壤吸收铵盐时的离子交换现象,但离子交换作为一种现代分离手段,是在20 世纪40 年代人工合成了离子交换树脂以后的事。而某些经过磺化制得的天然产物都可用作离子交换剂。随着技术的发展研究制成了许多种性能优良的离子交换树脂,离子交换树脂是应用最广泛的离子交换剂。离子交换的选择性较高,适用于高纯度的分离和净化。 70 多年来离子交换分离法取得了突飞猛进的进展,随着近现代有机合成工业技术的迅速发展,开发了多种新的应用方法,应用范围日益扩大,已经由最初的水处理工业发展到当前的化工、电力、环境科学、食品加工和医疗药物等领域,特别是高新科技产业和科研领域中应用更加广泛。 2、离子交换分离法的应用 1)重金属污水处理工业 近年来,一种将传统的离子交换与电渗析有机结合的技术——电去离子技术引起了人们的注意。电去离子技术是在电场的作用下将离子交换膜和离子交换树脂相结合,实现离子的深度脱除与浓缩的新型离子分离过程。将离子交换与电渗析有机的结合起来,具有离子交换深度除盐和电渗析连续除盐的优点,同时弥补了电渗析的浓差极化所造成的不良影响,而且避免了离子交换树脂酸碱再生所造成的二次污染。此外,在超纯水生产领域,目前将电去离子技术置于反渗透之后以取代传统的离子交换混床,已成为新一代清洁生产工艺的核心技术。随着研究的不断深入,电去离子技术将成为具有很大发展潜力的重金属废水处理技术,实现废水“零排放”。 2)食品工业 离子交换树脂是食品和发酵工业产物中提纯、分离、浓缩、催化的良好材料。它广泛的应用于糖液的脱色、脱盐、软化,副产物的回收、分离、异构体拆分和 ,调节pH,葡萄糖与果糖的分离等。(1)在制酒工业中对酒类的去浊去酸去碱去SO 2 提取酒糟中的柠檬酸以及调节控制酿酒用水的水质;(2)在乳制品工业中提高乳制品的稳定性,调整乳制品中钙的含量,去除乳清中盐的含量;(3)其他方面的应用如油脂中脱酸脱咖啡因去金属离子;(4)食品添加剂的纯化、食品调味剂如

高考化学专项突破 离子交换膜在电化学装置中的应用

高考化学专项突破----离子交换膜在电化学装置中的应用 一、离子交换膜的功能:使离子有选择性的定向迁移(目的是平衡整个溶液的离子浓度或电荷)。 二、离子交换膜在电化学中的作用 (1)能将两极区隔离,阻止两极区产生的物质接触。 防止副反应的发生,避免影响所制取产品的质量; 防止引发不安全因素。(如在电解饱和食盐水中,利用阳离子交换膜,防止阳极产生的Cl2进入阴极室与氢氧化钠反应,导致所制产品不纯;防止与阴极产生的H2混合发生爆炸)。 (2)能选择性地通过离子,起到平衡电荷、形成闭合回路的作用。 (3)用于物质的制备、分离、提纯等。 三、离子交换膜的类型 根据透过的微粒,离子交换膜可以分为多种,在高考试题中主要出现阳离子交换膜、阴离子交换膜和质子交换膜三种。阳离子交换膜,简称阳膜,只允许阳离子通过,阻止阴离子和气体通过;阴离子交换膜,简称阴膜,只允许阴离子通过,质子交换膜只允许质子(H+)通过,不允许其他阳离子和阴离子通过。可见离子交换膜的功能在于选择性地通过某些离子和阻止某些离子来隔离某些物质。 注意:①反应物相同,不同的交换膜,迁移的离子种类不同。②同种交换膜,转移相同的电子数,如果离子所带电荷数不同,迁移离子数不同。③离子迁移依据电荷平衡,而离子数目变化量可能不相等。 四、离子交换膜类型的判断

根据电解质溶液呈中性的原则,判断膜的类型。判断时首先写出阴、阳两极上的电极反应,依据电极反应式确定该电极附近哪种离子剩余,因该电极附近溶液呈电中性,从而判断出离子移动的方向,进而确定离子交换膜的类型,如电解饱和食盐水时,阴极反应式为2H++2e-=H2↑,则阴极区域破坏水的电离平衡,OH-有剩余,阳极区域的Na+穿过离子交换膜进入阴极室,与OH-结合生成NaOH,故电解食盐水中的离子交换膜是阳离子交换膜。 五、真题再现 1、(2019·全国卷Ⅰ)利用生物燃料电池原理研究室温下氨的合成,电池工作时MV2+/MV+ 在电极与酶之间传递电子,示意图如下所示。下列说法错误的是 A.相比现有工业合成氨,该方法条件温和,同时还可提供电能 B.阴极区,在氢化酶作用下发生反应H 2+2MV2+2H++2MV+ C.正极区,固氮酶为催化剂,N2发生还原反应生成NH3 D.电池工作时质子通过交换膜由负极区向正极区移动 【答案】B 【解析】 【分析】由生物燃料电池的示意图可知,左室电极为燃料电池的负极,MV+在负极失电子发生氧化反应生成MV2+,电极反应式为MV+?e?= MV2+,放电生成的MV2+在氢化酶的作用下与H2反应生成H+和MV+,反应的方程式为H2+2MV2+=2H++2MV+;右室电极为燃料电池

高考化学中离子交换膜试题

高考中有关离子交换膜的电化学试题 一、交换膜的功能: 使离子选择性定向迁移(目的是平衡整个溶液的离子浓度或电荷)。 二、交换膜在中学电化学中的作用: — 1.防止副反应的发生,避免影响所制取产品的质量;防止引发不安全因素。(如在电解饱和食盐水中,利用阳离子交换膜,防止阳极产生的氯气进入阴极室与氢氧化钠反应,导致所制产品不纯;防止与阴极产生的氢气混合发生爆炸)。 2.用于物质的制备、分离、提纯等。 三、离子交换膜的类型: 常见的离子交换膜为:阳离子交换膜、阴离子交换膜、特殊离子交换膜等。 四、试题赏析: — 1.某同学按如图所示装置进行试验,A、B为常见金属,它们的硫酸盐可溶于水。当K闭合时,SO42-从右向左通过阴离子交换膜移向A极.下列分析正确的是() A.溶液中c(A2+)减小 B.B极的电极反应:B-2e-= B2+ C.Y电极上有H2产生,发生还原反应 D.反应初期,X电极周围出现白色胶状沉淀,不久沉淀溶解 \2.(2014·全国大纲版理综化学卷,T9)右图是在航天用高压氢镍电池基础上发展起来的一种金属氢化物镍电池(MH-Ni电池)。下列有关说法不正确的是() A.放电时正极反应为:NiOOH+H2O+e-→Ni(OH)2+OH- B.电池的电解液可为KOH溶液 C.充电时负极反应为:MH+OH-→M+H2O+e- D.MH是一类储氢材料,其氢密度越大,电池的能量密度越高 、 3.(2014·福建理综化学卷,T11)某原电池装置如右图所示,电池总反应为2Ag+Cl2=2AgCl。下列说法正确的是() A.正极反应为AgCl+e-=Ag+Cl- B.放电时,交换膜右侧溶液中有大量白色沉淀生成 C.若用NaCl溶液代替盐酸,则电池总反应随之改变 D.当电路中转移mol e-时,交换膜左侧溶液中约减少mol离子 - 4.(2013·浙江高考·11)电解装置如图所示,电解槽内装有KI及淀粉溶液,中间用阴离子交换膜隔开。在一定的电压下通电,发现左侧溶液变蓝色,一段时间后,蓝色逐渐变浅。已知:3I2+6OH- =IO3-+5I-+3H2O 下列说法不正确的是() A.右侧发生的电极反应式: 2H2O+2e- = H2↑+2OH- B.电解结束时,右侧溶液中含有IO3- , C.电解槽内发生反应的总化学方程式: KI+3H2O KIO3+3H2↑ D.如果用阳离子交换膜代替阴离子交换膜,电解槽内发生的总化学反应不变

离子交换与膜处理技术作业(给排)

1、硬度的分类及特点?硬度的单位?什么是碱度? 2、书本P420第2题? 3、石灰软化处理后水质有何变化?为什么不能将水中硬度降为零? 4、实现逆流再生的关键是什么? 5、离子交换树脂的基本性能? 6、强酸、强碱离子交换树脂进行交换反应时的影响因素是什么? 7、简述Na离子交换法、H离子交换法、H—Na离子交换法? 8、弱酸、弱碱树脂的工艺特性? 9、请描述复床、混合床、双层床除盐系统? 10、何为电渗析?说明电渗析的极化与沉淀现象,它有何危害?应如何防止? 11、何为反渗透? 12、何为超滤? 13、何为除盐?除盐的常用方法?什么是除盐的水质预处理?

1、硬度的分类及特点?硬度的单位?什么是碱度? 碳酸盐硬度(Hc):由于水中含有Ca(HCO3)2和Mg(HCO3)2而形成的硬度,经煮沸后可把硬度去掉,这种硬度称为碳酸盐硬度,亦称暂时硬度。 非碳酸盐硬度(Hn):由于水中含有CaSO4和MgSO4等盐类物质而形成的硬度,经煮沸后也不能去除,这种硬度称为非碳酸盐硬度,亦称永久硬度。 ? 硬度的习惯单位为meq/L ,是当量浓度(Ca2+和Mg2+的毫克当量数/体 积) ? 法定计量单位是物质的量浓度(摩尔浓度mol/L 或mmol/L ),基本单元 选用1/2Ca2+和1/2Mg2+(当量粒子),此时, meq/L= mmol/L ,当然基本单元也可用Ca2+和Mg2+ ? 10mgCaO/L 为1度(德国度) ? mgCaCO3/L (美国,日本) CaCO3的质量/体积 ? 1 meq/L =2.8德国度=50 mgCaCO3/L ? 碱度的概念:水解时能直接产生OH-或直接接受质子H+的物质 ? 强碱:NaOH ,微量强碱的存在PH>10 ? 弱碱:NH3; ? 强碱弱酸盐:各种碳酸盐、重碳酸盐、硅酸盐、磷酸盐、硫化物、腐殖 酸盐等。 ? 天然水中,碱度主要是碳酸盐、重碳酸盐 2、书本P420第2题? 答:n=m/M B ,m=n ×M B ,n 为摩尔数,与基本粒子多少有关,M B 为摩尔质量, 二者刚好同步反向变化,所以质量(包括质量浓度)与基本粒子的形式无关。如相同质量的Ca2+,基本单元选Ca2+,则摩尔质量为40,摩尔数为n ,基本单元选1/2Ca2+,摩尔质量为20,摩尔数为2n ,质量不变。 3、石灰软化处理后水质有何变化?为什么不能将水中硬度降为零? 石灰软化的实际过程: +↓→++↓→+2 32232 322O 2H 2CaCO Ca(OH))Ca(HCO (6)O H CaCO Ca(OH)CO (5)

电化学中的离子交换膜

高三化学训练——电化学中的离子交换膜 2016年6月18日1.(2015津)锌铜原电池装置如图所示,其中阳离子交换膜只允许阳离子和水分子通过,下列有关叙述正确的是 A.铜电极上发生氧化反应 B.电池工作一段时间后,甲池的c(SO42-)减小 C.电池工作一段时间后,乙池溶液的总质量增加 D.阴阳离子离子分别通过交换膜向负极和正极移动,保持溶液中电荷平衡 2.(2015沪)氯碱工业以电解精制饱和食盐水的方法制取氯气、氢气、 烧碱和氯的含氧酸盐等系列化工产品。下图是离子交换膜法电解食盐 水的示意图,图中的离子交换膜只允许阳离子通过。完成下列填空: (1)写出电解饱和食盐水的离子方程式。 (2)离子交换膜的作用为:、。 (3)精制饱和食盐水从图中位置补充,氢氧化钠溶液从 图中位置流出。(选填“a”、“b”、“c”或“d”) 3.如果模拟工业上离子交换膜法制烧碱的方法,那么可以设想用如图装置电解硫酸钾溶液来制取氢气、氧气、硫酸和氢氧化钾(电解槽内的阳离子交换膜只允许阳离 子通过,阴离子交换膜只允许阴离子通过)。 ①该电解槽的阳极反应式为 ,单位时间内通过阴离子交换膜的离子数与通 过阳离子交换膜的离子数的比值为。 ②从出口D导出的溶液是(填化学式)。 4.海洋资源的开发与利用具有广阔的前景。海水的pH一般在 ~之间。某地海水中主要离子的含量如下表: 成分Na+K+Ca2+Mg2+Cl-SO42-HCO3- 含量/mg?L-19360831601100160001200118(1)海水显弱碱性的原因是(用离子方程式表示),该海水中Ca2+的物质的量浓度为__________mol/L。 (2)电渗析法是近年发展起来的一种较好的海水淡化技术,其原理如下图所示。其中阴(阳)离子交换膜只允许阴(阳)离子通过,电极均为惰性电极。 ① 开始时阳极的电极反应式为。 ② 电解一段时间,极(填“阴”或“阳”)会产生水垢,其成份为(填化学式)。

电渗析水处理技术的优点和不足

电渗析水处理技术的优点和不足 [2014-04-29] 电渗析是以电位差为推动力,利用离子交换膜的选择透过性,将带电组分的盐类与非带电组分的水分离的薄膜分离技术,这种技术利用离子交换膜的特性,使水得到淡化除盐。电渗析水处理技术首先被用于苦咸水的化,而后逐步扩大到海水淡化和制取工业纯水的应用中。 电渗析技术与离子交换技术相比,具有以下优点: 1、能量消耗少: 电渗析器在运行中,不发生相的变化,只是用电能来迁移水中已解离的离子。它耗用的电能一般是与水中含盐量成正比的。大多数人认为,对含盐量4000~5000mg/L以下的苦咸水的变化,电渗析技术是耗能少的较经济的技术。 2、药剂耗量少,环境污染小: 离子交换技术在树脂交换失效后要用大量酸、碱进行再生,水洗时有大量废酸、碱排放,而电渗析系统仅酸洗时需要少量酸。 3、设备简单,操作方便: 电渗析器是用塑料隔板与离子交换膜剂电极板组装而成的,它的主体配套设备都比较简单,而且膜和隔板都是高分子材料制成,因此,抗化学污染和抗腐蚀性能均较好。在运行时通电即可得淡水,不需要用酸碱进行繁复的再生处理。 4、设备规模和除盐浓度适应性大: 电渗析水处理设备可以从每日几十吨的小型生活饮用水淡化水站到几千吨的大、中型淡化水站。 5、用电较易解决、运行成本较低: 电渗析技术也存在以下不足: 1、对离解度小的盐类及不离解的物质难以去除,例如,对水中的硅酸和不离解的有机物就不能去除掉,对碳酸根的迁移率就小一些。 2、电渗析器是由几十到几百张较薄的隔板和膜组成。部件多,组装要求较高,组装不好,会影响配水均匀。 3、电渗析设备是使水流在电场中流过,当施加一定电压后,靠近膜面的滞留层中电解质的盐类含量较少。此时,水的离解度增大,易产生极化结垢和中性扰乱现象,这是电渗析水处理技术中较难掌握又必须重视的问题。

电渗析课件

电渗析过程原理及应用 一、电渗析过程原理 电渗析是指在直流电场作用下,溶液中的荷电离子选择性的定向迁移,透过离子交换膜并得以去除的一种膜分离技术。 电渗析过程的原理如图所示,在正负两电极之间交替地平行放置阳离子和阴离子交换膜,依次构成浓缩室和淡化室,当两膜形成的隔室中充入含离子的溶液并接上直流电源后,溶液中带正电荷的阳离子在电场力作用下向阴极方向迁移,穿过带负电荷的阳离子交换膜,而被带正电荷的阳离子交换膜所挡住,这种与膜所带电荷相反的离子透过膜的现象被称为反离子迁移。同理,溶液中带负电荷阴离子在电场力作用下向阳极运动,透过带正电荷的阴离子交换膜,而被阻于阳离子交换膜。其结果是使第2、4浓缩室的水中离子浓度增加;而与其相间的第3淡化室的浓 在实际的电渗析系统中,电渗析器通常由100-200对阴、阳离子交换膜与特制的隔板等组装而成,具有相应数量的浓缩室和淡化室。含盐溶液从淡化室计入,在直流电场的作用下,溶液中荷电离子分别定向迁移并透过相应离子交换膜,使淡化室溶液脱盐淡化并引出,而透过离子在浓缩室中增浓排出。由此可知,采用电渗析过程脱除溶液中的离子基于两个基本条件:直流电场的作用,使溶液中正负离子分别向阴极和阳极做定向迁移;离子交换膜的选择透过性,使溶液中的荷电离子在膜上实现反离子迁移。 电渗析器, 就是利用多层隔室中的电渗析过程达到除盐的目的,电渗析器由 隔板、离子交换膜、电极、夹紧装置等主要部件组成。 电渗析器中,阴阳离子交换膜交替排列是最常见的一种形式,事实上,对一定的分离要求,电渗析器也可单独由阴离子或阳离子交换膜组成。 电渗析脱盐过程与离子交换膜的性能有关,具有高选择性渗透率、低电阻力、优良的化学和热稳定性以及一定的机械强度是离子交换膜的关键。

离子交换膜电化学中的应用

1.如图所示阴阳膜组合电解装置用于循环脱硫,用NaOH溶液在反应池 中吸收尾气中的二氧化硫,将得到的Na2SO3溶液进行电解又制得 NaOH。其中a、b离子交换膜将电解槽分为三个区域,电极材料为石 墨,产品C为H2SO4溶液。下列说法正确的是() A. b为只允许阳离子通过的离子交换膜 B. 阴极区中B最初充入稀NaOH溶液,产品E为氧气 C. 反应池采用气、液逆流方式,目的是使反应更充分 D. 阳极的电极反应式为 2.如图是利用一种微生物将废水中的有机物(如淀粉)和废气NO的化学能直接转化为电 能,下列说法中一定正确的是() A.质子透过阳离子交换膜由右向左移动 B. 电子流动方向为 C. M电极反应式: D. 当M电极微生物将废水中 g淀粉转化掉时,N电极产生 L 标况下 3.三室式电渗析法处理含Na2SO4废水的原理如图所示,采用惰性电极,ab、cd均为离子 交换膜,在直流电场的作用下,两膜中间的Na+和SO42-可通过离子交换膜,而两端隔室中离子被阻挡不能进入中间隔室。下列叙述正确的是() A. 通电后中间隔室的离子向正极迁移,正极区溶液pH增大 B. 该法在处理含废水时可以得到NaOH和产品 C. 负极反应为,负极区溶液pH降低 D. 当电路中通过1mol电子的电量时,会有的生成 4.某电源装置如图所示,电池总反应为2Ag+Cl2=2AgCl.下列说法正确的是() A. 正极反应为 B. 放电时,交换膜右侧溶液中有大量白色沉淀生成 C. 若用NaCl溶液代替盐酸,则电池总反应随之改变 D. 当电路中转移时,交换膜左侧溶液中约减少离子 5.科学家用氮化镓(GaN)材料与铜作电极组装如图所示的人工光合系统,成功地实现了

离子交换膜与离子交换树脂的比较

离子交换膜又称“离子交换树脂膜”或“离子选择透过膜”。这是因为离子交换膜与用于水处理领域的粒状离子交换膜树脂,具有基本相同的结构,而且早期的离子交换膜就是使用离子交 换树脂,通过加入粘合剂混炼拉片,然后加网热压成为膜状物的,所以,有“离子交换树脂漠”之称。但是,离子交换膜和离子交换树脂之间,除形状之差而外,还有着根本不同的作用原理:离子交换树脂是通过离子的吸附、药品溶离和再生的离子交换机能进行脱盐,但离子交换膜不是通过离子交换的机能,而是以选择透过为其主要机理,将离子作为一种选择性通过的媒介物。此外,在应用方法上也不相同,例如,离子交换树脂的使用过程包含着处理、交换、再生等步骤,而离子交换膜在应用过程中,可以连续作用,不必再生。由此看来,与其称为离子交换膜,不如称为“离子选择透过膜”更为确切。不过,根据长期的习惯,人们还是沿称“离子交换膜”。 离子交换膜与离子交换树脂 离子交换膜可制成均相膜和非均相膜两类。 而离子交换树脂就属于非均相膜 ①均相膜。先用高分子材料如丁苯橡胶、纤维素衍生物、聚四氟乙烯、聚三氟氯乙烯、聚偏二氟乙烯、聚丙烯腈等制成膜,然后引入单体如苯乙烯、甲基丙烯酸甲酯等,在膜内聚合成高分子,再通过化学反应引入所需功能基。也可通过甲醛、苯酚等单体聚合制得。 ②非均相膜。用粒度为200~400目的离子交换树脂和普通成膜性高分子材料如聚苯乙烯、聚氯乙烯等充分混合后加工成膜制得。 下面给一些离子交换树脂的具体资料: 离子交换树脂分为阴阳两种类型,阳离子交换树脂又分为强酸性和弱酸性,阴离子交换树脂分为强碱性和弱碱性。 水通过阳离子交换树脂时变为酸性,再通过阴离子交换树脂变为中性后回到水族箱中,因此使用离子交换树脂时,要强酸性与强碱性、弱酸性与弱碱性配对使用,离子交换树脂依其听附对象的不同又分为H型,OH型CI型和NA型,水族箱适用NA型,(钠型)其目的是软化水质。 阳离子交换树脂的再生可用5%--10%盐酸、0.5%--5%硫酸、10%的食盐水或海水其中之一种,阴离子交换树脂的再生可用2%--10%氢氧化钠、2%--4%氨水或10%食盐水其中之一种,均浸泡24小时。离子交换树脂也是一种化学滤材 载体不同 后者属于前者,后者是前者所包含的物质之一。 如果还要细分的话还有正离子交换膜,负离子交换膜等。 水处理设备网讯:离子交换膜和球状离子交换树脂在化学结构上是相同的,所以有人称它为膜状的离子交换树脂。早期是利用粉碎的离子交换树脂加入粘合剂制成薄膜,故称为离子交换(树脂)膜。因为在膜中存在粘合剂,活性基团将会分布不均,故又称为异相(非均质)离子交换膜。随着制膜技术不断发展,近

离子交换膜

离子交换膜的研究进展与工业应用 摘要:简要介绍了离子交换膜的发展背景及工业应用,主要介绍了均相离子交换膜,也是未来离子交换膜的主要研究发展方向 关键词:离子交换膜、发展背景、工业应用、均相离子交换膜 1 离子交换膜技术 1.1离子交换膜的基本概念 离子交换膜是一种含离子基团的、对溶液里的离子具有选择透过能力的高分子膜。因为一般在应用时主要是利用它的离子选择透过性,所以也称为离子选择透过性膜。[1]离子交换膜按功能及结构的不同,可分为阳离子交换膜、阴离子交换膜、两性交换膜、镶嵌离子交换膜、聚电解质复合物膜五种类型。离子交换膜的构造和离子交换树脂相同,但为膜的形式。根据膜体结构(或按制造工艺)的不同,离子交换膜分为异相膜、均相膜和半均相膜三种。无论是均相膜还是非均相膜,在空气中都会失水干燥而变脆或破裂,故必须保存在水中[2]。 1.2离子交换膜的原理[3] 和粒状离子交换树脂一样,离子交换膜中的功能团在水溶液中会发生离解,产生阳(或阴)离子进入周围的溶液,致使膜带有负(或正)电荷,为保持电性中和,膜就会吸引外部溶液中的阳(或阴)离子,通过膜的离解和吸引作用全过程,使得外部溶液中的阳(或阴)离子从膜的一侧选择透过到另一侧,而不会或很少使溶液中与膜带同性电荷的离子透过。如果使用阴离子交换膜,因为膜孔骨架上的正电基构成强烈的正电场,就使得只准阴离子透过,而阳离子不会透过。同时,阳极 2-)来说,区产生的H+不能进入阴极区。对于溶液中各种不同的反电离子(OH-;S0 4 由于它们在膜中的扩散系数各不相同(例如水合离子半径不同),以及膜中空隙筛过离子的能力不同,因此,采用离子交换膜能够进行分离,正是利用这种选择透过性。从以上膜的工作原理看,外部溶液与膜之间的离子传递,并不是真正的离子交换,而是选择渗析,这两者的工作原理差别很大。粒状离子交换树脂在使用上需要分为吸附一淋洗(解吸)一再生等步骤。而离子交换膜不需再生等步骤,可以连续作用,同时,两者在工业上的使用范围也有很大的不同,前者主要用于富集和分离相似元素,后者主要用于渗析、电渗析和作为电解过程的隔膜等。 1.3离子交换膜的发展背景 Juda[1]在1949年发明了离子交换膜,并于1950年成功地研制了第一张具有商业用途的离子交换膜,1956年首次成功地用于电渗析脱盐工艺上[4]。从此离子交换膜成为一个新的技术领域受到日本及欧美等国的充分重视。50余年来,在应用过程中对离子交换膜做了很多改进,从初期性能差的非均相发展到适合于工业生产的、性能较好的均相离子交换膜,从单一电渗析水处理用膜发展到扩散渗析用膜、离子选择透过性膜和抗污染用膜.应用方面除了通常的电渗析外,还拓展到电解、渗透蒸发、质子燃料电池及其电渗析为基础的过程集成[6]。 我国离子交换膜的研制始于20世纪60年代,当时研制的是非均相膜,主要用于苦

对比供应室水处理设备混床和电渗析优点

对比供应室水处理设备混床和电渗析优点 电去离子简称EDI是离子交换混合床和电渗析相结合的一种新型膜分离技术。医院中央纯水设备公司中医院水处理体现了混床和电渗析的优点,并克服了它们各自的缺点,无需酸碱,而能连续制取高品质纯水,因而又称连续去离子简称CDI,是一种具有革命性意义的水处理技术。 一、工作原理 1.离子交换除盐过程:所谓离子交换就是水中的离子和离子交换树脂上的功能基团所进行的等电荷反应。它利用阴、阳离子交换树脂上的活性基团对水中阴、阳离子的不同选择性吸附特性,在水与离子交换树脂接触的过程中,阴离子交换树脂中的氢氧根离子(OH-)同溶解在水中的阴离子(例如CI-等)交换,阳离子交换树脂中的氢离子(H+)同溶解在水中的阳离子(例如Na+等)交换。从而使溶解在水中的阴、阳离子被去除,达到纯化的目的。 2.电渗析脱盐过程:电渗析技术利用多组交替排列的阴、阳离子交换膜,这种膜具有很高的离子选择透过性,阳膜排斥水中阴离子而吸附阳离子,阴膜排斥水中的阳离子,而吸附阴离子。在外直流电场的作用下,淡水室中的离子做定向迁移,阳离子穿过阳膜向负极方向运行,并被阴膜阻拦于浓水室中。阴离子穿过阴膜而向正极方向运动,并被阳膜阻拦于浓水室中。从而达到脱盐的目的。 3.EDI的脱盐过程:EDI的核心实际上就是在电渗析的淡水室填装了阴、阳离子交换树脂,使淡水室的脱盐过程发生了质的变化,它在运行过程中能同时进行着三个主要过程:(1)在直流电场作用下,水中电解质通过离子交换膜发生选择性迁移;(2)阴阳离子交换树脂对水中电解质进行着离子交换,并构成“离子通道”;(3)离子交换树脂界面水发生极化所产生的H+和OH-对交换树脂进行着电化学再生。EDI对离子的脱除顺序与离子交换树脂对离子的吸附顺序相同,在EDI组件中的离子交换树脂,沿淡水流向按其工作状态可以分为三个层面,第一层为饱和树脂层,第二层为混合树脂层,第三层为保护树脂层。 二、EDI装置的进水水质要求 EDI装置的进水必须经过前期处理,使其符合以下所列标准才能保证进水不含有对EDI 装置的膜和树脂有害的成分。(1)进水总盐量(CaCO3计):<25ppm或50μs/cm(2)TOC: <0.5ppm(3)PH值:5.0~9.0(4)余氯:<0.05ppm(5)硬度(CaCO 3 计):<2.0ppm(6)Fe、Mn、H2S:<0.01ppm(7)可溶硅:<0.5ppmEDI水处理设备 三、主要技术特点与性能指标 1)脱盐率大于99.9%,效率远远高于两级反渗透和单纯的离子交换;(2)较传统的离子交换法脱盐节约树脂95%以上;(3)离子交换树脂不需用酸碱再生,节约大量酸碱和清洗用水,降低劳动强度;(4)清洁生产,无废水处理问题,利于环保;(5)自动化程度高,易维护,可设计成完善的膜技术高纯水生产线;(6)产水电阻率15~18MΩ·cm,pH6.5~7.0,硅<1.0ppb,彻底无菌;(7)占地面积小,单一系统连续运转,不需建设备用系统。

离子交换膜

离子交换树脂的应用 摘要:综述了离子交换树脂在日常生活及工业生产中的应用,从各个方面叙述了离子交换树脂的重要作用,从总体上评述了离子交换树脂的发展现状。还探讨了离子交换树脂合成工艺、应用技术等的发展方向,并对离子交换树脂的应用市场前景作出预测和展望。 关键词:离子交换树脂;应用;展望 前言 离子交换树脂是一类带有活性基团的网状结构高分子化合物。在它的分子结构中,一部分为树脂的基体骨架,另一部分为由固定离子和可交换离子组成的活性基团。离子交换树脂具有交换选择、吸附和催化等功能,在工业高纯水制备、医药卫生、食品行业等领域都得到了广泛的应用。近年来,离子交换树脂无论是从种类、结构还是性能上都出现了很大的变化,其生产和应用也都得到了很大的发展。 我国自 20 世纪 50 年代以来开始生产和应用离子交换树脂。经过半个多世纪的发展国内常规离子交换树脂的制造和应用技术已经较为成熟,水平与国外相当。离子交换树脂主要用于电力、食品、医药、电子和冶金等行业,随着锅炉给水、饮用水和电子用水等对离子交换出水的纯度要求日益提高,促使常规的离子交换树脂生产和应用技术不断完善,同时催生了许多新型的生产工艺不断涌现,使得离子交换树脂产品升级和技术进步的步伐也日益加快。 1 离子交换树脂概述 离子交换树脂是具有反应性基团的轻度交联的体型聚合物,利用其反应性基团实现离子交换反应的一种高分子试剂,是由交联结构的高分子骨架与以化学键结合在骨架上的固定离子基团和以离子键为固定基团以相反符号电荷结合的可交换离子构成的。离子交换树脂根据其基体的种类可分为苯乙烯系树脂和丙烯酸系树脂;根据树脂中化学活性基团的种类分为阳离子交换树脂和阴离子交换树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换,以及二者的转型树脂。 1.1 阳离子交换树脂 阳离子交换树脂分子结构中含有酸性基团,如-SO3H、-PO3H2、-COOH等,能与溶液中阳离子进行交换。根据交换基团酸性的强弱,又可进一步把阳离子交换树脂分成以下几类。 1.1.1强酸性阳离子交换树脂

离子交换膜高考题Word版

(2014福建)11.某原电池装置如右图所示,电池总反应为2Ag+Cl2=2AgCl。下列说法正确的是 A.正极反应为AgCl +e-=Ag +Cl- B.放电时,交换膜右侧溶液中有大量白色沉淀生成 C.若用NaCl溶液代替盐酸,则电池总反应随之改变 D.当电路中转移0.01 mol e-时,交换膜左侧溶液中约减少0.02 mol离子 (2014新课标I)27、(15分) 次磷酸(H3PO2)是一种精细化工产品,具有较强还原性,回答下列问题: (1)H3PO2是一元中强酸,写出其电离方程 式: (2)H3PO2及NaH2PO2)均可将溶液中的银离子还原为银单质,从而可用于化学镀银。 ①(H3PO2)中,磷元素的化合价为 ②利用(H3PO2)进行化学镀银反应中,氧化剂与还原剂的物质的量之比为4 ︰1,则氧化产物为: (填化学式) ③NaH2PO2是正盐还是酸式 盐?其溶液 显性(填弱酸性、中性、或者弱碱性)(3)(H3PO2)的工业制法是:将白磷(P4)与氢氧化钡溶液反应生成PH3气体和 Ba(H2PO2),后者再与硫酸反应,写出白磷与氢氧化钡溶液反应的化学方程 式: (4)(H3PO2)也可以通过电解的方法制备。工作原理如图所示(阳膜和阴膜分别只允许阳离子、阴离子通过):

①写出阳极的电极反应 式 ②分析产品室可得到H3PO2的原因 ③早期采用“三室电渗析法”制备H3PO2,将“四室电渗析法”中阳极室的稀 硫酸用H3PO2稀溶液代替,并撤去阳极室与产品室之间的阳膜,从而合并了阳 极室与产品室,其缺点是杂质。该杂 质产生的原因 是: 27.(15分) (1) (2) ①+1 ② ③正盐弱碱性 (3) (4)① ②阳极室的穿过阳膜扩散至产品室,原料室的穿过阴膜扩散至产品室、二者反应生成 ③或被氧化

微诊断 离子交换膜及其作用

微诊断离子交换膜及其作用 新洲一中张新平 [典型案例] [2016·浙江高考T11.]金属(M)–空气电池(如下图)具有原料易得、能量密度高等优点,有望成为新能源汽车和移动设备的电源。该类电池放电的总反应方程式为:4M+nO2+2nH2O=4M(OH) n 已知:电池的―理论比能量‖指单位质量的电极材料理论上能释放出的最大电能。下列说法不正确 ...的是() A.采用多孔电极的目的是提高电极与电解质溶液的接触面积,并有利于氧气扩散至电极表面 B.比较Mg、Al、Zn三种金属–空气电池,Al–空气电池的理论比能量最高 C.M–空气电池放电过程的正极反应式:4M n++nO2+2nH2O+4ne–=4M(OH)n D.在Mg–空气电池中,为防止负极区沉积Mg(OH)2,宜采用中性电解质及阳离子交换膜 [诊断解析] 1.测试正确率为6 2.5%,主要错误集中在误判选项C正确而导致错选D。 2. 从选项C、D的选判过程中,究其本质的原因应该是趋向于对离子交换膜的认识出现偏差所致。 题图中的阴离子交换膜,只允许阴离子通过——此电池中只允许正极区产生的OH-通过阴离子交换膜移向负极区,而不允许负极生成的阳离子M n+移动进入正极区。因此,M–空气电池放电过程中,负极反应:M –ne-+ nOH- =M(OH)n;正极因为没有M n+,其反应式为:O2+2H2O+4e–=4OH-,故选项C不正确。 从―电池放电的总反应方程式为:4M+nO2+2nH2O=4M(OH)n‖不难看出,其实质是源于钢铁的吸氧腐蚀:M类比Fe、取n=2,即4Fe+2O2+4H2O=4Fe(OH)2,简化后得:2Fe+O2+2H2O=2Fe(OH)2,所不同的是,氢氧化亚铁最后都会被氧化为氢氧化铁,再失去部分水而形成铁锈。 选项D.在Mg–空气电池中,为防止负极区沉积Mg(OH)2,宜采用中性电解质及阳离子交换膜。若采用中性电解质,则直接降低生产Mg(OH)2沉淀的氢氧根离子的浓度,能够达到防止负极区沉积Mg(OH)2的目的;若采用阳离子交换膜,则在正极区产生的氢氧根离子就被阻止通过,不能达到负极,也就防止了在负极区沉积Mg(OH)2。故选项D正确。 3. 其它选项略析如下: A.多孔电极如图多孔疏松状的活性炭一样,具有较大的表面积,因此,有利于提高电极与电解质溶液的接触面积,也有利于吸附氧气及氧气在电极表面的扩散,故选项A正

离子交换

离子交换 1、只经过钠树脂(RNa)处理的水,其出水()。 a、碱度不变,硬度降低 b、碱度不变,碳酸盐硬度不变 c、碱度降低,硬度降低 d、碱度降低,碳酸盐硬度降低 答案:a 2、基于溶度积原理,加入某些药剂,把水中钙、镁离子转变成难溶化合物使之沉淀析出,这一方法称为( )。 a、水的离子交换软化法 b、水的药剂软化或沉淀软化法 c、石灰软化 d、石灰-苏打软化 答案:b 3、基于离子交换原理,利用某些离子交换剂所具有的阳离子(Na+或H+)与水中钙、镁离子进行交换反应,达到软化的目的,称为( )。 a、水的离子交换软化法 b、水的药剂软化或沉淀软化法 c、石灰软化 d、石灰-苏打软化 答案:a 4、( )主要是去除水中的碳酸盐硬度以及降低水的碱度。但过量投加石灰,反而会增加水的硬度。该过程往往与混凝同时进行,有利于混凝沉淀。 a、水的离子交换软化法 b、水的药剂软化或沉淀软化法 c、石灰软化 d、石灰-苏打软化 答案:c 5、( )是在水中同时投加石灰和苏打(Na2CO3)。此时,石灰用以降解水的碳酸盐硬度,苏打用于降低水的非碳酸盐硬度。 a、水的离子交换软化法 b、水的药剂软化或沉淀软化法 c、石灰软化 d、石灰—苏打软化 6、( )适用于硬度大于碱度的水, a、水的离子交换软化法 b、水的药剂软化或沉淀软化法 c、石灰软化 d、石灰—苏打软化 答案:d 7、目前常用的离子交换的软化方法不包括( )。 a、H-Cl离子交换法 b、Na离子交换法 c、H离子交换法 d、H-Na离子交换法 答案:a 8、( )是最简单的一种软化方法,诙方法的优点是处理过程中不产生酸性水。再生剂为食盐。设备和管道防腐设施简单。 a、H-Cl离子交换法 b、Na离子交换法 c、H离子交换法 d、H-Na离子交换法 答案:b 9、( )一般用于原水碱度低,只需进行软化的场合,可用作低压锅炉的给水系统。处理的水质是碱度不变,去除了硬度,但蒸发残渣反而略有增加。该系统的局限性在于,当原水硬度高、碱度较大的情况下,单靠这种软化处理难以满足要求。 a、H-CI离子交换法 b、Na离子变换法 c、H离子交换法 d、H-Na离子交换法 答案:b 10、( )不单独自成系统,多与Na离子交换联合使用。 a、H-Cl离子交换法 b、Na离子交换法 c、H离子交换法 d、H-Na离子交换法 答案:c 11、超滤是一种介于()之间的膜分离技术。 a、反渗透和纳滤 b、纳滤与微滤 c、反渗透和电渗析 d、微滤和渗透 答案:b 12、( )脱碱软化系统适用于原水硬度高、碱度大的情况。该系统分为并联和串联两种形式。

相关主题
文本预览
相关文档 最新文档