当前位置:文档之家› 浅析永磁同步无齿曳引机

浅析永磁同步无齿曳引机

浅析永磁同步无齿曳引机
浅析永磁同步无齿曳引机

浅析永磁同步无齿曳引机Publishers:中远公司Read:319

一、永磁同步无齿曳引机结构:

曳引机俗称减速器。它安装在机房内,一般在建筑物顶层之上,是电梯的曳引装置,它的绳轮通过钢丝绳牵引轿厢及对重。曳引机是由蜗轮减速箱、绳轮、电机、靠背轮、抱闸、底座等组成。曳引机的结构示意图如图1所示。

永磁同步无齿曳引机主要由永磁同步电动机、曳引轮及制动系统组成。它采用高性能永磁材料和特殊的电机结构,具有低速、大转矩特性。曳引轮与制动轮为同轴固定联接,并直接安装在电动机的轴伸端;由制动体、制动轮、制动臂和制动瓦等组成曳引机的制动系统。永磁同步无齿曳引机安装示意图如图1所示。

图1. 永磁同步无齿曳引机安装示意图

二、永磁同步无齿曳引机工作原理及特点:

永磁同步无齿曳引机工作原理是电动机动力由轴伸端通过曳引轮输出扭矩,再通过曳引轮和钢丝绳的摩擦来带动电梯轿厢的运行。当电梯停止运行时则由常闭制动器通过制动瓦刹住制动轮,从而保持轿厢静止不动。

永磁同步无齿曳引机选用稀土材料,采用外转子结构,永磁同步电机驱动,在结构上取消了蜗轮蜗杆传动,并将同轴传动技术、数字变频技术和群组电脑组合技术完美融合。使之具有体积小、传动效率高、噪声低、能耗低、使用寿命长、乘坐舒适,且基本不用维修等性能优点。这种曳引机没有齿轮减速机,电动机轴伸处直接安装曳引轮,因为没有齿轮减速机的机

械损耗,没有异步电动机的励磁损耗,功率因数几乎等于1,效率高,比异步交流有齿轮电梯曳引机节能可达40%,并且效率曲线平直,在低负载率时效率也很高,不像异步电动机高效率区间那样狭窄,于是更具有节能优势。永磁同步无齿曳引机调速性能优越于异步变频调速电动机,并且曳引轮没有机械减速机构因制造精度原因所产生的瞬时角速度的变化。所以乘坐舒适感比有齿曳引机好,噪声也小。可以适用于高档乘客电梯。这种曳引机结构紧凑,体积小,可以实现小机房或无机房安装,它的机座等承重件通过优化设计,强度高,承载能力强。因为没有齿轮减速机,不存在漏油污染问题。其结构采用进口双侧密封轴承,该轴承一般不需要加油,免维护。永磁同步无齿曳引机的结构示意图如图2所示。

图2. 永磁同步无齿曳引机的结构示意图

三、永磁同步无齿曳引机控制系统:

永磁同步无齿曳引机所使用电源为具有伺服功能的变频器所提供的三相交流变频电源。变频器使曳引机减速,或阻止曳引机因机械原因增速时,即为制动。制动使能量由曳引机返回变频器。变频器制动曳引机时,变频器可吸收的最大再生电源等于变频器功耗(即损耗)。再生电源可能大于此类损耗时,则变频器直流母线电压增加,所以曳引机控制系统增加了合适的制动电阻(BR)已释放再生能量。由于曳引机以强电流低速运转时若断开变频器输出电路,可能造成严重电弧放电。所以在变频器与曳引机之间增加了变频器输出接触器(KC),仅当变频器输出关断时方可切换输出接触器。

永磁同步无齿曳引机控制原理图如图3所示。

图3. 永磁同步无齿曳引机的控制原理图

永磁同步电机与异步电机性能比较

永磁同步电机与异步电机性能比较 永磁同步电机与异步电机相比,具有明显的优势,它效率高,功率因素高,能力指标好,体积小,重量轻,温升低,技能效果显著,较好地提高了电网的品质因素,充分发挥了现有电网的容量,节省了电网的投资,它较好地解决了用电设备中“大马拉小车”现象。 1. 效率及功率因素 异步电机在工作时,转子绕组要从电网吸收部分电能励磁,消耗了电网电能,这部分电能最终以电流在转子绕组中发热消耗掉,该损耗约占电机总损耗的20~30%,它使电机的效率降低。该转子励磁电流折算到定子绕组后呈感性电流,使进人定子绕组中的电流落后于电网电压一个角度,造成电机的功率因数降低。另外,从永磁同步电机与异步电机的效率及功率因数曲线(图1)可以看出,异步电动机在负载率(=P2/P n)<50%时,其运行效率和运行功率因数大幅度下降,所以一般都要求其在经济区内运行,即负载率在75%-100%之间。 (a) η--( P2/P n) (b) ? cos--( P2/P n) 图1 永磁同步电动机与异步电动机的效率和功率因数 1. 异步起动永磁同步电动机 2.异步电动机 永磁同步电机在转子上嵌了永磁体后,由永磁体来建立转子磁场,在正常工作时转子与定子磁场同步运行,转子中无感应电流,不存在转子电阻损耗,只此一项可提高电机效率

4%~50%。由于在水磁电机转子中无感应电流励磁,定子绕组有可能呈纯阻性负载,使电机功率因数几乎为1.从永徽同步电机与异步电机的效率及功率因数曲线(图1)可以看出,永磁同步电机在负载率>20%时,其运行效率和运行功率因数随之变化不大,且运行效率>80%. 2. 起动转矩 异步电机起动时,要求电机具有足够大的起动转矩,但又希望起动电流不要太大,以免电网产生过大的电压降落而影响接在电网上的其他电机和电气设备的正常运行。此外,起动电流过大时,将使电机本身受到过大电做力的冲击,如果经常起动,还有使绕组过热的危险。因此,异步电机的起动设计往往面临着两难选择。 永磁同步电机一般也采用异步起动方式,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求,例如使起动转矩倍数由异步电机的1.8倍上升到2.5倍,甚至更大,较好地解决了动力设备中“大马拉小车”的现象。 3. 工作温升 由于异步电机工作时,转子绕组有电流流动,而这个电流完全以热能的形式消耗掉,所以在转子绕组中将产生大量的热量,使电机的沮度升高,影响了电机的使用寿命。 由于永磁电机效率高,转子绕组中不存在电阻损耗,定子绕组中较少有或几乎不存在无功电流,使电机温升低,延长了电机的使用寿命。 4.对电网运行的影响 因异步电机的功率因数低,电机要从电网中吸收大量的无功电流,造成电网、翰变电设备及发电设备中有大量无功电流,进而使电网的品质因数下降,加重了电网及枪变电设备及发电设备的负荷,同时无功电流在电网、翰变电设备及发电设备中均要消耗部分电能,造成电力电网效率变低,影晌了电能的有效利用。同样由于异步电机的效率低,要满足翰出功率的耍求,势必要从电网多吸收电能,进一步增加了电两能量的损失,加重了电网负荷。 在永磁电机转子中无感应电流励班,电机的功率因数高,提高了电网的品质因数,使电网中不再需安装补偿器。同时,因永磁电机的高效率,也节约了电能。

永磁同步无齿轮客梯-曳引机参数

GTW2 参考表 型号载重速度推荐高 度 轮子直径钢丝绳额定电压 额定电 流 额定转速 转 矩 额定频率功率极数工作制绝缘等级 防护等 级 Model Load Speed Height Sheave Dim Rope Rated Voltage Current Rated Speed Torque Frequency Power Pole Rating INS. Class IP Code (kg) (m/s) (m) (mm) (mm) (V) (A) (rpm) (Nm) (Hz) (kW) GTW2-60P5 630 0.5 ≤50 Φ400 4×Φ10×16 380 5.6 48 450 8 2.3 20 S5(40%) F IP41 GTW2-61P0 1.0 ≤50 4×Φ10×1610.6 96 450 16 4.5 GTW2-61P5 1.5 ≤80 4×Φ10×1616.5 144 450 24 6.8 GTW2-61P6 1.6 ≤80 4×Φ10×1616.5 153 450 25.5 7.2 GTW2-61P7 1.75 ≤80 4×Φ10×1618 167 450 27.8 7.9 GTW2-62P0 2.0 ≤80 4×Φ10×1620.3 192 450 32 9.0

GTW2-80P5 800 0.5 ≤50 Φ400 5×Φ10×16 380 6.8 48 550 8 2.8 20 S5(40%) F IP41 GTW2-81P0 1.0 ≤50 5×Φ10×1612.8 96 550 16 5.5 GTW2-81P5 1.5 ≤80 5×Φ10×1620.8 144 550 24 8.3 GTW2-81P6 1.6 ≤80 5×Φ10×1620.8 153 550 25.5 8.8 GTW2-81P7 1.75 ≤80 5×Φ10×1621.8 167 550 27.8 9.6 GTW2-82P0 2.0 ≤80 5×Φ10×1624.9 192 550 32 11.0 GTW2-100P5 1000 0.5 ≤50 Φ400 5×Φ10×16 380 8 48 670 8 3.4 20 S5(40%) F IP41 GTW2-101P0 1.0 ≤50 5×Φ10×1615.7 96 670 16 6.7 GTW2-101P5 1.5 ≤80 5×Φ10×1625.2 144 670 24 10.0 GTW2-101P6 1.6 ≤80 5×Φ10×1625.2 153 670 25.5 10.7 GTW2-101P7 1.75 ≤80 5×Φ10×1626.7 167 670 27.8 11.7

永磁同步电机研究

永磁同步电机研究 一、绪论 目前,在电动汽车电驱动系统中,永磁同步电动机(PMSM)系统以其高技、高控制精度、高转矩密度、良好的转矩平稳性及低振动噪声的特点受到国外电动汽车界的高度重视,是更具竞争力的电动汽车驱动电机系统。而且,中国拥有占世界80%储量的稀土资源,发展永磁电机作为电动汽车牵引电机具有得天独厚的优势。 PMSM:permanent magnet synchronous motor 是指根据电机的反电动势进行区分定义的电机:正弦反电势的永磁同步电机。以前采用的交流传动需要一个变速齿轮机构来将电机的转距传递到轮轴上,而采用永磁同步电机可以将电机整体地安装在轮轴上,形成整体直驱系统,即一个轮轴就是一个驱动单元,省去了一个齿轮箱 优点: (1)PMSM起动牵引力大 (2)PMSM本身的功率效率高以及功率因素高; (3)PMSM直驱系统控制性能好; (4)PMSM发热小,因此电机冷却系统结构简单、体积小、噪声小; (5)PMSM允许的过载电流大,可靠性显著提高; (6)在高速范围中电机噪声明显降低; (7)系统传动损耗明显降低,系统发热量小; (8)系统采用全封闭结构,无传动齿轮磨损、无传动齿轮噪声,免润滑油、免维护; (9)整个传动系统重量轻,簧下重量也比传统的轮轴传动的轻,单位重量的功率大; (10)由于电机采用了永磁体,省去了线圈励磁,理论可节能10%以上; (11)由于没有齿轮箱,可对装向架系统随意设计:如柔式装向架、单轴转向架,使列车动力性能大大提高。

二、电动汽车电机的性能要求: 汽车行驶的特点是频繁地启动、加速、减速、停车等。在低速或爬坡时需要高转矩,在高速行驶时需要低转矩。电动机的转速范围应能满足汽车从零到最大行驶速度的要求,即要求电动机具有高的比功率和功率密度。电动汽车电动机应满足的主要要求可归纳为如下10个方面: (1) 高电压。在允许的范围内,尽可能采用高电压,可以减小电动机的尺寸和导线等装备的尺寸,特别是可以降低逆变器的成本。工作电压由THS的274 V提高到THS B的500 V;在尺寸不变的条件下,最高功率由33 kW提高到50 kW,最大转矩由350 N"m提高到400ON"m。可见,应用高电压系统对汽车动力性能的提高极为有利。 (2)转速高。电动汽车所采用的感应电动机的转速可以达到8 000一12 000 r/min,高转速电动机的体积较小,质量较轻,有利于降低装车的装备质量。(3)质量轻,体积小。电动机可通过采用铝合金外壳等途径降低电动机的质量,各种控制装置和冷却系统的材料等也应尽可能选用轻质材料。电动汽车驱动电动机要求有高的比功率(电动机单位质量的输出功率)和在较宽的转速和转矩范围内都有较高的效率,以实现降低车重,延长续驶里程;而工业驱动电动机通常对比功率、效率及成本进行综合考虑,在额定工作点附近对效率进行优化。(4)电动机应具有较大的启动转矩和较大范围的调速性能,以满足启动、加速、行驶、减速、制动等所需的功率与转矩。电动机应具有自动调速功能,以减轻驾驶员的操纵强度,提高驾驶的舒适性,并且能够达到与内燃机汽车加速踏板同样的控制响应。 (5)电动汽车驱动电动机需要有4一5倍的过载,以满足短时加速行驶与最大爬坡度的要求,而工业驱动电动机只要求有2倍的过载就可以了。 (6)电动汽车驱动电动机应具有高的可控性、稳态精度、动态性能,以满足多部电动机协调运行,而工业驱动电动机只要求满足某一种特定的性能。 (7)电动机应具有高效率、低损耗,并在车辆减速时,可进行制动能量回收。 (8)电气系统安全性和控制系统的安全性应达到有关的标准和规定。电动汽车的各种动力电池组和电动机的工作电压可以达到300 V以上,因此必须装备高压保护设备以保证安全。

永磁同步电机弱磁控制的控制策略研究

永磁同步电机弱磁控制的控制策略研究 摘要 永磁同步电机是数控机床、机器人控制等的主要执行元件,随着稀土永磁材料、永磁电机设计制造技术、电力电子技术、微处理器技术的不断发展和进步,永磁同步电机控制技术成为了交流电机控制技术的一个新的发展方向。基于它的优越性,永磁同步电机获得了广泛的研究和应用。本文对永磁同步电机的弱磁控制策略进行了综述,并着重对电压极限椭圆梯度下降法弱磁控制、采用改进的超前角控制弱磁增速、内置式永磁同步电动机弱磁控制方面进行了调查、研究。 关键词:永磁同步电机、弱磁控制、电压极限椭圆梯度下降法、超前角控制、内置式永磁同步电动机 一、永磁同步电机弱磁控制研究现状 1.永磁同步电机及其控制技术的发展 任何电机的电磁转矩都是由主磁场和电枢磁场相互作用产生的。直流电机的主磁场和电枢磁场在空间互差90°电角度,因此可以独立调节;而交流电机的主磁场和电枢磁场互不垂直,互相影响。因此,交流电机的转矩控制性能不佳。经过长期的研究,目前交流电机的控制方案有:矢量控制、恒压频比控制、直接转矩控制等[1]。 1.1 矢量控制 1971年德国西门子公司F.Blaschke等与美国P.C.Custman等几乎同时提出了交流电机磁场定向控制的原理,经过不断的研究与实践,形成了现在获得广泛应用的矢量控制系统。矢量控制系统是通过坐标变换,把交流电机在按照磁链定向的旋转坐标系上等效成直流电机,从而模仿直流电机进行控制,使交流电机的调速性能达到或超过直流电机的性能。 1.2 恒压频比控制 恒压频比控制是一种开环控制,它根据系统的给定,利用空间矢量脉宽调制转化为期望的输出进行控制,使电机以一定的转速运转。但是它依据电机的稳态模型,从而得不到理想的动态控制性能。要获得很高的动态性能,必须依据电机的动态数学模型,永磁同步电机的动态数学模型是非线性、多变量,它含有角速度与电流或的乘积项,因此要得到精确控制性能必须对角速度和电流进行解耦。近年来,研究了各种非线性控制器,来解决永磁同步电机非线性的特性。 1.3 直接转矩控制 矢量控制方案是一种很有效的交流伺服电机控制方案,但是由于该方案需要进行矢量旋转变换,坐标变换比较复杂。此外,由于电机的机械常数慢于电磁常数,矢量控制中转矩响应的速度不够迅速。针对矢量控制的上述缺点,德国学者

极槽配合对永磁同步电机性能的影响_新

极槽配合对永磁同步电机性能的影响 摘要:永磁同步电机由于具有结构简单、体积小、效率高、功率因数高、转动惯量小、过载能力强,运行可靠等特点,在家用电器、医疗器械和汽车中得到广泛使用。永磁同步电机的齿槽转矩会引起输出转矩的脉动和噪声,不平衡径向电磁力则是电机的主要噪声源。本文着重研究极槽配合对永磁同步电机性能的影响,主要包括齿槽转矩和径向电磁力两个方面。详细介绍了齿槽转矩和径向电磁力的相关原理,并通过仿真对8极9槽和8极12槽两种极槽配合的电机进行分析比较,验证了相关的理论的正确性,最后得出电机设计中应综合考虑齿槽转矩、径向电磁力等相关因素合理选择极槽配合。 关键词:极槽配合;齿槽转矩;永磁同步电机;径向力 Influence of Pole-Slot Combination on The Performance of Permanent Magnet Synchronous Motor Abstract: Permanent magnet synchronous motor has simple structure, small volume, high efficiency, high power factor, small moment of inertia, strong overload capacity, reliable operation, widely used in household appliances, medical equipment and vehicles. Cogging torque will cause output torque ripple and noise of PMSM ,And unbalanced radial electromagnetic force is the main reason of noise of motor. In this paper,we focuses on the research of pole-slot combination effects on the performance of PMSM, including two aspects:the cogging torque and radial electromagnetic force. The relevant principles of the cogging torque and radial electromagnetic force were introduced in detail, and through the simulation of 8 poles 9 slots and 8 poles 12 slots motors,the two kinds of pole-slot combination motor were analyzed and compared, verified the related theory.Finally, we conclude that the cogging torque and radial electric force and so on related factors should be considered into the motor design when selecting reasonable pole-slot combination. Key words: pole-slot combination; cogging torque;PMSM; radial force 1引言 永磁同步电机结构简单、体积小、效率高、功率因数高、转动惯量小、过载能力强,运行可靠,且其调速性能优越,克服了直流伺服电动机机械式换向器和电刷带来的一系列限制[1]。永磁同步电机在家用电器、医疗器械和汽车中得到广泛使用。随着永磁材料性能的不断提高,永磁电机越来越广泛地应用于高性能、

浅析无齿轮永磁同步电梯曳引机

浅析无齿轮永磁同步电梯曳引机 摘要:无齿轮永磁同步曳引电梯因简单的结构、低噪声、低能耗的特点在业内受到高度关注。本文通过对永磁同步无齿轮曳引机的结构和工作原理阐述,分析了无齿轮永磁同步曳引机与传统曳引机相比的优点和缺点,但是作为新型的曳引机的发展方向,其以小型化和灵活性,为电梯行业的发展提供了更广阔的空间。 关键词:无齿轮永磁同步电梯曳引机;工作原理;优点;缺点 随着科技的进步,永磁材料和永磁电机技术有了长足的发展,永磁电机被各领域广泛应用,其中包括在电梯曳引机上的应用。这些年来我国高档电梯越来越多,这都与永磁同步调速电机和曳引机无齿轮化的有机结合分不开,永磁同步无齿轮曳引电梯因简单的结构、低噪声、低能耗的特点在业内受到高度关注。由于永磁同步无齿轮曳引机的小型化和灵活性,可以布置出各种曳引方式的无机房电梯,这样不仅大大节约了电梯成本,同样也减少了电梯对空间的占用,为电梯行业的发展提供了更广阔的空间。 1.无齿轮永磁同步电梯曳引机的结构 齿轮永磁同步电梯曳引机结构主要由永磁同步电动机、曳引轮及制动系统和盘车装置组成。曳引轮与制动轮为同轴固定联接,并直接安装在电动机的轴伸端。而曳引机的制动系统由制动体、制动轮、制动臂和制动瓦等组成。无齿轮曳引机由于采用的是电机直接驱动曳引轮,制动力矩很大,无法用手轮直接盘车。需通过齿轮比来减小盘车时需用的力,因此需专门设计盘车装置。 2.无齿轮永磁同步电梯曳引机的工作原理 永磁同步无齿曳引机工作原理是电动机动力由轴伸端通过曳引轮输出扭矩,再通过曳引轮和钢丝绳的摩擦来带动电梯轿厢的的上、下运动。当电梯停止运行时则由常闭制动器通过制动瓦刹住制动轮,从而保持轿厢静止不动。其动力控制其原理是通过电机上安装的变频装置(编码器)和高精度的速度传感器,对电机运行电流快速跟踪、检测、反馈和控制,控制永磁电机以同步转速进行转动,由于永磁电机具有线性、恒定转矩及可调节速度的特性,使曳引轮能够平稳运行。 3.无齿轮永磁同步电梯曳引机与传统曳引机的比较 3.1无齿轮永磁同步电梯曳引机的优点 3.1.1 结构简化 无齿轮曳引机没有机械减速装置,不同于有齿轮曳引机复杂的机械减速机构。有齿曳引机中的减速机构如蜗轮蜗杆、行星齿轮在加工过程中都需要机械加工精度,同时为了这些齿轮的正常运转必须配备复杂的润滑系统。而无齿曳引机

永磁同步曳引机

永磁同步曳引机简介! 永磁同步曳引机概述 具有低速大转矩特性的无齿轮永磁同步曳引机以其节省能源、体积小、低速运行平稳、噪声低、免维护等优点,越来越引起电梯行业的广泛关注。无齿轮永磁同步电梯曳引机,主要由永磁同步电动机、曳引轮及制动系统组成。永磁同步电动机采用高性能永磁材料和特殊的电机结构,具有节能、环保、低速、大转矩等特性。曳引轮与制动轮为同轴固定联接,采用双点支撑;由制动器、制动轮、制动臂和制动瓦等组成曳引机的制动系统。 永磁同步曳引机组成 一种永磁同步曳引机,包括机座、定子、转子体、制动器等,永磁体固定在转子体的内壁上,转子体通过键安装于轴上,轴安装在后机座上的双侧密封深沟球轴承和安装在前机座上的调心滚子轴承上,锥形轴上通过键固定曳引轮,并用压盖及螺栓锁紧曳引轮,轴后端安装旋转编码器,压板把定子压装在后机座的定子支撑上,前机座通过止口定位在后机座上,前机座14两侧开有使制动器上的摩擦块穿过的孔。 永磁同步曳引机性能 1.常规曳引机曳引轮及制动臂工作受力均为悬臂机构,运动部件受力条件不良。有些曳引机增加前端盖后,将曳引轮及制动臂工作受力改成双向支撑,特别是在采用复绕方式时,曳引轮长度增加后,其受力由于是双向支撑,无任何不良影响,比之市面上已有的曳引轮及制动臂工作受力均为悬臂的工作方式具有更加优越的工作性能、噪音低、振动孝不产生共振,安全性好。 永磁同步曳引机 2.常规曳引机的人工盘车机构是在制动轮或曳引轮上安装一个齿轮圈,再用一个小齿轮与其相配,通过手轮或备用动力盘动该小齿轮转动,再通过齿轮圈带动曳引轮旋转来实现的。但一个带齿的齿轮圈直接外露,并跟着曳引轮一起旋转,容易伤人,很不安全。同时操作时还需两个人,一人操作制动机构,另一个操作盘车机构,存在安全隐患。有些将曳引机将盘车机构做成外置式蜗轮蜗杆传动的机构,平时不用时卸下,有需盘车时锁在前端盖上使用。蜗轮蜗杆盘车装置有传动比大,省力,且有自锁功能,能够保证盘车时轿厢不会出现冲顶或蹲底的安全隐患。且只需一人操作。 3、采用双支撑受力合理,不易损坏轴承,延长使用寿命,对于电梯运行中共振的分析如下因为电梯的轨道所产生磨擦力因安装质量而异,但最好的安装技术都存在电梯在运行中因为轨道的磨擦力的不同带来运行中受力的变化,这种变化导致了钢丝绳在弹性区域的变形,也就是产生弹簧效应,这种钢丝绳的弹簧效应传导到曳引机上,会使悬臂受力的曳引机产生共振使得电梯运行中抖动不平稳,然而双支撑的采用大大地缓解了这种矛盾,从而增加运行中电梯的稳定性。 永磁同步曳引机优势 驱动系统使用永磁同步无齿曳引机。由于永磁同步无齿曳引机与传统的蜗轮、蜗杆传动的曳引机相比具有如下优点: 1、永磁同步无齿曳引机是直接驱动,没有蜗轮、蜗杆传动副,永磁同步电机没有作异步电机所需非常占地方的定子线圈,而制作永磁同步电机的主要材料是高能量密度的高剩磁感应和高矫顽力的钕铁硼,其气隙磁密一般达到0.75T以上,所以可以做到体积小和重量轻。 永磁同步曳引机 2、传动效率高。由于采用了永磁同步电机直接驱动(没有蜗轮蜗杆传动副)其传动效率可以提高20%~30%。 3、永磁同步无齿曳引机由于不存在一个异步电机在高速运行时轴承所发生的噪声和不存在蜗轮蜗杆副接触传动时所发生噪声,所以整机噪声可降低5~10db(A)。 4、能耗低。从永磁同步电机工作原理可知其励磁是由永磁铁来实现的,不需要定子额外提供励磁电流,

永磁同步电机特点

永磁同步电动机的分类和特点 一,永磁同步电动机的特点 永磁同步电动机结构简单、体积小、重量轻、损耗小、效率高,和直流电机相比,它没有直流电机的换向器和电刷等缺点。和异步电动机相比,它由于不需要无功励磁电流,因而效率高,功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好;但它与异步电机相比,也有成本高、起动困难等缺点。和普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。 我国是盛产永磁材料的国家,特别是稀土永磁材料钕铁硼资源在我国非常丰富,稀土矿的储藏量为世界其他各国总和的4倍左右,号称“稀土王国”。稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平。因此,对我国来说,永磁同步电动机有很好的应用前景。 二,永磁同步电动机的分类 永磁同步电动机的转子磁钢的几何形状不同,使得转子磁场在空间的分布可分为正弦波和梯形波两种。因此,当转子旋转时,在定子上产生的反电动势波形也有两种:一种为正弦波;另一种为梯形波。这样就造成两种同步电动机在原理、模型及控制方法上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)调速系统;而由梯形波(方波)永磁同步电动机组成的调速系统,在原理和控制方法

上与直流电动机系统类似,故称这种系统为无刷直流电动机(BLDCM)调速系统。 永磁同步电动机转子磁路结构不同,则电动机的运行特性、控制系统等也不同。根据永磁体在转子上的位置的不同,永磁同步电动机主要可分为:表面式和内置式。在表面式永磁同步电动机中,永磁体通常呈瓦片形,并位于转子铁心的外表面上,这种电机的重要特点是直、交轴的主电感相等;而内置式永磁同步电机的永磁体位于转子内部,永磁体外表面与定子铁心内圆之间有铁磁物质制成的极靴,可以保护永磁体。这种永磁电机的重要特点是直、交轴的主电感不相等。因此,这两种电机的性能有所不同。 三无刷直流电动机(BLDCM) 1,BLDCM研究现状 永磁无刷直流电动机与传统有刷直流电动机相比, 是用电子换向取代 原直流电动机的机械换向, 并将原有刷直流电动机的定转子颠倒(转子采用永磁体)从而省去了机械换向器和电刷,其定子电流为方波, 而且控制较简单, 但在低速运行时性能较差, 主要是受转矩脉动的影响。 引起转矩脉动的因素很多, 主要有以下原因: (1)电枢反应引起的转矩脉动 减弱或克服这种原因造成转矩脉动采用的方法是适当增大气隙, 设计 磁路时使电机在空载时达到足够饱和, 以及电机选择瓦形或环形永磁 体径向励磁结构等。 (2)电流换相引起的转矩脉动

永磁同步异步电机的性能,你知道多少

永磁同步/异步电机的性能,你知道多少? 时间:2017-03-18 06:25:32 来源:空压机网性质:转载作者:空压机网【推荐给朋友】 永磁同步电机与异步电机相比,具有明显的优势,它效率高,功率因素高,能力指标好,体积小,重量轻,温升低,技能效果显著,较好地提高了电网的品质因素,充分发挥了现有电网的容量,节省了电网的投资,它较好地解决了用电设备中“大马拉小车”现象。 1. 效率及功率因素

异步电机在工作时,转子绕组要从电网吸收部分电能励磁,消耗了电网电能,这部分电能最终以电流在转子绕组中发热消耗掉,该损耗约占电机总损耗的20~30%,它使电机的效率降低。该转子励磁电流折算到定子绕组后呈感性电流,使进人定子绕组中的电流落后于电网电压一个角度,造成电机的功率因数降低。另外,从永磁同步电机与异步电机的效率及功率因数曲线(图1)可以看出,异步电动机在负载率(=P2/Pn)<50%时,其运行效率和运行功率因数大幅度下降,所以一般都要求其在经济区内运行,即负载率在75%-100%之间。

图为永磁同步电动机与异步电动机的效率和功率因数 a. 异步起动永磁同步电动机 b.异步电动机 永磁同步电机在转子上嵌了永磁体后,由永磁体来建立转子磁场,在正常工作时转子与定子磁场同步运行,转子中无感应电流,不存在转子电阻损耗,只此一项可提高电机效率4%~50%。由于在水磁电机转子中无感应电流励磁,定子绕组有可能呈纯阻性负载,使电机功率因数几乎为1.从永徽同步电机与异步电机的效率及功率因数曲线(图1)可以看出,永磁同步电机在负载 率>20%时,其运行效率和运行功率因数随之变化不大,且运行效率>80%。 2. 起动转矩 异步电机起动时,要求电机具有足够大的起动转矩,但又希望起动电流不要太大,以免电网产生过大的电压降落而影响接在电网上的其他电机和电气设备的正常运行。此外,起动电流过大时,将使电机本身受到过大电做力的冲击,如果经常起动,还有使绕组过热的危险。因此,异步电机的起动设计往往面临着两难选择。 永磁同步电机一般也采用异步起动方式,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求,例如使起动转矩倍数由异步电机的1.8倍上升到2.5倍,甚至更大,较好地解决了动力设备中“大马拉小车”的现象。 3. 工作温升

电动汽车用永磁同步电机浅析

电动汽车用永磁同步电机浅析 摘要:本文首先介绍了目前常用的电动机类型;然后着重介绍电动汽车用永磁同步电机在设计制造过程中可能会遇到的关键技术问题,还介绍了一些目前应用比较广泛的永磁同步电机的控制策略。 关键词:电动汽车;永磁同步电机;关键技术;控制策略 Superficial Analysis of Permanent Magnet Synchronous Motor in Electric Vehicle Abstract:The article first introduces the type of motors used commonly now,then introduce the key technology problem in the design and manufacture of permanent magnet synchronous motors,and also describes some control strategies of the permanent magnet synchronous motors. Key words:electric vehicle; permanent magnet synchronous motor;key technology;control strategy 0引言 当今环保和能源问题备受关注,为解决这些问题,电动汽车呈现加速发展的趋势;同时电动汽车容易实现智能化,有助于改进和提高车辆的安全和使用性能。电动汽车对其驱动系统的要求是转矩控制能力良好,转矩密度高,运行可靠性及在整个调速范围内的效率尽可能高,从而保证车辆具有良好的动力性能和操控性,同时在车载动力电池未能取得突破的情况下,延长车辆的续驶里程。研究并开发出高水平的电机驱动控制系统,对提高我国电动汽车驱动系统水平及电动汽车的产业化具有重要意义[1]。 随着永磁材料性能的提高和成本的降低,永磁同步电动机以其高效率、高功率因数和高功率密度等优点,正逐渐成为电动汽车驱动系统的主流电机之一。 1概述 永磁电动机既具有交流电动机的无电刷结构、运行可靠等优点,又具有直流电动机的调速性能好的优点,且无需励磁绕组,可以做到体积小、控制效率高,是当前电动汽车电动机研发与应用的热点。永磁电动机驱动系统可以分为无刷直流电动机(BLD-CM)系统和永磁同步电动机(PMSM)系统[2]。永磁同步电动机(PMSM)系统具有高控制精度、高转矩密度、良好的转矩平稳性以及低噪声的特点,通过合理设计永磁磁路结构能获得较高的弱磁性能,提高电动机的调速范围,因此在电动汽车驱动

永磁同步无齿轮曳引机常见故障处理法

永磁同步无齿轮曳引机常见故障处理法常见故障处理法

一、无机房电梯常见的井道布置形式 1.主机上置式 这种布置方式中,主机放在井道顶层轿厢和电梯井道壁之间的空间,为了使控制柜和主机之间的连线足够短,一般将控制柜放在顶层的厅门旁边,这样也便于检修和维护。 2.主机下置式 主机放在井道的底坑部分,放在底坑轿厢和对重之间的投影空间上,控制柜一般采取壁挂形式。这种放置方式给检修和维护也提供了方便. 3.主机放在轿厢上; 主机放在轿厢的顶部,控制柜放在轿厢侧面,这种布置方式,随行电缆的数量比较多。 4.主机和控制柜放在井道侧壁的开孔空间内这种方式对主机和控制柜的尺寸无特殊要求,但是要求开孔部份的建筑要有足够厚度,并要留有检修门. 二、无机房电梯对驱动主机和控制系统的要求 大家知道无机房电梯省去了传统的电梯机房,一般情况下将电梯驱动主机和控制系统以及一些其它的部件统统放到了井道中。相应的对电梯的主机和控制系

统提出了一些特殊的要求: 1、对主机的要求 A.结构紧凑,功率密度高,适于安装在井道内。 B.噪音低,振动小,运行平稳舒适。 C.可靠性高,平均无故障时间长。 D.高效率,维护费用少,运行成本低。 E.价格低。 2、对电梯控制系统的要求 A.结构紧凑,体积小,便于安装。 B.抗干扰,可靠性高,安全余量大。 C.检修方便。 D.省电高效。 三、阿尔法EPM曳引机的结构和特点 德国阿尔法高精密变速器制造责任有限公司是高精密变速器专业制造商,其行星齿轮箱的加工技术在世界机械加工行业处于领先地位。阿尔法公司生产的变速器是欧洲航空航天和军工技术的专用产品,广泛应用于航空航天技术、军用技术装置、高精密自动化设备(如机器人、自动化生产线等)。许多国际驰名公司如西门子、大众汽车公司等都是阿尔法公司的固定客户和合作伙伴。 EPM曳引机是采用交流永磁同步电机驱动的行星

浅谈无齿轮曳引机的优缺点[参考文档]

浅谈无齿轮曳引机的优缺点 1、正视无齿轮曳引机 无齿轮曳引机的产生,毕竟迎合了电梯的需求,迎合了环保的需要,迎合了厂家的利益。它的诞生不单单是为了无机房电梯的需求,同时也是为了节能、降噪的需要。适者生存,我们应当看到它的无限前景(无传动机构、磨损低、装配简单、噪音低、永磁同步能耗低、省油、无油污、运行平稳易维护),为其生存发展创造条件。我们当然也不能忽视永磁同步无齿轮曳引机的缺点和不足(成本造价高,永磁体寿命有限,还很难实现1∶1悬挂方式,编码器传输对变频器的影响、制动器力矩问题等),为完善无齿轮曳引机并坚持不懈的努力研究开发新材料、新技术。无齿轮曳引机已经“来到”我们面前,在宣传其优点的同时也要正视这些尚需解决的问题,尤其当今曳引机厂家林立、竞争激烈,要想摆脱窘境、要想转产、开发新产品,就应端正心态、直面现实、正视困难,以全新产品占领市场、扭转局面。 2、永磁同步无齿轮曳引机的优点 永磁同步无齿轮曳引机,一经面世就显示了它的勃勃生机。 1)永磁同步无齿轮曳引机无传动结构,体现如下几点好处: (1)磨损低。无齿轮曳引机的最大优势在于没有任何传动结构,除了电机转子轴(它同时又是曳引轴)上有一组轴承之外,就再也没有什么机械磨损了,没有磨损,自然延长了曳引机的使用寿命。 (2)节能。无齿轮曳引机由于没有传动结构,也就没有了机械方面的功率损耗,相对来讲,也就节省了能量和运行开支。以载荷1000kg、梯速1.0m/s变频调速电梯为例:OTIS有齿曳引机(曳引比为1∶1)需11kW;韦伯无齿曳引机(曳引比为2∶1)只需6.7kW。 (3)安装简便。由于曳引轮直接固定在电动机的轴上,结构紧凑体积小、重量轻,便于吊装、运输,所以现场安装也就容易多了,仍以载荷1000kg、梯速1.0m/s变频调速电梯为例:OTIS有齿曳引机17CT,自重1300kg;韦伯无齿曳引机WEB-1.0-1000,自重300kg。 (4)运行平稳。由于没有传动结构,也就没有皮带传动的丢转、打滑,电梯平层精度高、运行可靠;也就没有齿轮啮合的噪音和震动,从而表现在电梯运行平稳、噪音低,这也是电梯绿色革命的突出特点。 (5)省油。无齿轮曳引机由于没有传动结构,也就省去了传统减速箱中的润滑油,它只在轴承内存有足量的润滑脂。日常维保不存在更换润滑油的烦琐,同时也避免了润滑油泄漏带来的污染和维护难度,又节省了润滑油费用。 (6)使用方便。由于无齿轮曳引机没有液态润滑油,亦无泄漏,不仅没有污染,而且可以任意姿态安装,比如底脚朝上悬挂于井道顶板处。 2)永磁同步无齿轮曳引机控制系统的好处 永磁同步无齿轮曳引机都设计了“断电短路”环节,利用“永磁同步电动机,短接三相绕组时可以作为发电机运行”的这一突出优点,有效地避免电梯失控溜车。这一环节体现了以下几个好处:

浅谈永磁同步电机

电气082 徐冬学号:0803731153 浅谈永磁同步电机 永磁式同步电动机,是一种利用永磁体建立励磁磁场的小功率同步电动机。永磁式同步电动机的定子产生旋转磁场,转子由永磁材料制成。永磁同步电动机能够在石油、煤矿、大型工程机械等比较恶劣的工作环境下运行,这不仅加速了永磁同步电机取代异步电机的速度,同时也为永磁同步电机专用变频器的发展提供了广阔的空间。 一、永磁同步电机原理 当永磁同步电动机的定子通入三相交流电时,三相电流在定子绕组的电阻上产生电压降。由三相交流电产生的旋转电枢磁动势及建立的电枢磁场,一方面切割定子绕组,并在定子绕组中产生感应电动势;另一方面以电磁力拖动转子以同步转速旋转。电枢电流还会产生仅与定子绕组相交链的定子绕组漏磁通,并在定子绕组中产生感应漏电动势。此外,转子永磁体产生的磁场也以同步转速切割定子绕组,从而产生空载电动势。 二、永磁同步电机的特点 永磁同步电动机结构简单、体积小、损耗小、效率高,和直流电机相比,它没有直流电机的换向器和电刷等缺点。和异步电动机相比,它由于不需要无功励磁电流,因而效率高、功率因数高、力矩惯量比大、定子电流和定子电阻损耗减小,且转子参数可调、控制性能好;但它与异步电机相比,也有成本高、启动困难等缺点。和普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。 三、永磁同步电机的应用范围 按照不同的工农业生产机械的要求,电机驱动又分为定速驱动、调速驱动和精密控制驱动三类。 1、定速驱动工农业生产中有大量的生产机械要求连续地以大致不变的速度单方向运行,例如风机、泵、压缩机、普通机床等。对这类机械以往大多采用三相或单相异步电动机来驱动。异步电动机成本较低,结构简单牢靠,维修方便,很适合该类机械的驱动。但是,异步电动机效率、功率因数低、损耗大,而该类电机使用面广量大,故有大量的电能在使用中被浪费了。其次,工农业中大量使用的风机、水泵往往亦需要调节其流量,通常是通过调节风门、阀来完成的,这其中又浪费了大量的电能。70年代起,人们用变频器调节风机、水泵中异步电动机转速来调节它们的流量,取得可观的节能效果,但变频器的成本又限制了它的使用,而且异步电动机本身的低效率依然存在。 例如,家用空调压缩机原先都是采用单相异步电动机,开关式控制其运行,噪声和较高的温度变化幅度是它的不足。90年代初,日本东芝公司首先在压缩机控制上采用了异步电动机的变频调速,变频调速的优点促进了变频空调的发展。近年来日本的日立、三洋等公司开始采用永磁无刷电动机来替代异步电动机的变频调速,显著提高了效率,获得更好的节能效果和进一步降低了噪声,而且调速方便,价格和异步电动机变频调速相当。永磁无刷直流电动机在空调中的应用促进了空调剂的升级换代。 再如仪器仪表等设备上大量使用的冷却风扇,以往都采用单相异步电动机外转子结构的驱动方式,它的体积和重量大,效率低。近年来它已经完全被永磁无刷直流电动机驱动的无刷风机所取代。现代迅速发展的各种计算机等信息设备上更是无例外地使用着无刷风机。近年来的实践表明,在功率不大于10kW而连续运行的场合,为减小体积、节省材料、提高效

永磁同步电机性能要求与技术现状分析

在各类驱动电机中, 永磁同步电机能量密度高, 效率高、体积小、惯性低、响应快, 有很好的应用前景。永磁电动机既具有交流电动机的无电刷结构、运行可靠等优点, 又具有直流电动机的调速性能好的优点, 且无需励磁绕组, 可以做到体积小、控制效率高, 是当前电动汽车电动机研发与应用的热点。 永磁同步电动机( PMSM)系统具有高控制精度、高转矩密度、良好的转矩平稳性以及低噪声的特点, 通过合理设计永磁磁路结构能获得较高的弱磁性能, 提高电动机的调速范围, 因此在电动汽车驱动方面具有较高的应用价值。 作为车辆电驱动系统的中心环节, 驱动电机的总体性能是设计研制技术的关键之一。根据车辆运行的特殊环境以及电驱动车辆自身的特点, 对驱动电机的技术要求主要是: ( 1)体积小、重量轻; 有较高的功率和转矩密度; ( 2)要求在宽速域范围内, 电动机和驱动控制器都有较高的效率; ( 3)有良好的控制性能以及过载能力, 以提高车辆的起动和加速性能。 永磁同步电机的功率因数大, 效率高, 功率密度大, 是一种比较理想的驱动电机。但正由于电磁结构中转子励磁不能随意改变, 导致电机弱磁困难, 调速特性不如直流电机。目前, 永磁同步电机理论还不如直流电机和感应电机完善, 还有许多问题需要进一步研究, 主要有以下方面。 1) 电机效率: 永磁同步电机低速效率较低, 如何通过设计降低低速损耗, 减小低速额定电流是目前研究的热点之一。 2)提高电机转矩特性 电动车驱动电机要求低速大转矩且有一定的高速恒功率运行范围, 所以相应控制策略的研究也主要集中在提高低速转矩特性和高速恒功率特性上。 1.低速控制策略: 为了提高驱动电机的低速转矩,一般采用最大转矩控制。早期永磁同步电机转子采用表面式磁钢, 由于直轴和交轴磁路的磁阻相同, 所以采用 id= 0 控制。控制命令中直轴电流设为 0, 从而实现最大转矩控制。随着同步电机结构的发展, 永磁同步电机转子多采用内置式磁钢, 利用磁阻转矩增加电机的输出转矩。id= 0 控制电机电枢电流的直轴分量为 0, 不能利用电机的磁阻转矩, 控制效果不好。目前, 永磁同步电机低速时常采用矢量控制, 包括气隙磁场定向、转子磁链定向、定子磁链定向等。 2.高速控制策略: 为了获得更宽广的恒功率运行范围, 永磁同步电机高速运行通常采用弱磁控制。另外, 在电机采用低速转矩控制和高速弱磁控制的同时, 还要考虑如何

无齿轮永磁同步曳引机优势对比2(从结构上)

随着电子技术和控制技术的发展,电梯用无齿轮永磁同步曳引机的控制技术日趋成熟,促进了永磁同步电动机的开发和应用。由于永磁同步电动机具有体积小,重量轻效率,高等一系列优点,所以这种电动机引起人们越来越多的重视。尤其与矢量控制技术结合以后,使其具有由低速到高速恒转矩输出的特性,能够满足了电梯驱动的要求,成为新一代电梯曳引机。 进入20世纪90年代以来,环保要求越来越高,绿色环保已经是电梯产品发展不可抗拒的趋势。另外重要的一点,中国是一个能源紧缺大国,节约能耗,走低成本发展之路是时代发展的必然要求。无齿轮永磁同步曳引机采用直接驱动方式,传动效率提高20%~30%,而且无需提供定子励磁电流,转子无电流、无损耗,这些总计可以节能30%以上。上述符合环保要求的特点,恰恰引导了电梯产品的新一代绿色环保革命。这就是说,该产品不仅为电梯安装者提供了方便,也为电梯所有者创造了价值,全面降低了物业管理成本。电梯用无齿轮永磁同步曳引机无疑会深受广大消费者的欢迎。 同传统的有齿曳引电梯相比,永磁同步曳引机具有高性能、低价格的特点,具体分析如下: ①机械结构简化。有齿轮曳引机包括有复杂的机械减速机构,如蜗轮蜗杆减速机构、行星齿轮减速机构等。为了保证曳引机的运行性能,对这些减速机构的机械加工精度提出了很高的要求。而无齿曳引机则不需机械减速机构,由电机直接带动曳引轮驱动电梯运行,使无齿永磁同步曳引机的机械结构变得非常简单。从而降低了机械制造费用,降低了生产成本。 免维护。无齿曳引机不需要复杂的润滑系统,彻底解决了漏油的麻烦,实现了免维护。减少了维护费用。同时没有了废弃油对环境的污染,避免了失火的危险,被誉为绿色电梯,它的环保价值更是不可估量。 ②节省空间。使用无齿轮永磁同步曳引机可以大大减少电梯的机房占用空间,甚至可以做到无机房运行,把影响建筑造型美观和人们居室日照的楼顶机房取消,既节省了建筑空间,又降低了制造成本。在寸土寸金、追求时尚的繁华大都市,这一点更显得尤为突出。无齿轮永磁同步曳引机已成为房地产开发商的首选电梯曳引机。 ③节约能源。首先,省去了机械减速机构相应的损耗。传统曳引机减速机

浅析永磁同步曳引机的优劣

浅析永磁同步曳引机的优劣 2010-03-25 01:04 来源:安徽中菱电梯有限公司admin 点击: 701次 电梯是为高层建筑交通运 电梯是为高层建筑交通运输服务的比较复杂的机电一体化设备。近年来,随着城市的发展,高层建筑的迅速增多,对高性能电梯的电力拖动系统提出了新的要求,更加舒适、小型、节能、可靠和精确有效的速度控制是其发展方向,而电机技术、功率电子技术、微计算机技术及电机控制理论的发展,使其实现成为了可能。 如果说控制柜是电梯的大脑,那么曳引机就是电梯的心脏。作为电梯的核心部件,曳引机技术经过了蜗轮蜗杆传动曳引机、行星齿轮和斜齿轮传动曳引机、无齿轮传动曳引机三个发展阶段。 蜗轮蜗杆传动曳引机,传动效率较低,只有70%左右,由于传动转矩能力大、技术成熟,目前依然广泛应用于低速电梯和各种货梯。 行星齿轮和斜齿轮传动曳引机,传动效率能达到90%,但要求齿轮加工精度高,成本也比较高,这两种曳引机产品在中国并没有得到广泛地应用,随着成本较低的永磁同步无齿轮传动曳引机技术的发展,行星齿轮和斜齿轮传动曳引机已逐渐被淘汰。 永磁同步电机与异步电机的主要区别及特点 由于异步电机是靠电机定子电流为电机转子励磁的,而永磁电机转子是用永磁体直接产生磁场不需要电励磁,因此永磁同步电机具有结构简单、运行可靠、体积小、重量轻、效率高、形状和尺寸灵活多样等特点。 交流永磁同步曳引机的主要优点有: 1、结构简单运行可靠,由于永磁电机转子不需要励磁,省去了线圈或鼠笼,简化了结构,实现了无刷,减少了故障,维修方便简单,维修复杂系数大大降低。 2、低温升、小体积永磁同步电机与感应电机相比,因为不需要无功励磁电流,而具备:(1)功率因数高,近于l; (2)反电势正弦波降低了高次谐波的幅值,有效地解决了对电源的干扰的问题; (3)减小了电机的铜损和铁损; (4)同步电机发热温升小(约38K),电机外形小,体积与异步电机相比,降低一至两个机座号。

相关主题
文本预览
相关文档 最新文档