当前位置:文档之家› 氮气泡沫压裂液用作煤层气井性能研究_程秋菊

氮气泡沫压裂液用作煤层气井性能研究_程秋菊

氮气泡沫压裂液用作煤层气井性能研究_程秋菊
氮气泡沫压裂液用作煤层气井性能研究_程秋菊

煤层气

中国煤层气开采技术现状及趋势 随着经济持续发展对能源需求的日益增加和常规油气资源的日益短缺,世界各国都在积极寻找开发新的能源,以弥补常规油气资源的缺口。合理地开发煤层气资源,不仅可以大幅减少矿难事故,而且有助于减少国民经济对常规油气资源的依赖。根据最新资源评估结果,俄罗斯、加拿大、中国、美国及澳大利亚等国都跻身于煤层气大国行列,许多国家都进行了煤层气开发的有关研究,且逐渐实现了商业化开采。 煤层气是自生自储的非常规天然气,主要成分为甲烷,以吸附和游离状态赋存于煤层和围岩中,其热值与天然气相当。由于煤基质中发育有大量的微孔隙,孔径可小至0.5~1.0nm,其比表面积极大,对甲烷分子具有很强的吸附能力,而使水分子难以进入,通常煤层气只存在于地层的割理中。 当煤层气经割理流动至井底时,常常伴有大量的水产出,因而需要专门的排采设备来降低井底压力,促进煤层气解吸。煤层气在储层物性、开发机理、开发方式等方面与常规天然气有很大的不同,为提高煤层气开发的经济效益,国外对其开发技术进行了多年的研究探索,取得了显著的成就。 20 世纪80 年代,美国开始进行煤层气的勘探和开发,目前已形成世界上最成熟、最完备的煤层气开发技术体系。自此以后,加拿大、澳大利亚及我国也相继开展了煤层气的勘探开发试验研究,在借鉴美国开发煤层气成功经验的基础上,各国针对具体的煤层特点,开发了一系列新技术,如加拿大的连续油管压裂技术和水平井分段压裂技术、澳大利亚的U 型井技术及多层扩孔技术。 由于我国煤储层条件复杂,勘探开发又相对较晚,目前尚未形成规模化、商业化开采。为加快我国煤层气商业化、产业化,本文专门就煤层气井钻井技术、压裂增产技术、排水采气技术、提高采收率技术及煤层气开发数值模拟技术现状进行了介绍,对煤层气开发技术的发展趋势进行了探讨,以为业内人士参考。 1 煤层气开发技术现状 1.1 钻井技术 由于煤层气储层一般都具有低孔、低渗的特点,如果采用常规的直井开采,即使后续进行压裂作业,其单井产能依然十分有限。因此,针对煤层气储层的特点,逐渐研发形成了多分支水平井钻井技术、欠平衡钻井技术、超短半径水平井钻井技术、U 型井钻井技术及电磁波导向钻井技术等,以增加气井与煤层的接触面积,提高煤层气井的单井产能。 1.2 压裂增产技术 开发煤层气应用最为广泛的增产技术是水力压裂技术。压裂增产技术主要包括压裂液技术、压裂工艺技术、裂缝监测技术。目前,煤层气水力压裂单翼缝长可达60~150m,增产效果比较显著。 1.2.1 压裂液技术

煤层气井压裂技术现状研究及应用

煤层气井压裂技术现状研究及应用 摘要:煤层气其主要成分为高纯度甲烷。煤层气开发的主要增产措施是压裂,而压裂设计是实施压裂作业的关键。本文介绍了煤层气储层的特征,并根据美国远东能源公司煤层气井压裂工艺技术,对其在山西寿阳区块几口井的压裂设计进行了分析。讨论了煤层气井压裂设计的主要参数如施工排量、压裂液、支撑剂、加砂程序的优化措施。 关键词:煤层气储层压裂设计小型压裂测试树脂涂层砂 1 引言 美国是率先进行煤层气开采的国家,其煤层气工业起步于70年代,大规模的发展则是在80年代。我国是世界上煤炭资源最丰富的国家之一,经测算煤层甲烷总资源量为30~351012 m3,约是美国的三倍。我国煤层气目前处于商业化生产的阶段。至今已在全国各煤矿区施工600多口煤层气井、10余个井组,大部分进行了压裂增产等措施。煤层气是我国常规天然气最现实、最可靠的替代能源,开发和利用煤层气可以有效地弥补我国常规天然气在地域分布上的不均和供给量上的不足。山西省是中国煤层气储量最丰富的地区之一,开发利用煤层气的优势十分突出,如何坚持科学发展的指导思想,解决开发利用过程中遇到的难点和瓶颈问题,达到合理有效地开发利用是我们当前应该着重思考的问题。 2 煤层气概况 煤层气俗称瓦斯,其主要成分为高纯度甲烷,是成煤过程中生成的、并以吸附和游离状态赋存于煤层及周岩的自储式天然气体,属于非常规天然气。在亿万年漫长的煤炭形成过程中,都有以甲烷为主的气体产生,如果它较多地从母质煤炭岩层中游离迁移出来并进入具有孔隙性和渗透性均良好的构造中储存积聚,则被称为煤成气(即煤基天然气),其开采方式与常规天然气较相似。 2.1 煤层气的赋存特点 煤层气藏与常规气藏最大的差异就是煤层甲烷不是以简单的游离状态储存于煤岩的孔隙中,煤层气中90%以上均是吸附状态附着于煤的内表面上,少量的煤层气是以游离状态储存于煤岩的割理、裂隙和孔隙中,还有部分煤层气是以溶解状态储存于煤层水中。煤是一种多孔介质,其中微孔隙特别发育,形成了异常巨大的内表面面积,据测定每吨煤的内表面面积可达0.929亿m2 。煤的颗粒表面分子通过范德华力吸引周围气体分子,这是固体表面上进行的一种物理吸附过程。压力对吸附作用有明显影响,国内外的研究均表明,随着压力增加,煤对甲烷的吸附量逐渐增大。 2.2 煤层气储层特征

氮气泡沫驱机理

一、氮气泡沫驱简介 我国现已发现的油田大部分属于陆相沉积储层,受地层非均质性及不利水油流度比的影响,水驱效果往往不是很理想。而对于低渗、超低渗油藏,注水压力高,开采难度大,该类油藏普遍采取压裂措施,压裂后产量快速上升,但有效生产周期较短,表现为含水率快速上升,产油量快速降低。 与CO2和空气相比,氮气具有较高的压缩系数和弹性能量,且为惰性气体,无生产安全隐患。氮气密度小,在地层中可向油藏高部位运移,在高部位形成次生气顶,增加了油藏的弹性能。另外,氮气分子比水分子小很多,可以进入原来水驱不能进入的油藏基质,将基质的原油挤压、驱替出油藏,从而提高了采收率。但受油藏非均质性的影响,氮气更易沿高渗透层窜进,造成生产井产气量高,氮气含量高。不仅造成了资源的浪费,而且对生产井气体正常使用造成一系列影响。 氮气泡沫驱是近年来国比较成熟的技术,泡沫在地层中具有较高的视黏度,遇油消泡、遇水稳定,在含水饱和度较高的部位具有较高的渗流阻力,封堵能力随着渗透率的增加而增加,可以有效增加中低渗透部位的驱替强度,同时发泡剂一般都是性能优良的表面活性剂,可在一定程度上降低油水界面力。因此,泡沫调驱既可以改善波及效率,也可以提高驱油效率。 二、氮气泡沫微观渗流阻力分析 泡沫在多孔介质中产生的渗流阻力本质上是泡沫在孔道中产生的毛细管效应附加阻力。根据气泡在多孔介质中的存在状态,主要可以分为以下3种情况。 (1)液体近壁边界层引起的附加阻力 由于固体表面与水分子之间的相互作用,使得靠近固体表面的水层具有不同于自由水的性质,这一水层称为静水边界层。 考虑固体表面的微观结构和水分子的结构与性质,可以清楚地知道润湿实际上是水分子(偶极子)时固体表面的吸附形成的水化作用。水分子是极性分子,固体表面的不饱和键也具有不同程度的极性,水分子受到固体表面的作用并在固体表面形成紧贴于表面的水层,即静水边界层。静水边界层中,水分子是有秩序排列的,它们与普通自由水分子的随机稀疏排列不同。最靠近固体表面的第一层水分子,受表面键能吸引最强,排列得最为整齐严密。随着键能和表面势能影响的减弱,离表面较远的各层水分子的排列秩序逐渐渴乱。表面键能作用不能达到的距离处,水分子已为普通水分子那样的无秩序状态。所以静水边界层实际是固体边界与普通水间的过渡区域。图2-1所示的静水边界层结构充分地表示出固体表面附近水分子的排列状况。

浅论二氧化碳泡沫压裂液

浅论二氧化碳泡沫压裂液 发表时间:2019-03-04T14:41:44.420Z 来源:《防护工程》2018年第34期作者:李振连 [导读] 吉林油田储层较为复杂,非均质性强,绝大多数油藏属于低压、低渗、水敏性。常规的水基冻胶压裂液对油层有较大的伤害 李振连 吉林油田公司油气工程研究院吉林松原 138000 摘要:吉林油田储层较为复杂,非均质性强,绝大多数油藏属于低压、低渗、水敏性。常规的水基冻胶压裂液对油层有较大的伤害,反映到如排液困难、压后效果不好等。通过CO2泡沫压裂增产机理,压裂液综合性能评价,以及现场应用情况,取得了较好的效果,为低渗低产能油田开辟了新的增产措施。 关键词:增产机理;泡沫压裂;室内试验 压裂是提高油气藏早期产能、保持长期稳产的主要措施。压裂液是压裂技术的重要组成部分,其性能的好坏直接关系到压裂施工的成败与压裂的效果的好坏,优质低伤害低成本是其发展方向。 1 CO2压裂现状及发展 利用CO2压裂,国外已有三十多年的历史。六十年代初,CO2作为添加剂与冻胶压裂液混合助排;七十年代初,水基压裂液中CO2浓度达到50%,这类压裂液既可满足设计的裂缝长度,又可大大减少压裂液的用水量;八十年代,CO2浓度超过了50%,通过吸收地层热量,减少以CO2气体为分散相的泡沫,具备了泡沫压裂液的优良性能,减少了因液堵对地层相对渗透率的破坏,特别适用于水敏性地层;同时,美国和加拿大的一些公司已用100%的液态CO2压裂,每年几百口井以上,取得了很好的效果,其主要特点是对地层无损害,不留残液,排液快,经济效益好。 2 探究CO2压裂增产机理 (1)在CO2压裂施工过程中,注入了大量的CO2,在地层温度下,CO2快速汽化,混溶于原油中,将大幅度降低原油粘度。另一方面,还增加了溶解气驱能量,达到助排的目的。液体从地层向井筒流动的基本规律: 在地层条件都不变的情况下,原油的粘度若降低一半,原油的产量就可提高一倍。 (2)饱和CO2的液体,PH值在3.2-3.7之间,相对来说是无腐蚀的,PH值是CO2能成为一种有效的油井强化增产介质,如当PH值降至4.5-5.0以下时,膨胀的粘土矿物可以被减少,能保持地层的渗透性,可能解除裂缝的堵塞。 (3)由于CO2泡沫压裂液具有造缝面积大、所造的裂缝导流能力高等特点,将大大提高增油能力,效果显著。 3 室内研究 3.1 基液性能及泡沫液半衰期 使用RV-20旋转粘度计在20℃、170 1/s剪切速率下,未形成泡沫之前的基液黏度见下表,PH值为7.0,形成泡沫之后,在25℃,0.1MPa下测得泡沫流体的半衰期为300分钟,具有良好的泡沫稳定性,PH值为4.0。 3.2 泡沫压裂液综合性能评价 压裂液综合性能评价严格按照中国石油天然气股份公司颁布标准SY/T5107--2005 《水基压裂液性能评价方法》进行。结果见表1。

泡沫压裂

目录 1、泡沫压裂的基本概念 (3) 2、泡沫压裂的发展及应用 (3) 3、影响泡沫压裂的因素 (4) 3.1 选择合适的起泡剂 (4) 3.2 添加适当的稳定剂 (4) 3.3 提高液相的粘度 (4) 3.4 使气相与液相均匀混合 (4) 3.5 温度与起泡剂浓度 (4) 4、泡沫压裂液体系的性能评价 (5) 4.1 流变性能 (5) 4.2 滤失性 (5) 4.3 携砂性 (5) 5、泡沫压裂的特点 (6) 6、山西沁水盆地煤层气井设计思路 (6) 6.1 TS41-02井压裂施工设计(低密+co2) (7) 6.1.1 压裂液和支撑剂选择 (7)

6.1.2 施工参数及泵注程序 (7) 6.2 TS41-03井压裂施工设计 (9) 6.2.1 压裂液和支撑剂选择 (9) 6.2.2 施工参数及泵注程序 (10) 6.3 TS41-05井压裂施工设计 (11) 6.3.1 压裂液和支撑剂选择 (11) 6.3.2 施工参数及泵注程序 (12) 6.4 TS52-07井压裂施工设计 (14) 6.4.1 压裂液和支撑剂选择 (14) 6.4.2 施工参数及泵注程序 (14) 6.5 TS52-08井压裂施工设计 (16) 6.5.1 压裂液和支撑剂选择 (16) 6.5.2 施工参数及泵注程序 (17)

1、泡沫压裂的基本概念 泡沫压裂是指在常规压裂液的基础上加入起泡剂,氮气或者二氧化碳气体,形成泡沫从而组成以气相为内相、液相为外相的低伤害压裂液体系的压裂过程。泡沫压裂液属于较为复杂的非牛顿液体,它的性质,流动行为和特征受到许多可变因素所控制。气体泡沫质量(在给定温度和压力下,气体体积占泡沫体积百分比)多为50%~70%,泡沫质量小于52%时为增能体系,一般用作常规压裂后的尾追液,以帮助压后残液的返排;气泡质量大于52%时,内相气泡颗粒小,稳定性好,半衰期(从泡沫中分离出一半液体所需要的时间)长,分布均匀,流动时气泡与气泡相互接触,相互干扰,使其黏度大,携砂能力强,可以用于压裂液。 2、泡沫压裂的发展及应用 泡沫压裂液早在20世纪70年代就在美国率先得到应用,1982年以后就有了较大发展。泡沫压裂液研究大致可以分为四个阶段:70年代所用的第一代泡沫压裂液,主要由盐水、酸类、甲醇、原油、氮气和起泡剂配制而成,由于泡沫稳定性差并且寿命短,而且携砂浓度只有120~240 kg/m3,所有仅适用于浅井小规模施工;80年代所使用的第二代泡沫压裂液由盐水、起泡剂、聚合物(植物胶)、稳泡剂和氮气或二氧化碳组成,它的泡沫稳定性好并且半衰期长、黏度大,携砂浓度可达480~600 kg/m3,适用于各类油井压裂施工;90年代的第三代泡沫压裂液由盐水、起泡剂、聚合物、交联剂、氮气或二氧化碳组成,由于它是用交联冻胶体作为稳泡剂,所以气泡分散得更均匀、稳定性更强、粘度更大,携砂浓度大于600 kg/m3,因此适用于高温深井压裂施工;90年代后的第四代泡沫压裂液在组成上与第三代比较类似,但更强调内相气泡的分布和体积的控制,具有更好的抗温耐剪切性、半衰期更长、粘度更大、携砂能力更强的特性,携砂浓度可以达到1440kg/m3以上,加砂规模可达到150吨以上,能够满足大型加砂压裂施工的要求。我国对泡沫压裂液的研究与应用开始于20世纪80年代后期。在1988年辽河油田进行了氮气泡沫压裂液施工后,1997年吉林油田也引进二氧化碳泡沫压裂液设备进行了油层吞吐以及二氧化碳助排压裂的应用,由此拉开了我国泡沫压裂液研究及应用的序幕。1999年长庆靖安油田对陕28、陕11和陕156等油气井进行二氧化碳泡沫压裂液施工,获得油气无阻流量7.7×104m3/d、56.6×104m3/d和15.4×104m3/d,增产效果比较明显;2000年江苏油田对GX1、W2-3、SN20三口油井进行二氧化碳泡沫压裂液施工,GX1井和W2-3井自喷返排率高达78.78%和86.97%,而

浅析煤层气与常规天然气储层强化方式异同

浅析煤层气与常规天然气储层强化方式异同 目前我国的煤层气资源相对十分丰富,完全可以与常规天然气相媲美,煤层气的用途很广泛,可以作为工业、发电等燃料。本文主要分析了煤层气与常规天然气的储层特点,根据其储层特点的异同,深入探究了煤层气与常规天然气储层强化方式的异同。 标签:煤层气;常规天然气;储层特征;储层强化方式 煤层气是近十几年来在国际上兴起的新兴能源,我国目前对于煤层气的开发十分重视,常规天然气的开发已经有了很成熟的科学技术,我国正在积极将开采常规天然气的完善的技术应用到开采煤层气的过程中,煤层气和常规天然气都是优质的能源,需要我们人类合理地开发利用。 1 煤层气与常规天然气储层的异同点 煤层气是常在煤层中出现的吸附在煤粒上或者在煤之间游离的烃类气体,是随着煤出现的矿产资源,属于优质能源,被划分为非常规天然气。常规天然气是勘探人员通过勘测后发现的,由传统的常规油气开发出来的天然气,因此被称为常规天然气。 1.1 煤层气与常规天然气储层的相同点 煤层气与常规天然气的气体主要成分大体相同,煤层气中甲烷的含量高达百分之九十五,而常规天然气的成分也以甲烷为主。它们的主要用途也是相同的,两种气体都是优质的能源和化工原料,供人类使用。 1.2 煤层气与常规天然气储层的不同点 1.2.1 成藏过程与富集机制不同 煤层气的来源是煤层,其活动范围也在煤层,不依附于其他因素进行移动;常规天然气的来源是烃源岩,且大部分会通过其他因素转移到储集岩中。影响煤层气聚集的主要因素是水势,煤层气会随着水势流向产生向心流动机制,所以一般煤层气聚集的地方在地下水中,同时地下水上层存在着地层压力系统,对煤层气的储藏有很大的作用。 1.2.2 储集特征不同 煤层气的储集形式是以分子团的状态吸附于煤的空隙内,所以其依附的煤层决定着煤层气储集的密度,常规天然气的储集形式主要是以游离的气体状态聚集在储层的间隙中,储层的间隙大小决定着常规天然气储集的密度。

压裂液的特点与适用范围

压裂液的特点与适用范围 一、水基压裂液 水基压裂液是以水作为分散介质(溶剂),再添加多种添加剂配制而成的一种压裂液。按稠化方式和稠化程度不同分为水基冻胶压裂液、线性胶压裂液和活性水压裂液。 1、水基压冻胶裂液 主要由水、稠化剂、交联剂和破胶剂配制而成。 特点:粘度高,可调性好,易于控制,造缝性能好,携砂能力强;摩阻低,滤失量小,耐温、耐剪切能力好,能在指定的时间内破胶排液,配制材料货源广。 适用范围:除少数低压、油润湿,强水敏地层外,适用于大多数油气层和不同规模的压裂改造,可以完成高温、高压、深井、超深井、高砂比、大砂量等高难度压裂作业。 2、线性胶压裂液(稠化水压裂液) 以稠化剂和表面活性剂配置而成的粘稠性水溶液。 特点:粘度较低,携砂性能差,降滤失性能略好,有一定造缝能力。 适用范围:主要用于压裂防砂、砾石充填、低温(小于60℃)、浅(小于1000)井的压裂改造;或用于低砂量、低砂比的煤层气或不携砂注水井压裂。 3、活性水压裂液 加有表面活性剂的低粘水溶液。

特点:粘度几乎为零,滤失量大,依靠大排量可以携带较少支撑剂。 适用范围:适用于浅井低砂量、低砂比的小型解堵压裂和煤层气井压裂。 二、油基压裂液 以就地原油或柴油作为分散介质与各种添加剂配制而成的压裂液称为油基压裂液。 稠化剂:磷酸酯 交联剂:铝酸盐 特点:粘度较高、耐温性能较好、携砂能力较强、对储集层伤害较小。 缺点:价格昂贵、施工困难、易燃。 三、泡沫压裂液 泡沫压裂液是指在水力压裂过程中,以水、线性胶、水基冻胶、酸液、醇或油作为分散介质,以气体作为作为分散相(不连续相),与各种添加剂配制而成的压裂液。 按分散相类型不同,泡沫压裂液体系可以分为氮气泡沫压裂液、二氧化碳泡沫压裂液和空气泡沫压裂液。 优点:粘度高,携砂和悬砂性能好,摩阻损失小、滤失量小,液体效率高、在相同液量下裂缝穿透深度大;含水量小,密度低,气体膨胀能力强,易于压后返排,对油层污染小。 缺点:温度稳定性差,使用范围受到限制,由于井筒气—液

煤层气专业论文

晋城职业技术学院矿业工程系 毕业设计 煤层气的钻井 系别矿业工程系 指导老师梁逸群 学生姓名王珂 专业班级12煤1班 答辩时间 成绩

晋城职业技术学院矿业工程系学生毕业论文 摘要 煤层气又称煤层甲烷或煤矿瓦斯,是一种以吸附状态赋存于每层中的非常规天然气,甲烷含量大于90%,凭借良好的环保效益、经济效益和社会效益,是天然气最现实的接替能源。因此,煤层气的勘探开发已在国际上引起广泛关注。我国煤层气资源储备十分丰富,但目前我国煤层气的勘探开发尚处于起步阶段。通过多年的攻关研究和实验,我国煤层气开采企业已经形成并掌握了一整套适合煤层气的钻井工艺技术。本文就国内外煤层气勘探与开发的现状,系统地分析了目前我国用于煤层气开发的钻井设备与钻井技术,介绍了部分钻井工艺。 关键词::煤层气,钻井,钻井技术,完井技术。

晋城职业技术学院矿业工程系学生毕业论文 目录 1.世界煤层气资源分布 (1) 2.国外煤层气开发利用现状及技术理论 (1) 2.1国外煤层气开发利用现状 (1) 2.1.1美国 (1) 2.1.2加拿大 (2) 2.1.3澳大利亚 (2) 2.1.4俄罗斯 (3) 2.2国外煤层气勘探开发、利用的理论与技术 (4) 2.2.1勘探开发理论 (4) 2.2.2煤层气开发技术 (5) 3.国内煤层气开发利用现状及主要技术分类 (6) 3.1国内煤层气资源分布情况 (6) 3.2国内煤层气开发利用现状 (7) 4.煤层气钻井完井技术浅谈 (8) 4.1煤层气井钻井完井的特殊性 (8) 4.2煤层气井钻井技术 (9) 4.2.1煤层造穴技术 (9) 4.2.2井眼轨迹控制技术 (10) 4.2.3水平井与洞穴井连通技术 (11) 4.2.4多分支水平井技术 (11) 4.2.5充气欠平衡钻井技术 (11) 4.2.6煤层绳索取心技术 (12) 4.2.7煤层气防塌技术 (12) 4.2.8煤储层保护技术 (12) 4.3煤层气井完井技术 (13) 4.3.1煤层气固井储层保护技术 (13) 4.3.2防腐蚀固井技术 (14) 结论 (15) 参考文献 (16)

稠油氮气泡沫调驱效果分析——【油气田开发技术新进展】

稠油氮气泡沫调驱效果分析 1. 稠油基本概况 (1)稠油及分类标准①稠油:在油层条件下,粘度(不脱气)大于50mPa?s的原油或脱气粘度大于100mPa?s 的原油。常称的重油(Heavy Oil),沥青砂(Tar Sand,Bitumen)都属于稠油范围。②分类 2. 稠油热采开发方式 原油粘度(mPa?s):50~100:水驱。100~500:水驱、非混相、泡沫。500~10000:蒸汽吞吐(蒸汽驱、火烧油层)。10000~100000:SAGD。 3. 国内稠油生产发展趋势 (1)资源动用:扩大特稠油/超稠油储量的动用程度(2)提高稠油采收率蒸汽吞吐转蒸汽驱方式,且呈现热力复合(化学驱、气体、溶剂等)驱替方式。热力采油和蒸汽吞吐是稠油开采的主要途径。稠油油藏历经注蒸汽开采后的特征:(1)剩余油的流动性越来越差——稠油流体的非均相特征;(2)储层强非均质出现汽窜(负效应)——热连通逐渐加强汽窜造成热效率低,油气比低;(3)油层热效率越来越低——油层回采水率越来越低,后续注热效率低,加热范围小。薄油层的加热效率较低,直井开采效率低。 4. 稠油注蒸汽窜流状况:蒸汽吞吐和蒸汽驱均有汽窜现象。解决蒸汽吞吐汽窜方法:组合吞吐、调剖、改变受干扰井的工作制度或关井。当蒸汽吞吐转蒸汽驱后,一旦出现汽窜,只能依靠调流和调驱方式。汽窜程度、井底结构及稠油开发阶段的差异都将影响注蒸汽井调剖方法的选择。稠油油藏提采技术:(1)热力采油改善开发效果方法;(2)热力复合驱替技术;(3)复杂结构井型热力采油技术。 一、氮气泡沫辅助蒸汽驱调驱机理与适应性:泡沫驱机理(1)泡沫体系调剖→提高波及效率(2)表活剂洗油→提高洗油效率。泡沫发泡方式:(1)地面起泡方式(相对较 1

潞安屯留区块煤层气酸化泡沫压裂技术研究_王黎(实例)

潞安屯留区块煤层气酸化泡沫压裂技术研究 王黎,陈 波,李伟慧 (中原石油工程有限公司井下特种作业公司,河南濮阳476100) 摘要:针对潞安屯留区块煤层储层改造存在的问题,通过对本区块煤层特征进行分析研究,对压裂液及支撑剂进行优选、对压裂设计进行优化,并采取加入预前置酸和氮气泡沫压裂的措施,从而解决了煤层压裂施工中存在的渗流通道堵塞、压裂液难返排、压裂效果不理想的一些问题,在保证了煤层压裂施工成功的同时也提高了煤层气的产量,不仅为本区煤层气开发提供帮助,更对全国的同类煤层储层的改造开发具有借鉴意义。关键词:煤层;预前置酸;氮气泡沫压裂doi:10.3969/j.issn.1673-5285.2015.04.010中图分类号:TE357.2 文献标识码:A 文章编号:1673-5285(2015)04-0033-04 *收稿日期:2015-03-05 山西潞安屯留区块山西组3#煤层,本区裂隙较为发育,煤层气资源丰富,但煤层压力低、渗透率低、临储比低、机械强度低、储层温度低、吸附能力强,显微裂隙发育程度比同煤级好、 扩散系数比同煤级大,为典型的过渡孔为主低渗低压储藏。因此,追求高煤层气产量有着相当大的难度。 在压裂施工中,因煤层相对砂岩储层杨氏模量较低、 泊松比较高、裂隙发育、大量煤粉、煤屑的存在加之地层污染和套管限压的因素,给压裂施工造成一定的困难。为此,针对本区块煤层特征进行分析研究,通过加入预前置酸,溶解了充填物,沟通了渗流通道,降低了施工压力。同时泡沫还具有很好的降滤失作用,可减少入井液量,返排快,伤害低,携砂浓度高,导流能力高,为以后煤层气的研究开发提供了有力的技术支持。 1压裂液优选与评价 1.1各压裂液体系对煤岩的伤害对比 压裂液性能的好坏直接关系到压裂施工的成败及 压后增产效果,压裂液性能不好,容易造成脱砂,形成“砂丘”,导致压裂施工失败。若进入煤层的压裂液与煤层的主体不配伍,对煤层造成伤害,势必减少煤层气的产量。因此,必须对煤层压裂液进行研究和评价,尤其 是评价各压裂液体系对煤层的伤害程度与其携砂性能,并最终优选出适合本区煤层压裂改造的压裂液体系。通过试验得出各压裂液体系对煤岩的伤害结果汇总表(见表1 )。表1各液体体系对煤岩的伤害结果对比表 由表1可知:胍胶压裂液和清洁压裂液对煤岩的伤害率很大,不能作为本区煤层压裂改造的压裂液,氮气泡沫压裂液和活性水压裂液对煤岩的伤害率较小,可选用其作为本区煤层压裂改造的压裂液,故从伤害率上看,可以选用氮气泡沫压裂液和活性水压裂液。1.2各压裂液体系携砂性能对比 活性水压裂液和氮气泡沫压裂液对石英砂的携砂性能在实验室进行了试验测定,具体情况(见表2 )。对不同粒径的支撑剂在28℃活性水压裂液和泡沫压裂液中的沉降实验表明,在活性水中的沉降速度远大于在泡沫压裂液中的沉降速度,且在泡沫压裂液中的沉降速度均小于0.5cm/s ,说明泡沫压裂液对支撑剂具有良好的悬浮作用和携带能力,可将支撑剂带至裂缝远端,提高了有效支撑缝长度,同时使裂缝铺砂剖 液体类型活性水压裂液氮气泡沫压裂液清洁压裂液胍胶压裂液对煤岩的伤害率 3.2% 8% 26% 81% 石油化工应用 PETROCHEMICAL INDUSTRY APPLICATION 第34卷第4期2015年4月 Vol.34No.4Apr.2015

煤层气高能气体压裂技术简介

煤层气高能气体压裂技术简介 目录 1.前言 (1) 2.煤层气高能气体压裂原理 (2) 3.煤层气多级脉冲加载压裂技术 .................................... 1..0 4.工艺设计研究. (11) 5. 现场试验...................................................... 1..2. 6.技术服务费(基本费用) ........................................ 1..3

/ 、八 1.前言 我国是世界上煤炭生产和消费大国 ,煤层气资源储量非常丰富。但煤气层为低渗透率、低压力、低含水饱和度,富含煤层气的煤田大都具有构造复杂、煤体破坏严重、软煤发育、高塑性和煤层渗透率极低等特点,开发难度较大。目前提高煤层渗透率主要有洞穴法和水力压裂法,主要包括:垂直井套管射孔完井、清水加砂压裂、活性水加砂压裂、洞穴完井等工艺;应用空气钻井,氮气泡沫压裂 ,清洁压裂液、胶加砂压裂 ,注入二氧化碳,以及欠平衡钻井、欠平衡水平钻井和多分支水平井钻井完井技术等技术[1-5],以提高煤层气井产量和采收率,积累了很多经验。但从煤层气改造看,至目前还缺少适合我国煤层气有效开发的较成熟的技术。针对煤气层的地质特点及开发现状,在分析了高能气体压裂技术研究的基础上,提出并开展了煤层气多级脉冲加载压裂开发技术的试验研究与应用。 高能气体压裂技术是利用固态、液态火药或推进剂在油层目的层快速燃烧产生的大量高温高压气体,对地层脉冲加载压裂,使地层产生并形成多裂缝体系,同时产生较强的脉冲震荡作用地层基质,综合改善和提高地层渗透导流能力,扩大有效采油(气)范围,以达到提高产量的目的。其特点是 :能在地层产生不受地应力约束的多裂缝体系,有利于沟通天然裂缝,扩大泄流面积,同时产生较强的脉冲震荡传播作用有利于改变地层岩性基质微错动变化,沟通基质通道,延伸地层深处,提高了地层渗透性,提高了油气井产量。目前主要应用油层改造,而且对地层无污染,有利于储层保护。 与常规水力加砂压裂相比,高能气体压裂能够减小对煤储层造成水敏性污染,而且裂缝的延伸方向不受地应力控制、可形成多裂缝体系,成本也低,不伤害煤层。因此,此项研究对探索适合我国煤层气有效开发的新技术具有重要的现实意义和应用前景。 高能气体压裂技术目前在油田上已经得到了较广泛的推广应用,产生了明显的经

氮气泡沫调驱技术研究与实践

doi:10 3969/j issn 1006 6896 2010 07 011 氮气泡沫调驱技术研究与实践 由艳群 大庆油田采油工程研究院 摘要:针对大庆油田老区注入水无效循 环问题,开展了氮气泡沫调驱技术研究。首 先进行氮气泡沫层内封堵机理研究,针对不 同渗透率储层,筛选了3套配方体系,讨论 了影响氮气泡沫质量的因素;并利用H QY -3型多功能物理模拟装置测定了氮气泡沫 调剖的各参数。非均质岩心实验表明,氮气 泡沫驱能提高油田采收率,在改善大庆油田 聚驱后油藏的开发效果方面效果明显。 关键词:泡沫;控制水窜;稳定性;阻 力因子 大庆油田老区已进入到特高含水期开采阶段, 注入水窜流严重。依靠化学深、浅调剖改善注水井 吸水剖面,提高采收率的效果逐年变差。为控制产 水,降低含水上升速度,提高油井产油量,开展了 注泡沫控制水窜技术研究[1-2]。泡沫不仅具有显著 的选择性封堵的特点,而且具有明显的提高驱油效 率的作用,能明显控制水窜。 1 泡沫剂体系及封堵机理 氮气泡沫驱替液主要由发泡剂、稳泡剂和水组 成,本文研制了3种氮气泡沫驱替液。从表1中可 以看出,氮气泡沫驱替液的表界面张力要比纯水低 得多,这主要是因为氮气泡沫驱替液含有大量的表 面活性剂分子[3]。根据Gibbs原理,系统总是趋向 较低表面能的状态,低表面张力可使泡沫系统能量 降低,有利于泡沫的稳定。 表1 泡沫驱替液的组成和性质 名称发泡剂 浓度/ % 稳泡剂 浓度/ m g L-1 发泡 体积/ mL 半衰期/ h 表面 张力/ m N m-1 界面 张力/ mN m-1 SW-10 33048028 625 30 27 SW-20 370047551 725 60 30 SW-30 5150047515925 70 32 泡沫剂注入地层后,在氮气驱替作用下形成泡沫,该泡沫体系能有效封堵高渗透层,迫使后续液体转向含油饱和度高的部位驱替原油,从而提高波及系数[4]。 泡沫剂是一种表面活性剂,能降低油水界面张力,提高驱油效率;在含油饱和度高的油层部位,泡沫剂易溶于油,不起泡,也不堵塞孔隙孔道,能提高洗油效率。 2 物理模拟实验 评价泡沫在岩心中的封堵能力实验装置采用一维单管模型,实验时单管模型水平置于恒温箱内,单管模型长30cm,直径2 5cm。 (1)最佳气液比优选。气液比对氮气泡沫的质量影响明显,从气液比对封堵性能影响实验表明, 3种泡沫剂体系的最佳气液比都在11~21之间(见表2)。 表2 不同体系的最佳气液比优选 气液比 阻力因子 WT-1W T-2W T-3 实验条件1266 672 2109 6 11100 0123 4154 8 32100 8128 6151 3 2199 6123 2146 4 3172 886 189 6 T=45! P=1 0M Pa K=1 05 m2 V=4m L/min (2)注入方式确定。氮气泡沫调剖的注入方式有两种,一是气和泡沫剂交替注入,二是气和泡沫剂同时注入。室内实验表明,气液混注效果明显好于气液交替注入,在气液交替注入中,交替的频率越高,交替段塞越小,阻力因子越大,泡沫封堵效果越好(见表3)。 表3 注入方式筛选实验 注入方式 基础 压差/ M Pa 工作 压差/ M Pa 阻力 因子 实验条件气、液混注0 066 42107 气、液交 替注入 0 5PV液1PV气0 064 7579 16 1PV液2PV气 0 064 2270 33 气液比21,加 1M Pa回压,注入速 度2mL/min (3)注入速度确定。从不同注入速度产生的阻力因子看,在低注入速度下,随注入速度的增加,泡沫产生的阻力因子增大(见表4)。在现场应用时,为扩大油层纵向波及体积,应在低于地层破裂压力下,尽量提高注入速度。 表4 氮气泡沫调剖注入速度对封堵效果的影响注入速度/ mL min-1 基础压差/ M Pa 工作压差/ M Pa 阻力 因子 实验条件 0 50 02251 54668 7 1 00 026 2 2787 3 1 50 0295 2 90898 6 3 00 0403 9498 5 4 00 0424 18299 6 浓度:0 5% T=45! P=1 0M Pa 气液比=11 K=1 02 m2 21 油气田地面工程第29卷第7期(2010 7)

压裂液国内外研究现状

1. 压裂液国内外发展概况 压裂技术是我国油气田开发必不可少的重要措施之一,它在增加产量和储量动用方面起到了重要的作用。压裂的目的主要是形成具有一定几何形状的高导流能力裂缝,改善油气通道,从而增加油气产量。而压裂液在压裂中起着非常重要的作用,压裂液体系的性能是关乎整个压裂施工作业成败及压裂效果的关键点之一,性能好的压裂液不但能够保障压裂施工的顺利进行,而且能够保护储层,获得理想的增产效果[1]。压裂液通常是由各种化学添加剂按一定比例配制成具有良好粘弹性的冻胶状物质,主要分为水基压裂液、油基压裂液、泡沫压裂液、清洁压裂液[2]。 1947年,水力压裂首次在现场成功应用的初期,主要使用以原油、成品油所配成的油基压裂液,原因是水基压裂液会对水敏地层造成损害。五十年代,出现了控制水敏地层损害的方法以后,水基压裂液才被应用在压裂作业中,但油基压裂液仍为主要的压裂液。到六、七十年代,增稠剂瓜胶及其衍生物的出现,使水基压裂液迅速发展并占据主要地位。到了八十年代,由于致密气藏开采和部分低压油井压后返排困难等问题,出现了泡沫压裂液。到九十年代及以后,为了解决常规压裂液在返排过程中由于破胶不彻底对油藏渗透率造成很大伤害的问题,又开发研制了粘弹性表面活性剂压裂液,即清洁压裂液。 1.1 水基压裂液 水基压裂液是以水作溶剂或分散介质,向其中加入稠化剂、添加剂配制而成的,主要采用三种水溶性聚合物作为稠化剂,即植物胶(瓜胶、田菁、香豆、魔芋等)、纤维素衍生物及合成聚合物。这几种高分子聚合物在水中溶胀成溶胶,交联后形成粘度极高的冻胶。具有低摩阻、稳定性好、携砂能力强、低损害、施工简单、货源广、廉价等特点。通常,水基压裂液按加入稠化剂种类大致可分为三种类型: 天然植物胶压裂液、纤维素压裂液以及合成聚合物压裂液。 1.1.1 天然植物胶压裂液 国内外最先研究和应用的是天然植物胶压裂液,因而这类压裂液使用最多,其中瓜胶及其改性产品为典型代表[3]。美国BJ公司开发了一种新型低聚合物浓度的压裂液体系,稠化剂是一种高屈服应力的羧甲基瓜胶,一般使用浓度是0.15-0.30%,可适用底层温度为93-121℃。该压裂液体系具有较高的粘度,良好的携砂能力。目前,国外已经进行了350口井以上的压裂施工,获得了较理想的缝长和较彻底的清洁返排,增产效果好于使用HPG交联冻胶的结果。田菁胶是国内植物胶中大分子结构与瓜胶十分相似的一种,最早于20世纪70年代末由胜利油田开发应用。继田菁胶之后而出现的香豆胶最早由石油勘探开发科学研究院研制成功。用无机硼酸盐交联的香豆胶压裂液常用在30-60℃的地层,用有机硼交联的香豆胶可用于60-120℃的地层。90年代中期开发了一种GCL锆硼复合交联剂使耐受温度达到140℃[4]。从20世纪90年代以来,香豆胶已在大庆、吉林、玉门、塔里木、吐哈等各大油田得到了推广使用[5]。20世纪80年代,四川、华北油田研究并应用了魔芋胶压裂液。 1.1.2 纤维素压裂液 纤维素衍生物主要是纤维素醚,用于石油行业的是高取代度的纤维素醚,它以每年3%-5%的速度增长。其中CMC、HEC和HPMC应用最多,在我国,这三类衍生物的用量曾占10%左右[6],CMC、HEC冻胶的热稳定性及滤失性能好,可用于140℃下井下施工,其主要问题是摩阻偏高,尚有待进一步改进。由于纤维素衍生物对盐敏感、热稳定性差,增稠能力不大,不如植物胶应用广泛。2010年李永明等[7]配制出了含纤维的超低浓度稠化剂压裂液,其稠化剂浓度为0.2%、BF-2纤维加量为0.7%,该压裂液携砂性能好,残渣量较少,储层损害小,现场应用取得成功,川孝270井用该压裂液对储层改造后获得天然气产量为

CO2泡沫压裂液的研究及现场应用

第23卷第1期2006年1月 钻井液与完井液 DRILLlNGFLUID&COMPLETIONFLUID V01.23NO.1 Jan.2006 文章编号:100l一5620(2006)01005卜03 CO:泡沫压裂液的研究及现场应用 李阳1翁定为1于永波2尹喜永2 (1.中石油勘探开发研究院分院,河北廊坊;2.大庆油田有限责任公司采油九厂,黑龙江大庆) 摘要在水力压裂过程ee,由于向地层中注人大量的压裂液,对地层造成了一定程度的伤害,特别是低渗透油赫压裂液对地层的伤害更加严重,从而影响了增油效果。由于CO:泡沫压裂液具有滤失量低,返排能力强、-5地层流体配伍性髓好等优点,采甩c魄泡沫压裂技术,可减小压裂液对地层的伤害。经过对COz泡沫压裂液的各种添加荆进行优选与评价,确定了适合低渗油藏使用的CO:泡沫压裂液体系,并对其综旮性能进行了评价。结果表明,CO:泡沫压裂液体系具有泡沫质量高、稳定性好、半衰期长、粘弹性大的特点,并有良好的耐温耐剪切性能和流变性能,破腋彻底,界面张力低,对储层伤害小,可以满足低渗、低压油气藏压裂施工的需要。C嘎泡沫压裂液在吉林油田和大庆亍由田的低渗透)自藏中进行应用,取得了良好的效果。 关键词增产措施CO:泡沫压裂防止地层损害流变性能耐温耐剪切低渗透油藏 中图分类号:TE357.12文献标识码:A 水力压裂是低渗透油藏增产的有效手段,在油田开发中起到了重要作用。但是在水力压裂过程中,由于向地层中注人大量的压裂液,对地层造成一定程度的伤害,从而影响了增油效果。为探索油层改造新途径,从油层保护人手,采用了COz泡沫压裂技术。CO:泡沫压裂液由于具有滤失量低、返排能力强、与地层流体配伍性良好等优点,减小了压裂液对地层的伤害,比普通压裂液更适合于低渗低压油井、水敏性地层的压裂改造。而COt泡沫压裂技术在低渗透油田油层改造中应用效果的好坏,起关键作用的是CO。泡沫压裂液。为此,开展了COz泡沫压裂液优化研究。 1C02泡沫压裂液添加剂优选 COz泡沫压裂液由CO。和凝胶压裂液组成,并加有表面活性剂和其他添加剂以形成乳状液,靠一定的粘度和稳定的泡沫来达到携砂、造缝的目的。CO:泡沫压裂液具有滤失量低、耐温能力强、破胶快、防膨好、返排率高、伤害低等特点,非常适合作低渗、低压储层压裂改造的工作液。其性能优劣与各种添加剂的优选有关,对起泡剂、稳泡剂、交联剂、破乳助排剂等添加剂进行优选评价并从中筛选出起泡性能较好、半衰期长、水不溶物含量低、增粘效果好的添加剂,是c0。泡沫压裂液研究的重点。 lI1起泡剂优选 起泡剂是泡沫压裂液的关键添加剂之一,起泡剂性能的好坏直接影响着泡沫压裂液起泡能力和稳泡能力,具有良好起泡性能的表面活性剂必须具备两个条件,即易于产生泡沫和产生的泡沫有较好的稳定性。通过调研,选用r3种起泡剂进行起泡效率和泡沫稳定性对比试验,结果见表1。由表1可看出,FI。48起泡剂性能最好,B18和YPF一1起泡剂性能柑当。FL48在常温下为浅黄色液体,pH值为5~6,密度为1.00~1.05g/cm3,0.2%水溶液表面张力为2j.08mN/m,界面张力为0.71mN/m。1.2稳泡剂的优选 在施工过程中保持泡沫的稳定极为重要,为此 表1不同起泡剂起泡性能和泡沫稳定性对比 第一作者简介:李船,工程师,1995年毕业于北京化工大学,获应用化学学士学位,现在攻读油气藏开发工程硕士学位,主要从事压裂工艺技术研究,曾获石油勘探院标准一等装、石油勘探院科技进步一等奖。地址:河北省廊坊市444信箱压裂中心;邮政编码065007;电话(OLO)69213668。  万方数据 万方数据

煤层气压裂工艺技术及实施要点分析

煤层气压裂工艺技术及实施要点分析 发表时间:2019-07-17T09:24:30.543Z 来源:《建筑学研究前沿》2019年7期作者:康锴 [导读] 我国地大物博,矿产资源丰富,煤层气资源总储量占居首位,可以与天然气的总储量相媲美。 新疆维吾尔自治区煤田地质局一六一煤田地质勘探队 摘要:近几年,我国经济建设发展迅速,煤矿企业为我国发展做出了很大贡献。我国煤层具有松软、压力低、表面积大和割理发育的特征,导致煤层气开采普遍存在经济效益低、单井产量低的问题。为了适应煤层气特殊的产出条件,本文探讨煤层气压裂工艺技术与实施要点,以期为我国煤层气开采提供参考意见。 关键词:煤层气;压裂工艺技术;实施要点 引言 我国地大物博,矿产资源丰富,煤层气资源总储量占居首位,可以与天然气的总储量相媲美。因为煤层气本身属于清洁能源发展行列,本身带有极强的清洁性能和使用的高效性,对于此资源进行科学合理的开发应用,能够有效缓解现阶段我国能源紧缺的尴尬局面。进行开采过程中,需要对煤层的低饱和、低渗透和低压的发展特点充分了解,可以通过对水力压裂技术的改造升级,完成增产增效工作,保证煤层气井开采效率和高质量发展。在此过程中,需要注意的问题是,因为不同煤层在发展过程中,都受到不同介质的作用,其内部构成和物质特性方面都存在很大差异性,所以,科学掌握煤层气压裂工艺技术有着重要的现实意义。 1煤层气探采历史 1733年美国首次实现地下管道煤层气抽放,1920年第一次完成3口地面煤层气抽采井。1953年在圣胡安完成高产井,日产1.2万m3。我国起步较晚,1957年阳泉四矿在井下成功实现,临近煤层瓦斯抽采。1992年正式开始研究实验。1996年中联煤层气有限责任公司的成立,标志着我国煤层气开发研究的新纪元。 2矿岩压裂的主要影响因素 2.1天然裂缝割理 在煤层开采发展过程中,主要的裂缝系统包括天然裂缝和割理,这两种现象会严重影响到压裂裂缝的发展形态,同时还会对周围水文地质的发展起到一定的影响作用。通常它们的主要性能会对水力裂缝的形态进行延伸,造成冲击作用,也就是说,通过这两个作用力的共同作用,煤层气井在发展和延伸的时候,很容易发生突然转向和次生裂缝。 2.2矿岩力学性质 对矿岩力学性质进行研究的过程中,需要重点做好三个方面的工作:首先,做好矿岩硬度和密实度的勘察工作。第二,对整体强度和弹性力度问题进行研究。第三,深入探讨研究断裂相关内容。对有显著特点的矿样进行综合检测分析,通过观察和对比,得到的结论是,矿岩在受到某些压力和应力的共同作用下,其自身的特征也会发生改变,呈现出弹性模量低、脆性大、易破碎和易受压缩等显著特点,所以,需要对矿岩力学性质进行综合研究。 2.3地应力 在矿井气层发生水力起裂现象的过程中,地应力的变化情况会对裂缝整体位置和形态产生主要影响作用。通过科学调查结果显示,起裂压力大小情况与地应力差之间存在负相关的变化发展联系。换言之,破裂压力的影响因素主要为天然裂缝与最大水平主应力间的夹角,在高水平应力差作用力的影响下,会发生层次较规律的主缝问题。在低水平应力差作用力的影响下,裂缝问题就会向周边进行延伸和扩展。 3煤层气压裂工艺技术 3.1大排量压裂技术 在煤层储层中,有着大量的天然割理系统,加之在压裂施工中使用了活性水压裂液,因此容易造成在压裂过程中滤失量过大及效率低的情况。而为了控制液体滤失以保障效率,应当要根据活性水压裂液的特点,选择大排量注入压裂液的施工方式。 3.2低砂比压裂技术 煤层气压裂的砂比是由多种因素共同决定的,包括煤层本身的特性、压裂液及其排量、支撑剂密度等等。煤层具有性脆、易破碎以及易滤失等特性,而这些都容易引起压裂过程中煤层出现砂堵;再者压裂液粘度低,也是造成砂堵的一项常见因素。而若应用低砂比压裂技术,则能够十分有效地预防砂堵现象。 3.3脉冲加砂技术 若想实现煤层气开采的增产,其主要途径之一就是尽量增加缝长和沟通天然割理系统。在深层煤层气的压裂施工过程中,支撑剂的泵入可以选择采用将前置液与携砂液交替注入的方式。这种方法既能够更多地增加缝长和沟通天然割理系统,同时又能够防止砂堵,提高压裂效率。 3.4复合支撑技术 该深层煤层气储层的闭合压力<20MPa,经分析和评价后,认为其在支撑剂的选择上以石英砂为宜。由于煤层气储层具有易滤失的特点,所以在加砂前,首先要处理天然割理,即加入适量的细粒径石英砂,从而降低其滤失;其次在加砂过程中,要加入适量的中粒径石英砂,从而延伸裂缝;而在加砂后期,则要加入粗粒径石英砂,以使煤层中的气流畅通。 4煤层气压裂工艺技术及实施要点分析 4.1优选煤层气压裂液体系 在煤层气压裂中,压裂液既需要携砂、造缝,又会因液体浸入储层而伤害煤层,所以优选压裂液体系至关重要,即要求煤层气压裂液满足压裂工艺的技术要求、与储层配伍性且尽量不伤害煤层。煤层气井从客观实际出发优选压裂液体系,具体要点包括:一是少用添加剂,如有机类添加剂,以免伤害煤储层;二是研发与煤层气压裂条件相适宜的压裂液材料,以提高其与煤储层的配伍性;三是在满足压裂工艺与施工要求的前提下,提高压裂液的经济性,从而适应市场经济的发展要求。据此,山西沁水盆地煤层气井决定选用清水压裂。

相关主题
文本预览
相关文档 最新文档