当前位置:文档之家› 求平均的几种方法说明

求平均的几种方法说明

求平均的几种方法说明
求平均的几种方法说明

当给定一组数据或观测值后,这些数值的平均数的种类很多,常见的有算术平均数、几何平均数、调和平均数、加权算术平均数、移动平均数与指数平滑平均数等。

由于算术平均数、几何平均数、调和平均数、加权算术平均数的计算方法相对其余几种来说,比较简单,故常称这几种平均数的求法为“简单平均法”。

1.简单算术平均数

简单算术平均数主要用于未分组的原始数据。设一组数据为1X ,2X ,...,n X ,简单的算术平均数的计算公式为:()12M X X ...X /n n =+++

2.几何平均数

几何平均数是指n 个观察值连乘积的n 次方根。几何平均数多用于计算平均比率和平均速度。如:平均利率、平均发展速度、平均合格率等。

几何平均数的计算

1、简单几何平均法

G = 2、加权几何平均法

n i G ∑=

几何平均数的特点

1、几何平均数受极端值的影响较算术平均数小。

2、如果变量值有负值,计算出的几何平均数就会成为负数或虚数。

3、它仅适用于具有等比或近似等比关系的数据。

4、几何平均数的对数是各变量值对数的算术平均数。

计算几何平均数应注意的问题

1、变量数列中任何一个变量值不能为0,一个为0,则几何平均数为0。

2、用环比指数计算的几何平均易受最初水平和最末水平的影响。

3、几何平均法主要用于动态平均数的计算。

几何平均数的计算举例

假定某地储蓄年利率(按复利计算):5%持续1.5年,3%持续2.5年,2.2%持续1年。请问此5年内该地平均储蓄年利率。该地平均储蓄年利率:

3.调和平均数

调和平均数又称倒数平均数,是变量倒数的算术平均数的倒数。

调和平均数的计算公式 (调和平均数是给定数据的倒数之算术平均数的倒数)

1

n H x

x n ==∑∑ (简单平均式) 111f H f f

x x f

==∑∑∑∑ (加权平均式) 调和平均数的特点

1、调和平均数易受极端值的影响,且受极小值的影响比受极大值的影响更大。

2、只要有一个变量值为零,就不能计算调和平均数。

3、当组距数列有开口组时,其组中值即使按相邻组距计算了,假定性也很大,这时,调和平均数的代表性就很不可靠。

4、调和平均数应用的范围较小。

4.加权算术平均数

加权算术平均数主要用于处理经分组整理的数据。设原始数据为被分成K 组,各组的组中的值为1X ,2X ,...,k X ,各组的频数分别为1f ,2f ,...,k f ,加权算术平均数的计算公式为: M /i i i

X f f =∑∑ 特殊说明

1、加权算术平均数同时受到两个因素的影响,一个是各组数值的大小,另一个是各组分布频数的多少。在数值不变的情况下,那一组的频数多,该组的数值对平均数的作用就大,反之,就小。 频数在加权算术平均数中起着权衡轻重的作用,这也是加权算术平均数“加权”一词的来历。

2、算术平均数易受极端值的影响。比如有下列资料:5、7、5、4、6、7、8、5、4、7、8、6、20,全部资料的平均值是7.1,实际上大部分数据(有10个)不超过7,如果去掉20,则剩下的12个数的平均数为6。 由此可见,极端值得出现,会使平均数的真实性受到干扰。 特点

①算术平均数是一个良好的集中量数,具有反应灵敏、确定严密、简明易解、计算简单、适合进一步演算和较小受抽样变化的影响等优点。

②算术平均数易受极端数据的影响,这是因为平均数反应灵敏,每个数据的或大或小的变化都会影响到最终结果。

5.移动平均法(滑动平均法,滑动平均模型法)

移动平均法是用一组最近的实际数据值来预测未来一期或几期内公司产品的需求量、公司产能等的一种常用方法。移动平均法适用于即期预测。当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动,是非常有用的。

基本思想:根据时间序列资料,逐项推移,依次计算包含一定项数的序时平均值,以反映长期趋势的方法。因此,当时间序列的数值由于受周期变动和随机波动的影响,

起伏较大,不易显示出事件的发展趋势时,适用移动平均法可以消除这些因素的影响,显示出事件的发展方向和趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。

移动平均法根据预测时使用的各元素的权重不同,可以分为:简单移动平均和加权移动平均。还分为一次移动平均法和二次移动平均法两种。

一、简单移动平均法

简单移动平均的各元素的权重都相等。简单的移动平均的计算公式如下: ()t 1t 2t 3t F A A A A /n

t n ----=+++?+ 式中,F t --对下一期的预测值;

n--移动平均的时期个数;

t 1A ---前期实际值;

t 2A - , t 3A -和t A n -分别表示前两期、前三期直至前n 期的实际值。

二、加权移动平均法

加权移动平均给固定跨越期限内的每个变量值以相等的权重。其原理是:历史各期产品需求的数据信息对预测未来期内的需求量的作用是不一样的。除了以n 为周期的周期性变化外,远离目标期的变量值的影响力相对较低,故应给予较低的权重。 加权移动平均法的计算公式如下:

1t 12t 23t 3t n F w A w A w A w A t n ----=+++?+式中,

1w --第t-1期实际销售额的权重;

2w --第t-2期实际销售额的权重;

w n --第t-n 期实际销售额的权重;

n--预测的时期数:12w w w 1n ++?+=

在运用加权平均法时,权重的选择是一个应该注意的问题。经验法和试算法是选择权重的最简单的方法。一般而言,最近期的数据最能预示未来的情况,因而权重应大些。例如,根据前一个月的利润和生产能力比起根据前几个月能更好的估测下个月的利润和生产能力。但是,如果数据时季节性的,则权重也应是季节性的。

移动平均法的优缺点

使用移动平均法进行预测能平滑掉需求的突然波动对预测结果的影响。但移动平均法运用时也存在着如下问题:

1、 加大移动平均法的期数(即加大n 值)会使平滑波动效果更好,但会使预测值对数据实际变动更不敏感;

2、 移动平均值并不能总是很好地反映出趋势。由于是平均值,预测值总是停留在过去的水平上而无法预计会导致将来更高或更低的波动;

3、 移动平均法要由大量的过去数据的记录。

4、它通过引进愈来愈期的新数据,不断修改平均值,以之作为预测值。

移动平均法的基本原理,是通过移动平均消除时间序列中的不规则变动和其他变动,从而揭示出时间序列的长期趋势。

移动平均法的特点:

1. 移动平均对原序列有修匀或平滑的作用,使得原序列的上下波动被削弱了,而且平均的时距项数N 越大,对数列的修匀作用越强。

2. 移动平均时距项数N 为奇数时,只需一次移动平均,其移动平均值作为移动平均项数的中间一期的趋势代表值;而当移动平均项数N 为偶数时,移动平均值代表的是这偶数项的中间位置的水平,无法对正某一时期,则需要在进行一次相临两项平均值的移动平均,这才能使平均值对正某一时期,这称为移正平均,也成为中心化的移动平均数。

3. 当序列包含季节变动时,移动平均时距项数N 应与季节变动长度一致,才能消除其季节变动;若序列包含周期变动时,平均时距项数N 应和周期长度基本一致,才能较好的消除周期波动。

4. 移动平均的项数不宜过大。

6.指数平滑法

指数平滑法是生产预测中常用的一种方法。也用于中短期经济发展趋势预测,所有预测方法中,指数平滑是用得最多的一种。简单的全期平均法是对时间数列的过去数据一个不漏地全部加以同等利用;移动平均法则不考虑较远期的数据,并在加权移动平均法中给予近期资料更大的权重;而指数平滑法则兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零的权数。

也就是说指数平滑法是在移动平均法基础上发展起来的一种时间序列分析预测法,它是通过计算指数平滑值,配合一定的时间序列预测模型对现象的未来进行预测。其原理是任一期的指数平滑值都是本期实际观察值与前一期指数平滑值的加权平均。

指数平滑法的基本公式

指数平滑法的基本公式是:1(1)t t t S a y a S -=?+- 式中,

S t --时间t 的平滑值;

y t --时间t 的实际值;

S t ? 1--时间t-1的平滑值;

a--平滑常数,其取值范围为[0,1];

由该公式可知:

1.S t 是y t 和 S t ? 1的加权算数平均数,随着a 取值的大小变化,决定y t 和 S t ? 1对S t 的影响程度,当a 取1时,S t = y t ;当a 取0时,S t = S t ? 1。

2.S t 具有逐期追溯性质,可探源至S t ? t + 1为止,包括全部数据。其过程中,平滑常数以指数形式递减,故称之为指数平滑法。指数平滑常数取值至关重要。平滑常数决定了平滑水平以及对预测值与实际结果之间差异的响应速度。平滑常数a 越接近于1,远期实际值对本期平滑值影响程度的下降越迅速;平滑常数a 越接近于 0,远期实际值对本期平滑值影响程度的下降越缓慢。由此,当时间数列相对平稳时,可取较大的a ;当时间数列波动较大时,应取较小的a ,以不忽略远期实际值的影响。生产预测中,平滑常数的值取决于产品本身和

管理者对良好响应率内涵的理解。

3.尽管S t 包含有全期数据的影响,但实际计算时,仅需要两个数值,即y t 和 S t ? 1,再加上一个常数a ,这就使指数滑动平均具逐期递推性质,从而给预测带来了极大的方便。

4.根据公式110(1)S a y a S =?+-,当欲用指数平滑法时才开始收集数据,则不存在y 0。无从产生S 0,自然无法据指数平滑公式求出S 1,指数平滑法定义S 1为初始值。初始值的确定也是指数平滑过程的一个重要条件。

如果能够找到y1以前的历史资料,那么,初始值S1的确定是不成问题的。数据较少时可用全期平均、移动平均法;数据较多时,可用最小二乘法。但不能使用指数平滑法本身确定初始值,因为数据必会枯竭。

如果仅有从y1开始的数据,那么确定初始值的方法有:

1)取S1等于y1;

2)待积累若干数据后,取S1等于前面若干数据的简单算术平均数,如:S1=(y1+ y2+y3)/3等等。

指数平滑的预测公式

据平滑次数不同,指数平滑法分为:一次指数平滑法、二次指数平滑法和三次指数平滑法等。

(一) 一次指数平滑预测

当时间数列无明显的趋势变化,可用一次指数平滑预测。其预测公式为:''1(1)t t t y ay a y +=+- 式中,

'1t y + --t+1期的预测值,即本期(t 期)的平滑值St ;

t y --t 期的实际值;

't y --t 期的预测值,即上期的平滑值St-1 。

该公式又可以写作:'''1()t t t t y y a y y +=+-。可见,下期预测值又是本期预测值与以a 为折扣的本期实际值与预测值误差之和。

(二) 二次指数平滑预测

二次指数平滑是对一次指数平滑的再平滑。它适用于具线性趋势的时间数列。其预测公式为: '''1(2)(1)2()111t m t t t t t t am am y y y y y m y y a a a

+=+-+=-+---- 式中,'11(1)t t t y ay a y --=+-

显然,二次指数平滑是一直线方程,其截距为:(2yt'-yt ),斜率为:(yt'-yt ) a/(1-a),自变量为预测天数。

(三) 三次指数平滑预测

三次指数平滑预测是二次平滑基础上的再平滑。其预测公式是: 22''''22(33)[(65)(108)(43)](2)2(1)2(1)t m t t t t t t t t t am a m y y y y a y a y a y y y y a a +=-++---+-?+-+?-- 式中,'11(1)t t t y ay a y --=+-

它们的基本思想都是:预测值是以前观测值的加权和,且对不同的数据给予不同的权,新数据给较大的权,旧数据给较小的权。

指数平滑法的趋势调整

一段时间内收集到的数据所呈现的上升或下降趋势将导致指数预测滞后于实际需求。通过趋势调整,添加趋势修正值,可以在一定程度上改进指数平滑预测结果。调整后的指数平滑法的公式为:

包含趋势预测(YITt)=新预测(t Y )+趋势校正(t T )

进行趋势调整的指数平滑预测有三个步骤:

1、 利用前面介绍的方法计算第t 期的简单指数平滑预测(t Y );

2、 计算趋势。其公式为: ()()11T 1b T b Y Y t t t t --=-+-其中,

t T =第t 期经过平滑的趋势;

t 1T -=第t 期上期经过平滑的趋势;

b=选择的趋势平滑系数;

t Y =对第t 期简单指数平滑预测;

Yt-1=对第t 期上期简单指数平滑预测。

3、计算趋势调整后的指数平滑预测值(YITt )。计算公式为:YITt=t Y +t T 。

指数平滑法是较为有效的销售预算的统计方法。利用Excel 可以简便易行地进行预测,节约了预测时间并提高了预测的准确率,预测者可根据数据数列散点图的历史趋势等选择一次或多次指数平滑。但指数平滑法的应用也会受到一定限制。如采用指数平滑法需要有比较完备的历史资料;当企业销售量受季节影响较大时,时间序列分解法比指数平滑法应用效果更好等。因此,销售预测人员要根据企业的具体情况和预测的对象。把指数平滑法和定性预测方法正确地结合起来运用。才能全面认识和把握预测对象的未来发展趋势,使的预测结果更加接近客观现实,从而做出实事求是的预测结论。

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法 求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有: 1直接法: 若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。 解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐 标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0), B (a,0)。 设动点C为(x, y), ??? | AC |2 |BC |2 |AB|2, a)2y2]2h(x a)2y2]24a2, 即x2 由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点, 故所求方程为x2y2a2( x a )。 2?代入法(或利用相关点法): 即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。 例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。 解:设 A (a,0) , B (0, b), M (x, y), 一方面,. 另一方面, 36 , M分AB的比为 1 , 2

评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。 3.几何法: 求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。 求动点P 的轨迹方程。 解:设P (x, y),由题 APO BPO ,由三角形角平分线定理有 L P A | ^A 0-1 |PB| |BO| ..(x 6)2 y 2 3 3 , (x 2)2 y 2 整理得x 2 y 2 6x 0,当x 0时,y 0, P 和O 重合,无 意义,??? x 0, 又易知P 落在x 轴上时,除线段AB 以外的任何点均有 APO BPO 00 , ? y 0 ( x 6或x 2)也满足要求。 综上,轨迹方程为 x 2 y 2 6x 0 ( x 0)或y 0 (x 6或x 2 )。 评注:本例利用平面几何的知识(三角形的角平分线定理进行解题) ,方便了求轨迹的方程。 4.参数法: 有时很难直接找出动点的横、纵坐标之间关系。如果借助中间量(参数) 联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。 0 -b _2_ 1 - -b 3 a x 2 b 3y ②代入①得: 3 2 2 (評(3y) 2 36,即一 16 例3 :如图,已知两定点 A ( 6,0 ), B ( 2,0 ), O 为原点,动点 P 与线段AO 、BO 所张的角相等, ,使(x, y)之间的关系建立起

轨迹方程的求法及典型例题(含答案)

" 轨迹方程的求法 一、知识复习 轨迹方程的求法常见的有(1)直接法;(2)定义法;(3)待定系数法(4)参数法(5)交轨法;(6)相关点法 注意:求轨迹方程时注意去杂点,找漏点. 一、知识复习 例1:点P(-3,0)是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程。 { ]

例2、如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠ APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. $ 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) ) 又|AR |=|PR |= 2 2)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,2 41+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程. |

例3、如图, 直线L 1和L 2相交于点M, L 1 L 2, 点N L 1. 以A, B 为端点的曲线段C 上的 任一点到L 2的距离与到点N 的距离相等. 若 AMN 为锐角三角形, |AM|= 17 , |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程. 、 解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点。 依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点。 @ 设曲线段C 的方程为)0,(),0(22 >≤≤>=y x x x p px y B A , 其中x A,x B 分别为A ,B 的横坐标,P=|MN|。 ) 2(92)2() 1(172)2(3||,17||)0,2 (),0,2(22=+-=++==- A A A A px p x px p x AN AM p N p M 得 由所以 由①,②两式联立解得 p x A 4= 。再将其代入①式并由p>0解得??????====2214A A x p x p 或 因为△AMN 是锐角三角形,所以A x p >2,故舍去???==2 2A x p ∴p=4,x A =1

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

关于加强我市专业技术人员继续教育学时管理的通知

关于加强我市专业技术人员继续教育学时管理的通知 宁人社〔2014〕55号 2014-04-17 各区人力资源和社会保障局、有关单位人事(教育)处、市继续教育基地: 加强专业技术人员继续教育是市委、市政府构建终身教育体系和学习型城市的重要内涵和工作目标,也是专业技术人员更新知识结构、提升自身能力的重要途径。根据《江苏省专业技术人员继续教育条例》的规定,结合我市实际,现就加强我市专业技术人员继续教育学时管理的有关事项通知如下: 一、学时管理对象 在企业、事业单位和其他社会组织专业技术岗位上工作的专业技术人员。 二、学时要求及计算方式 专业技术人员继续教育分两种类型:公共课和专业课。

(一)学时计算原则。 1、继续教育学时在职称周期内可跨年度累计计算; 2、公共课学时设最低要求; 3、继续教育学时实行周期审验。原职称系列有周期审验要求的从其规定,原职称系列无周期审验要求的从2014年起按照年度要求进行审验; 4、继续教育审验周期为专业技术人员从事现专业技术职务资格(职称)工作的年限(高、中级职称超过5年的以最近5年计算,初级职称超过4年的以最近4年计算); 5、以考代评的专业技术人员在聘用时除需通过职称计算机考试外,还需满足继续教育学时要求。 (二)学时要求。 1、专业技术人员平均每年接受继续教育的学时要求为:高、中级专业技术人员不少于72学时,初级专业技术人员不少于40学时(每天按照8学时计算)。文中表述的高、中、初级专业技术人员均为现有职称。 2、一个职称周期的继续教育学时为:高、中级专业技术人员72学时×5年(职称周期)=360学时,初级专业技术人员40学时×4

求轨迹方程的常用方法(例题及变式)

求轨迹方程的常用方法: 题型一 直接法 此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。 例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。 解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈ ∴12 0322230-=--?--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2 3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。 变式1 已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。 (1) 求动点M 的轨迹C 的方程; (2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。若A 是PB 的中点,求直线m 的斜 率。 题型二 定义法 圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。 例2 动圆M 过定点)0,4(-P ,且与圆08:2 2=-+x y x C 相切,求动圆圆心M 的轨迹方程。 解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。 ∴2=a ,4=c 故动圆圆心M 的轨迹方程为112 42 2=-y x 变式2 在ABC △中,24BC AC AB =,,上的两条中线长度之和为39, 求ABC △的重心的轨迹方程.

参数法求轨迹方程

参数法求轨迹方程 一、教学目标 (一)知识教学点 深入理解曲线的参数方程与普通方程的区别与联系,进一步掌握参数方程与普通方程的互化方法. (二)能力训练点 掌握运用参数求轨迹方程的方法,了解设参的基本原则和选参的一般依据,能顺利消参并讨论轨迹的纯粹性和完备性,培养多向思维的流畅性. (三)学科渗透点 通过学习选参方法,学会透过现象挖掘本质的哲学思想方法. 二、教材分析 1.重点:运用参数求轨迹方程的方法. 2.难点:选择参数应遵循的一般依据,消参的技术与轨迹的纯粹性完备性讨论. 3.疑点:设参的基本原则. 三、活动设计 1.活动:问答、思考. 2.教具:投影仪. 四、教学过程 (一)回忆、点题和明确任务 求动点的轨迹方程,如果动点坐标x、y之间的关系比较明显,那么可以用直接法,也就是建系、列式、化简.如果动点坐标x、y之间的关系比较隐蔽,但动点在运动过程中符合某种二次曲线的定义,那么可以用定义法,也就是定型(曲线类型)、定位(曲线位置)、定量(曲线几何量),然后直接运用二次曲线的方程写出动点的轨迹方程.如果动点坐标x、y之间的关系很隐蔽并且很难判断动点符合某种二次曲线的定义,那么就可以引进一些参数,用这些参数把x、y之间的那种隐蔽关系间接地连起来,然后消掉参数,这就是所谓的参数法求轨迹方程.

同学们常用的交轨法、换标法,实际上也是消去一些元,留下动点坐标x、y的方法,都可以叫参数法.在实践中大家已经知道,参数法求轨迹方程的步骤是:首先根据运动系统的运动规律设参,然后运用这些参数列式,再从这些式子中消参,最后讨论轨迹的纯粹性和完备性,我们称之为议参.其中,最关键的一步是设参,参设得不同,整个思维和运算过程不同,参设得不好,运算量增大,甚至根本就算不出来;最畏难一步是消参,经常遇到参消不了而越消越复杂的情况;最易错的一步就是轨迹的纯粹性完备性讨论.如何做到设参合理、列式简易、消参顺利、议参严密,大家可以从下面的例子中来思考和总结. (二)讲例1,设参基本原则 请看屏幕(投影,读题). 例1 矩形ABCD中,AB=2a,BC=b,a>b,E、F分别是AB、CD的中点,平行于EC的直线l分别交线段EF、FC于M、N两点,求直线AM与BN交点P的轨迹(图3-9). 首先需要建立坐标系,请考虑,建立直角坐标系一般应选择什么位置? 学生1答: 选择边界、中心等特殊位置. 那么,这一题如何建立坐标系? 解:以E为原点,EB为x轴建立直角坐标系.各点坐标如图(投影换片,加上坐标系与相关点坐标). 运动系统中,l主动,M、N从动,P随之运动,请思考,在这一运动系统中有几种设参方法? 学生2答: (1)l的纵截距c, (2)|OM|=t,

考点数列的极限函数的极限与连续性

温馨提示: 此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,点击右上角的关闭按钮可返回目录。 考点42 数列的极限、函数的极限与连续性 一、选择题 1、(2011·重庆高考理科·T3)已知x 2ax 1lim 2x 13x →∞-??+= ?-? ?,则=a ( ) (A) -6 (B) 2 (C) 3 (D)6 【思路点拨】对小括号内的表达式进行通分化简利用极限的相关性质求出a 的值. 【精讲精析】选D. x x 2x 16x (ax 1)(x 1)lim lim x 13x 3x(x 1)→∞→∞??-+--??+= ???--???? 22x ax (5a)x 1a lim 2,3x 3x 3→∞??+-+===??-?? 所以.6=a 2、(2011·四川高考理科·T11)已知定义在[0,+∞ )上的函数()f x 满足()f x =3(2)f x +,当[ 0,2)x ∈时,()f x =2 2x x -+,设()f x 在[22,2)n n -上的最大值为*([0,)n a n N ∈且{}n a 的前n 项和为S n ,则lim n n S →∞ =( ). (A )3 (B )52 (C) 2 (D )32 【思路点拨】 首先需要确定数列{}n a .先由1n =求出1a ,当2n =时,由()3(2)f x f x =+可推得 1()(2)3 f x f x = -,先求出(2)f x -的最大值,在求()f x 的最大值,即求得2a , 3,4,...n =依次求 解. 【精讲精析】选D , [)[)[)22122,20,2,0,2()2(1)1n n n x f x x x x =-=∈=-+=--+时,时,, ()=(1)1f x f =最大值,1 1.a ∴= [)[)[)[)222,22,4,2,420,2n n n x x =-=∈-∈时,若,则, 2(2)22(2)f x x x -=--+-()

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

浙江省专业技术人员继续教育学时管理规定精选文档

浙江省专业技术人员继续教育学时管理规定精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

浙江省专业技术人员继续教育学时 管理办法(试行) 第一章??总则 第一条??为落实专业技术人员继续教育学时管理制度,推进专业技术人员继续教育工作(以下简称“继续教育”),构建终身教育体系,提升队伍能力水平,根据《专业技术人员继续教育规定》(人社部令第25号)和《浙江省专业技术人员继续教育规定》(省政府令第157号),制定本办法。 第二条??继续教育内容包括专业科目、行业公需科目和一般公需科目。 本办法规定的继续教育学时是专业技术人员接受继续教育的基本要求,各地各部门可结合实际拓展提升。 第三条??推行“评价+培养”的专业技术人才队伍建设模式,各行业主管部门应完善本行业专业技术职务任职资格评价机制,将继续教育学时要求作为申报必备条件,继续教育情况纳入评审指标体系。

第四条??鼓励用人单位和行业主管部门,将继续教育情况与专业技术人员岗位聘用、聘期考核、执业注册、业绩考核等进行衔接。 第二章??职责分工 第五条??全省继续教育工作按照“分级负责、分类实施”的总体要求推进。 第六条??各级人力社保部门综合管理本地区继续教育工作。具体负责推进本地区一般公需科目继续教育,以及一般公需科目学时登记服务管理工作;协同同级行业主管部门推进行业公需科目继续教育。 第七条??各级行业主管部门具体负责推进本地区专业科目和行业公需科目继续教育,以及专业科目和行业公需科目学时登记服务管理工作。 省级行业主管部门应在继续教育内容、学时数量和登记标准等方面提出具体要求,并对各地进行指导服务。 第三章??学时要求 第八条??专业技术人员每年度参加继续教育不得少于90学时,其中专业科目不少于60学时,行业公需和一般公需科目不少于18学时。部分学时须通过专项知识考试取得。

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整理 求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考. 求轨迹方程的一般方法: 1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法 把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。设点。列式。化简。说明等,圆锥曲线标准方程的推导。 1. 已知点(20)(30)A B -,, ,,动点()P x y ,满足2PA PB x = ·,求点P 的轨迹。26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ?=? (1)求点P 的轨迹C 对应的方程; (2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论. (3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点. 解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-?=?化简得得 代入 二、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 1、 若动圆与圆4)2(2 2 =++y x 外切且与直线x =2相切,则动圆圆心的轨迹 方程是

g3.1030数列与函数的极限(1)

g3.1030数列与函数的极限(1) 一、知识回顾 1、 数列极限定义 (1)定义:设{a n }是一个无穷数列,a 是一个常数,如果对于预先给定的任意小的正数ε,总存在正整数N ,使得只要正整数n>N ,就有|a n -a|<ε,那么就称数列{a n }以a 为极限,记作lim ∞→n a n =a 。 对前任何有限项情况无关。 *(2)几何解释:设ε>0,我们把区间(a-ε,a+ε)叫做数轴上点a 的ε邻域;极限定义中的不等式|a n -a|<ε也可以写成a-ε0,则特别地 01 lim =∞→n n ③设q ∈(-1,1),则lim ∞ →n q n =0;;1lim ,1==∞ →n n q q ,1-=q 或n n q q ∞ →>lim ,1不存在。

若无穷等比数列1,,,,11<-q aq aq a n 叫无穷递缩等比数列,其所有项的和(各项的和)为:q a s s n n -= =∞ →1lim 1 3、数列极限的运算法则 如果lim ∞→n a n =A ,lim ∞→n b n =B ,那么(1)lim ∞→n (a n ±b n )=A ±B (2)lim ∞→n (a n ·b n )=A ·B (3)lim ∞ →n n n b a =B A (B ≠0) 极限不存在的情况是1、±∞=∞ →n n a lim ;2、极限值不唯一,跳跃,如1,-1,1,-1…. 注意:数列极限运算法则运用的前提: (1)参与运算的各个数列均有极限; (2)运用法则,只适用于有限个数列参与运算,当无限个数列参与运算时不能首先套用. 二.基本训练 1、n n n n 2312lim 22++∞→= ;22322 lim n n n n n →∞+++= 2、135(21) lim 2462n n n →∞+++???+-+++???+=_________________ 3.已知a 、b 、c 是实常数,且a cn c an b cn c bn c bn c an n n n ++=--=-+∞→∞→∞→2222lim ,3lim ,2lim 则的值是……… ( ) A . 121 B .61 C .2 3 D .6

求数列极限的方法总结

求数列极限的方法总结 万学教育 海文考研 教学与研究中心 贺财宝 极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大.极限的计算是核心考点,考题所占比重最大.熟练掌握求解极限的方法是得高分的关键. 极限无外乎出这三个题型:求数列极限、求函数极限、已知极限求待定参数. 熟练掌握求解极限的方法是的高分地关键, 极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算.以下我们就极限的内容简单总结下. 极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法. 四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效; 夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限. 与极限计算相关知识点包括:1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验0()f x '存在的定义是极限000(+)-()lim x f x x f x x ???→ 存在;3、渐近线,(垂直、水平或斜渐近线);4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在. 下面我们重点讲一下数列极限的典型方法. 重要题型及点拨 1.求数列极限 求数列极限可以归纳为以下三种形式. ★抽象数列求极限 这类题一般以选择题的形式出现, 因此可以通过举反例来排除. 此外,也可以按照定义、基本性质及运算法则直接验证. ★求具体数列的极限,可以参考以下几种方法: a.利用单调有界必收敛准则求数列极限.

继续教育学时的认定

继续教育学时的认定 (一)有以下情况者,以一天6小时计算继续教育学时 (连续脱产学习6学时或同一学习内容连贯累计达6学时以上的继续教育方可登记)。 1.全脱产进修、培训学习; 2.参加学术研讨会者; 3.参加单位计划安排的新技术、新知识、新信息系列讲座,并有听课笔记者。 (二)有以下情况之一者,视同完成当年的继续教育学时。 1.业务主管部门安排的学时在30学时以上系列讲座的主讲人(评聘教师系列人员除外,须附讲稿); 2.取得福建省干部英语考试或计算机考试合格证书者,或厦门市高、中级职称外语考试、工程技术人员申报工程师资格计算机水平考试合格证书者; 3.引进消化吸收国外先进技术已投产见效项目的主要贡献者(前3名); 4.经地(厅)级以上部门鉴定的科技攻关项目的主要贡献者(前3名); (三)有以下情况之一者,视同完成近三年的继续教育学时。 1.全脱产进修、培训学习,时间在3个月以上者; 2.获得以下各等级奖的主要完成人(须提供获奖证书):国家发明奖、国家科技进步奖、国家科技理论奖、国家国际合作奖、国家自然科学基金奖,或省、部科技进步奖一、二等奖,或厦门市科技进步奖一等奖; 说明:主要完成人按以下不同情况分别为:获奖项目完成人不足8人的,取前3名;获奖项目由8至10人完成的,取前4名;获奖项目由10人以上(不含10人)完成的,取前5名(以下类同)。 社会科学优秀成果奖参照执行。 3.出版个人专著者; 4.参加在职学习,取得国家教委承认的大专(含专业证书班)以上学历者; 5.引进消化吸收国外先进技术已投产见效项目的主持人; (四)自学的学时计算。 凡自学与本学科专业有关的知识,应写出有一定水平的自学笔记、读书报告等,经所在单位评定认可,每2000字折算6个学时。 (五)论文、著作、译文、考察报告的学时计算。 1.论文(要求2000字以上),学时依据文章发表的刊物级别按以下标准计算; 国外和国家级专业杂志及省级学报72学时/篇 省级专业刊物及全国专业学会、协会论文汇编72学时/2篇 地市(厅)级学术刊物及全省专业学会、协会、年会论文汇编72学时/3篇 2.译文,按发表译文每1500汉字折算6学时。 3.出国考察报告、专题调研或考察报告,每1500字折算6学时。 4.合作出版专著,按合格者实际完成篇幅,每1500字折算6学时。 说明: a.会议论文(大会宣读)按第一款中的分类降一级折算学时(须提交会议组织者证明及原论文稿); b.合作发表文章的,第一作者和第二作者分别按60%和40%计算学时。 (六)成果、专利及参加“五大”学习的学时计算 1.获得以下各等级奖的主要完成人(须提供获奖证书),可按完成72学时计算: 省、部科技进步奖三等奖,地、市级科技进步奖一、二、三等奖,省直厅(局)级科技进步奖一、二等奖,厦门市科技进步奖二、三等奖,厦门市辖区科技进步奖一等奖。 社会科学优秀成果奖参照执行。 2.获得中国专利局授予权的专利项目,按以下标准计算学时: 发明专利72学时/项 实用新型专利72学时/2项 外观设计专利72学时/3项 3.同时获得成果及专利的项目,只能就一方取得学时。 4.参加“五大”(函大、职大、业大、刊大、电子)、自考学习者,每结业一科按20学时计算。

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>, 2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆 的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动 圆圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

数列的极限函数的极限与洛必达法则的练习题及解析

数列的极限函数的极限与洛必达法则的练习题及解析 一、单项选择题(每小题4分,共24分) 3. 若()0lim x x f x →=∞,()0 lim x x g x →=∞,则下列正确的是 ( ) A . ()()0lim x x f x g x →+=∞??? ? B . ()()0lim x x f x g x →-=∞??? ? C . ()() 01lim 0x x f x g x →=+ D . ()()0 lim 0x x kf x k →=∞≠ 解:()()000lim lim x x x x k kf x k f x k →→≠==?∞∞ ∴选D 6.当n →∞时, 1k n 与1k n 为等价无穷小,则k=( ) A .12 B .1 C .2 D .-2 解:2 211sin lim lim 1,21 1n n k k n n k n n →∞→∞=== 选C 二 、填空题(每小题4分,共24分) 8.2112lim 11x x x →??-= ?--? ? 解:原式()()() 112lim 11x x x x →∞-∞+--+ 10 .n = 解:原式n ≡有理化 11.1201arcsin lim sin x x x e x x -→??+= ??? 解:11220011sin 1,lim 0lim sin 0x x x x e e x x -→→≤=∴=又00arcsin lim lim 1x x x x x x →→== 故 原式=1

12.若()220ln 1lim 0sin n x x x x →+= 且0sin lim 01cos n x x x →=-,则正整数n = 解:()222200ln 1lim lim sin n n x x x x x x x x →→+?= 20420,lim 02 n x n x n x →<>2,4,n n ∴>< 故3n = 三、计算题(每小题8分,共64分) 14.求0x → 解:原式有理化 16.求0ln cos 2lim ln cos3x x x → 解:原式[][]0ln 1cos 21lim ln 1cos31x x x →--+-变形 注:原式02sin 2cos3lim cos 23sin 3x x x x x →∞?? ?∞??-?- 17.求02lim sin x x x e e x x x -→--- 解: 原式0020lim 1cos x x x e e x -→+-- 19.求lim 111lim 11n n n n n e e n →∞--+→∞??-== ?+?? 解: (1) 拆项,111...1223(1) n n +++??+ 1111111...122311n n n ??????=-+-+-=- ? ? ???++????(2) 原式=lim 111lim 11n n n n n e e n →∞--+→∞??-== ?+??

数列极限求法及其应用-毕业论文

数 列 极 限 的 求 法 及 其 应 用 2012年 9 月 28 日

容提要 数列极限可用N ε-语言和A N -语言进行准确定义,本文主要讲述数列极限的不同求法,例如:极限定义求法、极限运算法则法、夹逼准则求法、单调有界定理求法、函数极限法、定积分定义法、Stoltz 公式法、几何算术平均收敛公式法、级数法、收缩法等等.我们还会发现同一数列极限可用不同方法来求. 最后我们还简要介绍了数列极限在现实生活中的应用,如几何中推算圆面积,求方程的数值解,研究市场经营的稳定性及购房按揭贷款分期偿还问题.通过这些应用使我们对数列极限有一个更系统立体的了解. 关键词 ε-定义;夹逼准则;Stoltz公式;函数极限 N

On the Solutions and the Applications as to the Sequence Limit Name: Yang NO. 07 The guidance of teachers: Dong Titles: Lecturer Abstract The limit of a sequence can be accurately defined by N ε-language and A N - language. This paper mainly describes different solutions to finding sequence limit, for example, definition of sequence limit method, fundamental operations of sequence limit method, squeezing law method, the monotone convergence theorem method, function limits method, definite integrals definition method, Stoltz formula method, geomeric and arithmetic convergence formula method, series method, contraction method, etc. We'll also find that different methods can be used to solve the same limit. Finally, we also briefly introduce the applications of sequence limit in real life, such as, infering the area of a circle in geometry, finding the numerial solution of equations, studying the stability of the market operation and the amortization problems of purchase mortgage loans.

解析几何求轨迹方程的常用方法讲解

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、 C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动圆 圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

相关主题
文本预览
相关文档 最新文档