lingo入门教程
- 格式:ppt
- 大小:734.50 KB
- 文档页数:55
lingo入门教程之一--- 初识lingo lingo对于一些线性或者非线性的规划,优化问题非常有效首先介绍一下,在lingo中运行程序时出现的页面(在工具栏点击类似靶子一样的图标便可运行)Solver status:求解器(求解程序)状态框Model Class:当前模型的类型:LP,QP,ILP,IQP,PILP,PIQP,NLP,INLP,PINLP(以I开头表示IP,以PI开头表示PIP)State:当前解的状态: "Global Optimum", "LocalOptimum", "Feasible", "Infeasible“(不可行), "Unbounded“(无界), "Interrupted“(中断), "Undetermined“(未确定)Object:解的目标函数值Infeasibility:当前约束不满足的总量(不是不满足的约束的个数):实数(即使该值=0,当前解也可能不可行,因为这个量中没有考虑用上下界命令形式给出的约束)Iteration:目前为止的迭代次数Extend solverstatus:扩展的求解器(求解程序)状态框Solver type:使用的特殊求解程序:Bestobj :目前为止找到的可行解的最佳目标函数值Objbound:目标函数值的界Steps:特殊求解程序当前运行步数:Active:有效步数Variables(变量数量):变量总数(Total)、非线性变量数(Nonlinear)、整数变量数(Integer)。
Constraints(约束数量):约束总数(Total)、非线性约束个数(Nonlinear)。
Nonzeros(非零系数数量):总数(Total)、非线性项系数个数(Nonlinear)。
GeneratorMemory Used (K) (内存使用量)ElapsedRuntime (hh:mm:ss)(求解花费的时间)运行之后页面介绍(这里的运行界面并不是与上面的运行过程中出现界面一致,即并非来自于同一个程序运行出现)第一行表示在经过457次迭代后得到局部最优解第二行给出该局部最优解的具体值下面给出取局部最优值时,x1 x2的具体取值这里求解的是局部最优解,如果想求出全局最优解,可以进行页面设置:lingo --> option --> global solver --> 勾选use global solver对于运行结果也可以另存为,格式一般为ldt,因为有时候对于求解一个问题,或许需要运行很久才可以得出结果,所以没必要每次为了看结果都运行,而是运行成功一次后便把结果保存下来注意事项LINGO总是根据“MAX=”或“MIN=”寻找目标函数;程序语句的顺序一般不重要,既可以随意调换;程序运用函数时都是以@开头;程序中的变量默认为非负数,想要改变变量类型必须有相应函数调整程序中变量不区分大小写;语句必须以分号结尾;注释以!开始,且注释语句后面必须也有分号,注释默认注释到第一个分号处,意思是分号前面会全部被注释掉。
1.LINGO入门2.在LINGO中使用集合3. 运算符和函数4. LINGO的主要菜单命令5. LINGO命令窗口•.LG4:LINGO格式的模型文件,保存了模型窗口中所能够看到的所有文本和其他对象及其格式信息;•.LNG:文本格式的模型文件,不保存模型中的格式信息(如字体、颜色、嵌入对象等);•.LDT:LINGO数据文件;•.LTF:LINGO命令脚本文件;•.LGR:LINGO报告文件;•.LTX:LINDO格式的模型文件;•.MPS:示MPS(数学规划系统)格式的模型文件。
除“LG4”文件外,另外几种格式的文件都是普通的文本文件,可以用任何文本编辑器打开和编辑。
注:凡是可以从一个约束直接解出变量取值时,这个变量就不认为是决策变量而是固定变量,不列入统计中;只含有固定变量的约束也不列入约束统计中。
一个简单的LINGO 程序例 直接用LINGO 来解如下二次规划问题:程序语句输入的备注:LINGO 总是根据“MAX=”或“MIN=”寻找目标函数,而除注释语句和TITLE()()()()22121122121212982770.321..100223,04Max x x x x x x s t x x x x x x +---+≤≤≥为整数语句外的其他语句都是约束条件,因此语句的顺序并不重要。
限定变量取整数值的语句为“@GIN(X1)”和“@GIN(X2)”,不可以写成“@GIN(2)”,否则LINGO将把这个模型看成没有整数变量。
LINGO中函数一律需要以“@”开头,其中整型变量函数(@BIN、@GIN)和上下界限定函数(@FREE、@SUB、@SLB)与LINDO中的命令类似。
而且0/1变量函数是@BIN函数。
输出结果:•运行菜单命令“LINGO|Solve”•输出结果备注:LINGO是将它作为PINLP(纯整数非线性规划)来求解,因此找到的是局部最优解。
通过菜单“WINDOW| Status Window”看到状态窗口,可看到最佳目标值“Best Obj”与问题的上界“Obj Bound”已经是一样的,当前解的最大利润与这两个值非常接近,是计算误差引起的。
LINGO基本教程(完整版)pdf一、教学内容本节课我们使用的教材是《LINGO基本教程》,我们将学习第14章的内容。
第1章介绍LINGO软件的基本操作,包括界面的熟悉、模型的建立等;第2章学习线性规划模型的建立与求解;第3章讲解非线性规划模型的建立与求解;第4章介绍整数规划模型的建立与求解。
二、教学目标1. 学生能够熟练操作LINGO软件,建立和求解线性、非线性以及整数规划模型。
2. 学生能够理解线性、非线性以及整数规划的基本概念,并能够运用到实际问题中。
3. 学生通过学习LINGO基本教程,提高自己的逻辑思维能力和解决实际问题的能力。
三、教学难点与重点重点:熟练操作LINGO软件,建立和求解线性、非线性以及整数规划模型。
难点:理解线性、非线性以及整数规划的基本概念,以及如何将这些概念运用到实际问题中。
四、教具与学具准备教具:多媒体教学设备、投影仪、计算机。
学具:学生计算机、LINGO软件、教材《LINGO基本教程》。
五、教学过程1. 实践情景引入:以一个简单的线性规划问题为切入点,引导学生思考如何利用LINGO软件求解。
2. 讲解教材内容:分别讲解第14章的内容,包括LINGO软件的基本操作、线性规划模型的建立与求解、非线性规划模型的建立与求解以及整数规划模型的建立与求解。
3. 例题讲解:针对每个章节的内容,选择合适的例题进行讲解,让学生通过例题理解并掌握相关知识点。
4. 随堂练习:在每个章节讲解结束后,安排随堂练习,让学生通过练习巩固所学知识。
5. 课堂互动:鼓励学生提问,解答学生在学习过程中遇到的问题。
6. 板书设计:每个章节的重要知识点和操作步骤进行板书设计,方便学生复习。
7. 作业布置:布置与本节课内容相关的作业,巩固所学知识。
六、作业设计1. 作业题目:最大化问题:目标函数:Z = 2x1 + 3x2约束条件:x1 + x2 ≤ 62x1 + x2 ≤ 8x1, x2 ≥ 0最大化问题:目标函数:Z = x1^2 + x2^2约束条件:x1 + x2 ≤ 5x1^2 + x2^2 ≤ 10x1, x2 ≥ 0最大化问题:目标函数:Z = 3x1 + 2x2约束条件:x1 + x2 ≤ 42x1 + x2 ≤ 6x1, x2 均为整数2. 答案:(1)线性规划问题的解为:x1 = 2, x2 = 4(2)非线性规划问题的解为:x1 = 3, x2 = 2(3)整数规划问题的解为:x1 = 2, x2 = 2七、板书设计1. 第1章:LINGO软件的基本操作(1)界面的熟悉(2)模型的建立2. 第2章:线性规划模型的建立与求解(1)目标函数的定义(2)约束条件的设置(3)求解线性规划问题3. 第3章:非线性规划模型的建立与求解(1)目标函数的定义(2)约束条件的设置(3)求解非线性规划问题4. 第4章:整数规划模型的建立与求解(1)目标函数的定义(2)约束条件的设置(3)求解整数规划问题八、课后反思及拓展延伸本节课通过实践情景引入,使学生能够快速融入学习状态。