当前位置:文档之家› 大肠杆菌转录组和代谢组的关联分析

大肠杆菌转录组和代谢组的关联分析

大肠杆菌转录组和代谢组的关联分析
大肠杆菌转录组和代谢组的关联分析

有参考基因组的转录组生物信息分析

一、生物信息分析流程 获得原始测序序列(Sequenced Reads)后,在有相关物种参考序列或参考基因组的情况下,通过如下流程进行生物信息分析: 二、项目结果说明 1 原始序列数据 高通量测序(如illumina HiSeq TM2000/MiSeq等测序平台)测序得到的原始图像数据文件经碱基识别(Base Calling)分析转化为原始测序序列(Sequenced Reads),我们称之为Raw Data或Raw Reads,结果以FASTQ(简称为fq)文件格式存储,其中包含测序序列(reads)的序列信息以及其对应的测序质量信息。 FASTQ格式文件中每个read由四行描述,如下: @EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG GCTCTTTGCCCTTCTCGTCGAAAATTGTCTCCTCATTCGAAACTTCTCTGT + @@CFFFDEHHHHFIJJJ@FHGIIIEHIIJBHHHIJJEGIIJJIGHIGHCCF 其中第一行以“@”开头,随后为illumina 测序标识符(Sequence Identifiers)和描述文字(选择性部分);第二行是碱基序列;第三行以“+”开头,随后为illumina 测序标识符(选择性部分);第四行是对应序列的测序质量(Cock et al.)。 illumina 测序标识符详细信息如下:

第四行中每个字符对应的ASCII值减去33,即为对应第二行碱基的测序质量值。如果测序错误率用e表示,illumina HiSeq TM2000/MiSeq的碱基质量值用Q phred 表示,则有下列关系: 公式一:Q phred = -10log 10 (e) illumina Casava 1.8版本测序错误率与测序质量值简明对应关系如下: 2 测序数据质量评估 2.1 测序错误率分布检查 每个碱基测序错误率是通过测序Phred数值(Phred score, Q phred )通过公式1转化得到,而Phred 数值是在碱基识别(Base Calling)过程中通过一种预测碱基判别发生错误概率模型计算得到的,对应关系如下表所显示: illumina Casava 1.8版本碱基识别与Phred分值之间的简明对应关系 测序错误率与碱基质量有关,受测序仪本身、测序试剂、样品等多个因素共同影响。对于RNA-seq技术,测序错误率分布具有两个特点: (1)测序错误率会随着测序序列(Sequenced Reads)的长度的增加而升高,这是由于测序过程中化学试剂的消耗而导致的,并且为illumina高通量测序平台都具有的特征(Erlich and Mitra, 2008; Jiang et al.)。 (2)前6个碱基的位置也会发生较高的测序错误率,而这个长度也正好等于在RNA-seq 建库过程中反转录所需要的随机引物的长度。所以推测前6个碱基测序错误率较高的原因为随机引物和RNA模版的不完全结合(Jiang et al.)。测序错误率分布检查用于检测在测序长度范围内,有无异常的碱基位置存在高错误率,比如中间位置的碱基测序错误率显着高于其他位置。一般情况下,每个碱基位置的测序错误率都应该低于0.5%。 图2.1 测序错误率分布图

全基因组关联分析的原理和方法

全基因组关联分析(Genome-wide association study;GWAS)是应用基因组中 数以百万计的单核苷酸多态性(single nucleotide ploymorphism ,SNP)为分子 遗传标记,进行全基因组水平上的对照分析或相关性分析,通过比较发现影响复杂性状的基因变异的一种新策略。 随着基因组学研究以及基因芯片技术的发展,人们已通过GWAS方法发现并鉴定了大量与复杂性状相关联的遗传变异。近年来,这种方法在农业动物重要经济性状主效基因的筛查和鉴定中得到了应用。 全基因组关联方法首先在人类医学领域的研究中得到了极大的重视和应用,尤其是其在复杂疾病研究领域中的应用,使许多重要的复杂疾病的研究取得了突破性进展,因而,全基因组关联分析研究方法的设计原理得到重视。 人类的疾病分为单基因疾病和复杂性疾病。单基因疾病是指由于单个基因的突变导致的疾病,通过家系连锁分析的定位克隆方法,人们已发现了囊性纤维化、亨廷顿病等大量单基因疾病的致病基因,这些单基因的突变改变了相应的编码蛋白氨基酸序列或者产量,从而产生了符合孟德尔遗传方式的疾病表型。复杂性疾病是指由于遗传和环境因素的共同作用引起的疾病。目前已经鉴定出的与人类复杂性疾病相关联的SNP位点有439 个。全基因组关联分析技术的重大革新及其应用,极大地推动了基因组医学的发展。(2005年, Science 杂志首次报道了年龄相关性视网膜黄斑变性GWAS结果,在医学界和遗传学界引起了极大的轰动, 此后一系列GWAS陆续展开。2006 年, 波士顿大学医学院联合哈佛大学等多个研究机构报道了基于佛明翰心脏研究样本关于肥胖的GWAS结果(Herbert 等. 2006);2007 年, Saxena 等多个研究组联合报道了与2 型糖尿病( T2D ) 关联的多个位点, Samani 等则发表了冠心病GWAS结果( Samani 等. 2007); 2008 年, Barrett 等通过GWAS发现了30 个与克罗恩病( Crohns ' disrease) 相关的易感位点; 2009 年, W e is s 等通过GWAS发现了与具有高度遗传性的神经发育疾病——自闭症关联的染色体区域。我国学者则通过对12 000 多名汉族系统性红斑狼疮患者以及健康对照者的GWAS发现了5 个红斑狼疮易感基因, 并确定了4 个新的易感位点( Han 等. 2009) 。截至2009 年10 月, 已经陆续报道了关于人类身高、体重、 血压等主要性状, 以及视网膜黄斑、乳腺癌、前列腺癌、白血病、冠心病、肥胖症、糖尿病、精神分 裂症、风湿性关节炎等几十种威胁人类健康的常见疾病的GWAS结果, 累计发表了近万篇 论文, 确定了一系列疾病发病的致病基因、相关基因、易感区域和SNP变异。) 标记基因的选择: 1)Hap Map是展示人类常见遗传变异的一个图谱, 第1 阶段完成后提供了 4 个人类种族[ Yoruban ,Northern and Western European , and Asian ( Chinese and Japanese) ] 共269 个个体基因组, 超过100 万个SNP( 约1

转录组学主要技术与应用研究

转录组学主要技术及其应用研究 姓名:梁迪 专业:微生物学 年级:2013 学号:3130179 二零一四年六月十五日

转录学主要技术及其应用研究 摘要:转录组(transcriptome)是特定组织或细胞在某一发育阶段或功能状态下转录出来的所有RNA的集合。转录组学研究能够从整体水平研究基因功能以及基因结构,揭示特定生物学过程以及疾病发生过程中的分子机理。目前,转录组学研究技术主要包括两种:基于杂交技术的微阵列技术(microarray)和基于测序技术的转录组测序技术,包括表达序列标签技术(Expression Sequence Tags Technology,EST)、基因表达系列分析技术(Serial analysis of gene expression,SAGE)、大规模平行测序技术(Massively parallel signature sequencing,MPSS)、以及RNA 测序技术(RNA sequencing,RNA-seq)。文章主要介绍了以上转录组学主要研究技术的原理、技术特点及其应用,并就这些技术面临的挑战和未来发展前景进行了讨论,为其今后的研究与应用提供参考。 关键词:转录组学;微阵列技术;转录组测序技术;应用 Study on the main technologies of transcriptomics and their application Abstract: The transcriptome is the complete set of transcripts for certain type of cells or tissues in a specific developmental stage or physiological condition. Transcriptome analysis can provide a comprehensive understanding of molecularmechanisms involved in specific biological processes and diseases from the information on gene structure and function. Currently, transcriptomics technology mainly includes microarry -based on hybridization technology and transcriptome sequencing-based on sequencing technology, involving Expression sequence tags technology, Serial analysis of gene expression, Massively parallel signature sequencing and RNA sequencing. The detailed principles, technical characteristics and applications of the main transcriptomics technologies are reviewed here, and the challenges and application potentials of these technologies in the future are also discussed. This will present the useful information for other researchers. Keywords: transcriptomics ; microarray ; transcriptome sequencing; application 随着后基因组时代的到来,转录组学、蛋白质组学、代谢组学等各种组学技术相继出现,其中转 录组学是率先发展起来以及应用最广泛的技术[1]。

转录组RNAseq术语解释

RNA-Seq名词解释 1.index 测序的标签,用于测定混合样本,通过每个样本添加的不同标签进行数据区分,鉴别测序样品。 2.碱基质量值 (Quality Score或Q-score)是碱基识别(Base Calling)出错的概率的整数映射。碱基质量值越高 表明碱基识别越可靠,碱基测错的可能性越小。 3.Q30 碱基质量值为Q30代表碱基的精确度在99.9%。 4.FPKM(Fragments Per Kilobase of transcript per Million fragments mapped) 每1百万个map上的reads中map到外显子的每1K个碱基上的fragment个数。计算公式为 公式中,cDNA Fragments 表示比对到某一转录本上的片段数目,即双端Reads数目;Mapped Reads(Millions)表示Mapped Reads总数, 以10为单位;Transcript Length(kb):转录本长度,以kb个碱基为单位。 5.FC(Fold Change) 即差异表达倍数。 6.FDR(False Discovery Rate) 即错误发现率,定义为在多重假设检验过程中,错误拒绝(拒绝真的原(零)假设)的个数占所有被拒绝 的原假设个数的比例的期望值。通过控制FDR来决定P值的阈值。 7.P值(P-value) 即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P<0.05 为显著,P<0.01为非常显著,其含义是样本间的差异由抽样误差所致的概率小于0.05或0.01。 8.可变剪接(Alternative splicing)

转录组测序技术的应用及发展综述

转录组测序技术的应用及发展综述 摘要:转录组测序(RNA-Seq)作为一种新的高效、快捷的转录组研究手段正在改变着人们对转录组的认识。RNA-Seq利用高通量测序技术对组织或细胞中所有RNA 反转录而成cDNA文库进行测序,通过统计相关读段(reads)数计算出不同RNA的表达量,发现新的转录本;如果有基因组参考序列,可以把转录本映射回基因组,确定转录本位置、剪切情况等更为全面的遗传信息,已广泛应用于生物学研究、医学研究、临床研究和药物研发等。文章主要比较近年来转录组研究的几种方法和几种RNA-Seq的研究平台,着重介绍RNA-Seq的原理、用途、步骤和生物信息学分析,并就RNA-Seq技术面临的挑战和未来发展前景进行了讨论及在相关领域的应用等内容,为今后该技术的研究与应用提供参考。 关键词: RNA-Seq;原理应用;方法;挑战;发展前景 Abstract:Transcriptome sequencing (RNA-Seq) is a kind of high efficiency, quick transcriptome research methods are changing our understanding of transcriptome. RNA-Seq to use high-throughput sequencing of tissues or cells of all RNA reverse transcription into cDNA library were sequenced, through statistical correlation read paragraph (reads) numbers were calculated from the expression of different RNA transcripts, find new; if the genome reference sequence, the transcripts mapped to genomic, determine the position of the transcription shear condition, more genetic information, has been widely used in biological research, medical research, clinical research and drug development. This paper compared several methods of platform transcriptome studies and several kinds of RNA-Seq in recent years, RNA-Seq focuses on the principle, purpose, steps and bioinformatics analysis, and discusses the RNA-Seq technology challenges and future development prospect and the application in related field and other content, provide the reference for the research and application of the technology future. Key word:RNA-Seq ;application; principle; method; challenge; development prospects

一步一步教你做转录组分析(HISAT, StringTie and Ballgown)

一步一步教你做转录组分析(HISAT, StringTie and Ballgown) 该分析流程主要根据2016年发表在Nature Protocols 上的一篇名为Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown 的文章撰写的,主要用到以下三个软件:HISAT (https://www.doczj.com/doc/c613812978.html,/software/hisat/index.shtml)利用大量FM 索引,以覆盖整个基因组,能够将RNA-Seq的读取与基因组进行快速比对,相较于STAR、Tophat,该软件比对速度快,占用内存少。 StringTie(https://www.doczj.com/doc/c613812978.html,/software/stringtie/)能够应用流神经网络算法和可选的de novo组装进行转录本组装并预计表达水平。与Cufflinks等程序相比,StringTie实现了更完整、更准确的基因重建,并更好地预测了表达水平。Ballgown (https://https://www.doczj.com/doc/c613812978.html,/alyssafrazee/ballgown)是R语言中基因差异表达分析的工具,能利用RNA-Seq实验的数据(StringTie, RSEM, Cufflinks)的结果预测基因、转录本的差异表达。然而Ballgown并没有不能很好地检测差异外显子,而DEXseq、rMATS和MISO可以很好解决该问题。 一、数据下载Linux系统下常用的下载工具是wget,但该工具是单线程下载,当使用它下载较大数据时比较慢,所以选

转录组学领域研究进展一览(!!!)

转录组学领域研究进展一览 关键词:Transcriptomics;RNA;RT-PCR;Profiling;Synthesis;Sequencing;Purification;Micro arrays;Extraction 转录组学(tranomics),是一门在整体水平上研究细胞中基因转录的情况及转录调控规律的学科,也就是说,转录组学是从RNA水平来研究基因的表达情况。转录组即一个活细胞所能转录出来的所有RNA的总和,是研究细胞表型和功能的一个重要手段。 本文中,小编对近年来转录组学领域的相关研究进行了盘点,分享给各位!【1】北大教授开发单细胞全转录组测序新技术 2014年4月29日,北京大学生物动态光学成像中心黄岩谊、汤富酬课题组在《美国科学院院刊》(PNAS)上发表题为“Microfluidic single-cell whole-tranome sequencing”的论文。该研究利用微流控芯片技术实现了高质量单细胞的全转录组测序样品准备,全面提高了单细胞全转录组分析的准确性和可靠性。 细胞是生命活动的基本功能单位,而在生物体内没有任何两个细胞是完全相同的。传统的生命科学与医学研究,绝大多数情况下都是针对混合的大量细胞进行的,无法观察到单个细胞之间细微的差别。近年来不断发展的实验技术,提供了更加定量与客观的证据,表明在许多关键生命过程例如胚胎发育、细胞分化、疾病发生与发展等过程中,特定的单个细胞行为,以及其间的个体化差异与异质性,导致了极其重要甚至是决定性的结果。而之前基于大量细胞平均测量所获得的结果并无法正确反映复杂生物体系的全面真实信息,严重掩盖了独立个体样本的行为以及生命现象中大量存在的随机行为。针对单个细胞的研究,是细胞生命分析技术所追求的极限状态,是对传统技术极大的挑战。 【2】doi:10.1126/science.aaf2403 在一项新的研究中,来自瑞典卡罗琳斯卡研究所和皇家理工学院等机构的研究人员开发出一种新的被称作空间转录组学(spatial tranomics)的高分辨率方法研究一种组织中哪些基因是有活性的。这种方法能够被用于所有类型的组织中,而且在临床前研究和癌症诊断中是有价值的。相关研究结果发表在2016年7月1日那期Science期刊上,论文标题为“Visualization and analysisof gene expression

全基因组关联分析(GWAS)解决方案

全基因组关联分析(GWAS)解决方案 ※ 概述 全基因组关联研究(Genome-wide association study,GWAS)是用来检测全基因组范围的遗传变异与 可观测的性状之间的遗传关联的一种策略。2005年,Science杂志报道了第一篇GWAS研究——年龄相关性黄 斑变性,之后陆续出现了有关冠心病、肥胖、2型糖尿病、甘油三酯、精神分裂症等的研究报道。截至2010年 底,单是在人类上就有1212篇GWAS文章被发表,涉及210个性状。GWAS主要基于共变法的思想,该方法是 人类进行科学思维和实践的最重要工具之一;统计学研究也表明,GWAS很长时期内都将处于蓬勃发展期(如 下图所示)。 基因型数据和表型数据的获得,随着诸多新技术的发展变得日益海量、廉价、快捷、准确和全面:如 Affymetrix和Illumina公司的SNP基因分型芯片已经可以达到2M的标记密度;便携式电子器械将产生海量的表型 数据;新一代测序技术的迅猛发展,将催生更高通量、更多类别的基因型,以及不同类别的高通量表型。基于 此,我们推出GWAS的完整解决方案,协助您一起探索生物奥秘。 ※ 实验技术流程 ※ 基于芯片的GWAS Affymetrix公司针对人类全基因组SNP检测推出多个版本检测芯片,2007年5月份,Affymetrix公司发布了 人全基因组SNP 6.0芯片,包含90多万个用于单核苷酸多态性(SNP)检测探针和更多数量的用于拷贝数变化(CNV)检测的非多态性探针。因此这种芯片可检测超过180万个位点基因组序列变异,即可用于全基因组 SNP分析,又可用于CNV分析,真正实现了一种芯片两种用途,方便研究者挖掘基因组序列变异信息。 Illumina激光共聚焦微珠芯片平台为全世界的科研用户提供了最为先进的SNP(单核苷酸多态性)研究平 台。Illumina的SNP芯片有两类,一类是基于infinium技术的全基因组SNP检测芯片(Infinium? Whole Genome Genotyping),适用于全基因组SNP分型研究及基因拷贝数变化研究,一张芯片检测几十万标签SNP位点,提 供大规模疾病基因扫描(Hap660,1M)。另一类是基于GoldenGate?特定SNP位点检测芯片,根据研究需要挑选SNP位点制作成芯片(48-1536位点),是复杂疾病基因定位的最佳工具。 罗氏NimbleGen根据人类基因组序列信息设计的2.1M超高密度CGH芯片,可以在1.1Kb分辨率下完成全基 因组检测,可有效检测人基因组中低至约5kb大小的拷贝数变异。

转录组ref流程工作手册

转录组ref流程工作手册 一、Reference 流程生物学原理 1.1 实验流程 图一:转录组实验流程 当我们得到样品时,必须对其测序,才能得到分析所需的数据。测序基本过程:提取样品总RNA后,用带有Oligo(dT)的磁珠富集真核生物mRNA(若为原核生物,则用试剂盒去除rRNA后进入下一步)。加入fragmentation buffer将mRNA打断成短片段,以mRNA为模板,用六碱基随机引物(random hexamers)合成第一条cDNA链,然后加入缓冲液、dNTPs、RNase H 和DNA polymerase I 合成第二条cDNA链,在经过QiaQuick PCR试剂盒纯化并加EB缓冲液洗脱之后做末端修复并连接测序接头,然后用琼脂糖凝胶电泳进行片段大小选择,最后进行PCR扩增,使用建好的测序文库进行测序。 得到RNA的序列后,又可以找到它的参考序列(物种本身的基因、基因组)

时,可以用reference流程对数据进行详细的分析。Reference后面所有的流程都是基于参考序列进行的,所以选择正确的参考序列十分重要。 1.2信息分析流程 得到测序序列后,即可利用比对软件,将所测序列比对到参考基因或基因组上,并进行后续分析,信息分析流程图如下: 图二:转录组信息流程 1.2.1原始fq序列简介 测序得到的原始图像数据经base calling转化为序列数据,我们称之为raw data或raw reads,结果以fastq文件格式存储,fastq文件为用户得到的最原始文件,里面存储reads的序列以及reads的测序质量。在fastq格式文件中每个read 由四行描述: @read ID TGGCGGAGGGATTTGAACCC

全基因组关联分析

全基因组关联分析(Genome-wide association study,GWAS) 是一种对全基因组范围内的常见遗传变异: 单核苷酸多态性(Single nucleotide polymorphism , SNP) 进行总体关联分析的方法, 即在全基因组范围内选择遗传变异进行基因分型, 比较病例和对照间每个变异频率的异差, 计算变异与疾病的关联强度, 选出最相关的变异进行验证并最终确认与疾病相关。 单核苷酸多态性(英语:Single Nucleotide Polymorphism,简称SNP,读作/snip/)指的是由单个核苷酸—A,T,C或G的改变而引起的DNA序列的改变,造成包括人类在内的物种之间染色体基因组的多样性。 在后GWAS时代,利用已有的GWAS数据在多个人群间进行meta分析已经成为一种常用的分析手 段,这不仅可以进一步扩大样本量,更重要的是提高了统计效能。GWAS meta分 析已经成功应该用在多种复杂疾病的遗传学研究,发现一批新的易感基因。 全基因组关联水平(P_meta < 5.0×10-8)罕见等位基因(MAF < 5%), 基因型填补(imputation):依据已分型位点的基因型对数据缺失位点或未分型位点进行基因型预测的方法。可用于精细定位(fine-mapping),填补已确认的关联位点附近的位点,以便评价相邻SNP位点的关联证据。加快复杂性疾病易感基因的定位。 连锁与连锁不平衡(linkage disequilibrium,LD): 连锁:如果同一条染色体上2个位点的位置比较近,则这2个位点上的等位基因倾向于一起传递给下一代。 连锁不平衡:又称等位基因关联,是指同一条染色体上,两个等位基因间的非随机相关。即当位于同一条染色体上的两个等位基因同时存在的概率大于人群中因随机分布而同时出现的概率时,就称这两个位点处于LD状态。所谓的连锁不平衡是一种遗传标记的非随机性组合。比如,一个基因有两个位点,一个位点有两种基因型,那么子代应该有2的2次方,即4种基因型。但是发现子代的基因型往往会少于4种,这就是连锁不平衡现象。这是由于两个位点距离较近引起的两个位点上的等位基因经常同时出现在同一染色体上。

转录组ref流程工作手册

转录组ref流程工作手册

转录组ref流程工作手册 一、Reference 流程生物学原理 1.1 实验流程 图一:转录组实验流程 当我们得到样品时,必须对其测序,才能得到分析所需的数据。测序基本过程:提取样品总RNA后,用带有Oligo(dT)的磁珠富集真核生物mRNA(若为原核生物,则用试剂盒去除rRNA后进入下一步)。加入fragmentation buffer 将mRNA打断成短片段,以mRNA为模板,用六碱基随机引物(random hexamers)合成第一条cDNA链,然后加入缓冲液、dNTPs、RNase H 和DNA polymerase I合成第二条cDNA链,在经过QiaQuick PCR试剂盒纯化并加EB 缓冲液洗脱之后做末端修复并连接测序接头,然后用琼脂糖凝胶电泳进行片段大小选择,最后进行PCR扩增,使用建好的测序文库进行测序。 得到RNA的序列后,又可以找到它的参考序列(物种本身的基因、基因组)

时,可以用reference流程对数据进行详细的分析。Reference后面所有的流程都是基于参考序列进行的,所以选择正确的参考序列十分重要。 1.2信息分析流程 得到测序序列后,即可利用比对软件,将所测序列比对到参考基因或基因组上,并进行后续分析,信息分析流程图如下: 图二:转录组信息流程 1.2.1原始fq序列简介 测序得到的原始图像数据经base calling转化为序列数据,我们称之为raw data或raw reads,结果以fastq文件格式存储,fastq文件为用户得到的最原始文件,里面存储reads的序列以及reads的测序质量。在fastq格式文件中每个read由四行描述: @read ID TGGCGGAGGGATTTGAACCC

基于全基因组关联分析的基因(环境)交互作用统计学方法进展

万方数据

万方数据

708 图lMDR基本步骤示意图 划分为不同的分类,也就是图中的单元格。单元格中左侧直方图表示病例,右侧直方图表示对照。 第4步:在n维的每个多因子分类(单元格)中,计算病例数和对照数的比值,若病例数与对照数之比达到或超过某个阈值(例如≥1),则标为高危,反之则为低危。这样就把n维的结构降低到一维两水平。 第5步:多因子分类的集合中包含了MDR模型中各因子的组合。在所有的两因子组合中,选择错分最小的那个MDR模型,该两位点模型在所有模型中将具有最小的预测误差。 第6步:通过十重交叉验证评估模型的预测误差,一以及单元格分配时的相对误差。也就是说,模型拟合9/10的数据(训练样本),其预测误差将通过剩下1/10的数据(检验样本)来衡量。选择预测误差最小的模型作为最终的模型,取lO次检验的预测误差平均值,作为模型相对预测误差的无偏估计。由于数据分组的方式对交叉验证的结果影响较大,因此,十重交叉验证过程将重复进行10次,对n个因子可能的集合将重复进行10×10次的交叉验证。 通过十重交叉验证,在一定程度上可以避免因数据转换的偶然性,使I类错误增大而产生假阳性结果的影响。预测误差是衡量MDR模型在独立检验的亚组中预测危险状态的指标,通过十重交叉验证的亚组中每一个的预测误差的平均值来计算。根据交叉验证的预测误差的平均值,选择最佳的Tl因子模型,并根据不同的因子数重复以上过程。最终筛选出最有可能存在交互作用的基因。 MDR的优势在于不需要考虑疾病的遗传模型,它利用计算机运算速度快的优势,对多个基因进行随机组合,按照上述方法找出存在交互作用的基因位点。但当主效应存在时,用MDR方法很难得到最终模型,且同样受遗传异质性的影响;它只是一种数据挖掘方法,不是严格意义上的统计方法,还无法判断它的I类错误和检验功效。 MDR分析软件包可在http://www.epistasis.org/mdr.html免费下载。 4基于复合LD的交互作用分析法 吴学森等Ⅲ’提出基于复合LD的交互作用的分析法。该方法以病例一对照试验设计为基础,基于LD计算方法,构建完全有别于以上方法的一种新型基因间交互作用的统计分析方法:(1)用两个位点(基因)单倍型的外显率(只。)与等位基因的边际外显率的乘积(Pa?P。)的偏差(6.口=PA。一只?P8),分别定义病例组和对照组两个位点交互作用的度量.进而综合两组交互作用度量构造检验交互作用的统计量;(2)对于基因一环境交互作用模型的构建,则将环境(分类型变量)变量视为“虚拟位点”(例如E=l表示环境暴露。E=0表示即非暴露),则同样依据上述方法构建其模型。4.1基因型数据的联合概率分布及其表达对于基因之间、基因与环境之间的交互作用统计量的构建,无论是二阶或高阶情形,均至少涉及两个变量。在本研究中,均以病例一对照试验设计为基础,个体的基因数据一律用其基因型表示。无论是病例组还是对照组,均设两个位点的等位基因分别为A,a;B,b,则它们的联合基因型分布可表述为表3的形式: 则.配子的LD系数为:6.。=%一PAP。;非配子的LD系数为:乳口=九日一只-匕,其中,P.e=尸竺+PAB舳+碟+P竺;JD∥。=P竺+P竺+P::+形:。但是,当计算病例组或对照组的6.。时,需要知道双杂合子的概率P苫、P::。然而。当它们的相未知时,则无法确定其值,只能进行单倍型推断。由于单倍型推断总是存在误差,这给后面构造的检验交互作 用的统计量带来很多不确  万方数据

转录组学的一些概念

Gene Ontology可分为分子功能(Molecular Function),生物过程(biological process)和细胞组成(cellular component)三个部分。蛋白质或者基因可以通过ID对应或者序列 注释的方法找到与之对应的GO号,而GO号可对于到Term,即功能类别或者细胞定位。 功能富集分析: 功能富集需要有一个参考数据集,通过该项分析可以找出在统计上显 著富集的GO Term。该功能或者定位有可能与研究的目前有关。 GO功能分类是在某一功能层次上统计蛋白或者基因的数目或组成,往往是在GO 的第二层次。此外也有研究都挑选一些Term,而后统计直接对应到该Term的基因或蛋白数。结果一般以柱状图或者饼图表示。 1.GO分析 根据挑选出的差异基因,计算这些差异基因同GO 分类中某(几)个特定的分支的超 几何分布关系,GO 分析会对每个有差异基因存在的GO 返回一个p-value,小的p 值表示差异基因在该GO 中出现了富集。 GO 分析对实验结果有提示的作用,通过差异基因的GO 分析,可以找到富集差异 基因的GO分类条目,寻找不同样品的差异基因可能和哪些基因功能的改变有关。 2.Pathway分析 根据挑选出的差异基因,计算这些差异基因同Pathway 的超几何分布关系, Pathway 分析会对每个有差异基因存在的pathway 返回一个p-value,小的p 值表示差异 基因在该pathway 中出现了富集。 Pathway 分析对实验结果有提示的作用,通过差异基因的Pathway 分析,可以找到 富集差异基因的Pathway 条目,寻找不同样品的差异基因可能和哪些细胞通路的改变有关。与GO 分析不同,pathway 分析的结果更显得间接,这是因为,pathway 是蛋白质之间的 相互作用,pathway 的变化可以由参与这条pathway 途径的蛋白的表达量或者蛋白的活性 改变而引起。而通过芯片结果得到的是编码这些蛋白质的mRNA 表达量的变化。从 mRNA 到蛋白表达还要经过microRNA 调控,翻译调控,翻译后修饰(如糖基化,磷酸化),蛋白运输等一系列的调控过程,mRNA 表达量和蛋白表达量之间往往不具有线性关系,因此mRNA 的改变不一定意味着蛋白表达量的改变。同时也应注意到,在某些pathway 中,如EGF/EGFR 通路,细胞可以在维持蛋白量不变的情况下,通过蛋白磷酸 化程度的改变(调节蛋白的活性)来调节这条通路。所以芯片数据pathway 分析的结果需 要有后期蛋白质功能实验的支持,如Western blot/ELISA,IHC(免疫组化),over expression(过表达),RNAi(RNA 干扰),knockout(基因敲除),trans gene(转基因)等。 3.基因网络分析 目的:根据文献,数据库和已知的pathway 寻找基因编码的蛋白之间的相互关系(不超过1000 个基因)。

illumina 转录组测序简明实验流程(PE-oligodT NEB)

illumina 转录组测序简明实验流程一、实验基本流程图 mRNA Library Construction

二、mRNA建库流程 1.材料准备 1.2. 1.3.

2.样品准备和QC 选择质量合格的Total RNA作为mRNA测序的建库起始样品,其质量要求通过Agilent 2100 BioAnalyzer检测结果RIN≥7,28S和18S的RNA 的比值大于或等于1.5:1,起始量的要求范围是0.1∽1ug。用QUBIT RNA ASSAY KIT对起始的Total RNA进行准确定量。 3.建库实验步骤 3.1.mRNA纯化和片段化 3.1.1.mRNA纯化 纯化原理是用带有Oligod(T)的Beads对Total RNA中mRNA进行纯化。 3.1.2.mRNA片段化 3.2.1st Strand cDNA 合成 3.3.2nd Strand cDNA 合成 根据下表制备反应体系,然后在PCR仪上运行Program3,然后将第2链cDNA合成产物用144uL AMPure XP Beads进行纯化,最后用60μL的Nuclease free water进行重悬,取出 55.5μL以备下一步使用;

3.4.Perform End Repair/dA-tail 3.5.Adaptor Ligation 根据下表制备反应体系,然后在PCR仪上运行Program5、Program6,然后100uL AMPure XP Beads进行纯化后用52.5μL的Resuspension Buffer进行重悬,再用50uL AMPure XP Beads 3.6.PCR扩增 根据下表制备反应体系,然后在PCR仪上运行Program7,然后再45μL用AMPure XP Beads 进行纯化,最后用23μL的Resuspension Buffer进行重悬,取出20μL以备下一步使用;

转录组学研究进展精修订

转录组学研究进展集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

转录组研究前沿 随着转录组学,蛋白组学,代谢组学等组学的不断涌现,生物学研究已经跨入后基因组时代,转录组学作为一个率先发展起来的技术开始在生物学前沿研究中得到了广泛的应用。广义转录组(Transcriptome)系指从一种细胞或者组织的基因组所转录出来的RNA的总和,包括编码蛋白质的mRNA和各种非编码RNA(rRNA, tRNA, snoRNA, snRNA,microRNA 和其他非编码RNA等)。狭义转录组系指所有参与翻译蛋白质的mRNA 总和。 转录组研究历史: 自从上世纪90 年代中期以来,随着微阵列技术被用于大规模的基因表达水平研究,转录组学作为一门新技术开始在生物学前沿研究中展露头脚并逐渐成为生命科学研究的热点。原因如下:1)蛋白质组研究需要更多的转录组研究的信息:因为单一的蛋白质组数据不足以清楚地鉴定基因的功能,因此蛋白质组的数据需要转录组的研究结果加以印证。2)非编码RNA研究的不断发展,使得转录组研究的范围不断扩大和深化。 3) 随着新一代高通量测序技术运用到转录组研究之中,转录组研究中提供的数据量呈现爆炸式的扩增,极大拓宽了转录组研究解决科学问题的范围。

目前进行转录组研究的技术主要包括如下三种:1)基于杂交技术的微阵列技术;2)基于Sanger测序法的SAGE (serial analysis of gene expression)和MPSS(massively parallel signature sequencing);3)基于新一代高通量测序技术的转录组测序。各种转录组研究技术的特点如下: 基于杂交技术的DNA芯片技术只适用于检测已知序列,却无法捕获新的mRNA。细胞中mRNA的表达丰度不尽相同,通常细胞中约有不到100种的高丰度mRNA,其总量占总mRNA一半左右,另一半mRNA由种类繁多的低丰度mRNA组成。因此由于杂交技术灵敏度有限,对于低丰度的mRNA,微阵列技术难以检测,也无法捕获到目的基因mRNA表达水平的微小变化。 SAGE是以Sanger测序为基础用来分析基因群体表达状态的一项技术。SAGE 技术首先是提取实验样品中RNA并反转录成cDNA,随后用锚定酶(Anchoring enzyme)切割双链cDNA,接着将切割的cDNA 片段与不同的接头连接,通过标签酶酶切处理并获得得到SAGE 标签,然后PCR 扩增连接SAGE 标签形成的标签二聚体,最后通过锚定酶切除接头序列,以形成标签二聚体的多聚体并对其测序(关于SAGE方法细致的介绍请参考网站)。SAGE可以在组织和细胞中定量分析相关基因表达水平。在差异表达谱的研究中,SAGE可以获得完整的转录组学图谱以及发现新的基因并鉴定其功能、作用机制和通路等。

GWAS原理剖析资料

全基因组关联分析(Genome-wide Association Study)是利用高通量基因分型技术,分析数以万计的单核苷酸多态性(SNPs)以及这些SNPs与临床表型和可测性状的相关性。简单地理解全基因组关联分析,GW AS就是标记辅助选择在全基因组范围上的应用,在全基因组层面上开展大样本的、多中心的、重复验证的技术,并对相关基因与复杂性状进行关联研究,从而全面地揭示出不同复杂性状的遗传机制和基础。GW AS是一项开创性的研究方法,因为它可以在以前很难达到的分辨率水平上对成千上万无关样本的全基因组进行研究,且不受与疾病有关的先验性假设的限制,GWAS在全基因组范围、零假设性较候选基因研究都迈出了重要的一步,而且随着高通量测序成本的降低,GW AS在人类疾病以及畜禽经济性状的研究上都表现出巨大的优势。 GW AS的优势除了可以一次性检测到数以万计的SNPs信息,从而提高试验效率以及检验功效以外,其还有其他两个显著的优势,主要表现在:(1)对未知信息的基因进行定位探索。传统的QTL定位仅仅限于对已知的候选基因进行分析探索,而GW AS是对全基因组的范围内的所有位点进行关联分析,因此其拥有更广泛的关联信息,相比候选基因分析GW AS 更有可能找到与性状真正关联的候选基因,因此不再受到预先假设的候选基因的限制。(2)对于GWAS在研究不同的复杂性状之前,不需要像以往的研究一样“盲目地”预设一些假定条件,而是通过在病理和对照组中,有目的地比较全基因组范围内所有SNPs的等位基因频率或者通过家系进行传递不平衡检验(TDT,Transmission disequilibrium test),从而找出与复杂性状显著相关的序列变异。到目前为止,利用全基因组关联分析研究已经挖掘出众多与各种复杂性状相关联的基因和染色体区域,在这些被新鉴定出的位点和区域中,只有小部分结果位于以前对这些性状研究的区域之中或者附近,绝大多数位于以前从未被研究过的区域,GW AS的研究结果表明以前没有被纳入研究的未知区域有可能对于复杂性状也是十分

转录组测序

转录组分析 研究背景: RNA-Seq是通过结合实验和计算方法来鉴定生物样品中RNA序列的种类和丰度的一种技术。通过RNA-seq,我们就能够确定单链RNA分子中ATCG的顺序。整个过程主要包括:从细胞或组织中提取RNA分子、文库的构建以及后继的生物信息学数据分析。RNA-Seq技术具有许多早期研究方法(如:微阵列)所不具备的优点,如:RNA-Seq平台的高通量、新技术所带来的高灵敏度、发现新转录本、新基因模型以及非编码RNA的能力等。 RNA-Seq技术的到来,使人们认识到,无论是单细胞模式生物还是人类,我们对其转录组的认知异常匮乏。而RNA-Seq产生的新的数据,则可以帮助我们发现基因结构上的巨大差异、鉴定出新的转录本以及能够对small non-coding RNA和lncRNAs有着更好的了解。而且随着测序花费的降低,RNA-Seq的优势体现的更加明显。 服务流程: 样品选取

mRNA片段化 cDNA合成 末端修复、加polyA、加接头,PCR扩增 数据分析 测序方案: 内容:TotalRNA检测,普通转录组文库构建及测序及信息分析。测序方式:HiseqPE125。 项目周期:有参45天,无参50天。 分析内容: 无参考基因组: 1.1质量控制 1.11评估碱基质量 1.12过滤低质量reads 1.13 去掉低质量碱基和接头序列 1.14 统计N比例和reads长度 1.15 统计GC含量和reads重复度 1.2 Reads的从头比对组装

1.4基因表达差异分析 1.41 统计基因在不同条件下的差异表达情况 1.5差异基因富集分析 1.51 通过GO、KEGG对差异基因进行功能富集分析 1.6差异表达基因的蛋白质互作网络分析 1.7SNV/Indel分析 1.8样本间相关性分析 有参考基因组: 2.1质量控制(同无参) 2.2 Reads比对组装 2.22 统计reads与参考基因组比对情况 2.22 分析对插入、删除和连接体情况 2.23 统计转录本在参考基因组上位置、长度和覆盖度情况 2.3基因表达差异分析 2.4差异基因富集分析 2.5差异表达基因的蛋白质互作网络分析 2.6新转录本预测 2.7 SNV/Indel分析 2.8 UTR分析 2.9可变剪接分析 3.0 Non-coding RNA分析 3.1样本相关性分析 案例解读: 案例:通过poly(A)+ RNA-Seq分析Drosophila melanogaster转录组的动态性 本项研究通过poly(A)+ RNA-Seq技术对果蝇的细胞系进行测序,鉴定出一批通过替换启动子和RNA剪接来转录出大量转录本的神经特异性基因。通过后继分析还发现,对于RNA剪接变化,组织间的差异要远远大于发育阶段间的差异。另外,发现性腺表达了成百上千的未知的蛋白编码和lncRNAs,其中一些甚至是反义转录的。显示了果蝇转录组的动态性和多样性。 小部分的基因(0.2%)编码出大部分的转录本。

相关主题
文本预览
相关文档 最新文档