当前位置:文档之家› S7-200系列CPU 224参数

S7-200系列CPU 224参数

S7-200系列CPU 224参数
S7-200系列CPU 224参数

S7-200系列中的CPU 224主要技术性能。1.一般性能

S7-200 CPU224的一般性能如表4-13所示。

2.输入特性

S7-200 CPU224的输入特性如表4-14所示。

3.输出特性

S7-200 CPU224输出特性如表4-15所示。

4.扩展单元的主要技术特性

S7-200系列PLC是模块式结构,可以通过配接各种扩展模块来达到扩展功能、扩大控制能力的目的。目前S7-200主要有三大类扩展模块。

(1)输入/输出扩展模块S7-200 CPU上已经集成了一定数量的数字量I/O点,但如用户需要多于CPU单元I/O点时,必须对系统做必要的扩展。CPU221无I/O扩展能力,CPU 222最多可连接2个扩展模块(数字量或模拟量),而CPU224和CPU226最多可连接7个扩展模块。

S7-200 PLC系列目前总共提供共5大类扩展模块:数字量输入扩展板EM221(8路扩展输入);数字量输出扩展板EM222(8路扩展输出);数字量输入和输出混合扩展板EM2 23(8I/O,16I/O,32I/O);模拟量输入扩展板EM231,每个EM231可扩展3路模拟量输入通道,A/D转换时间为25μs,12位;模拟量输入和输出混合扩展模板EM235,每个EM 235可同时扩展3路模拟输入和1路模拟量输出通道,其中A/D转换时间为25μs,D/A转换时间]100μs,位数均为12位。

基本单元通过其右侧的扩展接口用总线连接器(插件)与扩展单元左侧的扩展接口相连接。扩展单元正常工作需要+5VDC工作电源,此电源由基本单元通过总线连接器提供,扩展单元的24VDC输入点和输出点电源,可由基本单元的24VDC电源供电,但要注意基本单元所提供的最大电流能力。

(2)热电偶/热电阻扩展模块热电偶、热电阻模块(EM231)是为CPU222,CPU224,CPU226设计的,S7-200与多种热电偶、热电阻的连接备有隔离接口。用户通过模块上的DIP开关来选择热电偶或热电阻的类型,接线方式,测量单位和开路故障的方向。

(3)通讯扩展模块除了CPU集成通讯口外,S7-200还可以通过通讯扩展模块连接成更大的网络。S7-200系列目前有两种通讯扩展模块:PROFIBUS-DP扩展从站模块(EM277)和AS-i接口扩展模块(CP243-2)。

S7-200系列PLC输入/输出扩展模块的主要技术性能如表4-16所示。

Intel 至强E系列CPU参数

I n t e l X e o n E系列服务器处理器 一、IntelXeonE系列CPU命名规则 首先,IntelE3,E5,E7代表了3个不同档次的至强CPU,这种命名方式类似桌面上的Corei3,i5,i7,分别对应好、更好、最好。 其次,以E3-1220为例,E3-1220中的这个"1",也就是连字符后的第一个数字,它代表处理器最多支持的并行路数,有1、2、4、8四种规格,分别代表了单路、双路、四路和八路。因此,E3-1220这款CPU就是一款单路的CPU,只能用于对应的单路的服务器主板上面。再如E5-2400系列,E5-2600系列,相比于E3-1200系列来讲,E5代表了更高档次,更好性能,而连字符后的第一个数字为"2",这里的2也代表了是双路的CPU,只能用于对应的双路芯片组的主板。 紧接着,我们来看连字符后的第二个数字,它代表处理器封装接口形式,一共有2,4,6,8四种规格,分别是2对应SocketH2(LGA1155)、4对应SocketB2(LGA1356)、6对应SocketR(LGA2011)、8对应SocketLS(LGA1567)。我们现在举例的这款E3-1220至强CPU,连字符后的第二个数字是"2",2对应SocketH2(LGA1155),也就是说,这个CPU封装是SocketLGA1155的。 然后,连字符后第三和第四位代表编号序列,一般是数字越大产品性能越高,价格也更贵。 接下来,紧跟第四位数字后的"L"代表是低功耗版,留空的话就代表是标准版。 连字符后面最后的数字代表修订版本,比如v2、v3、v4等等 二、产品家族 InterXeonE3-1200产品家族 InterXeonE5-1600产品家族 InterXeonE5-2400产品家族 InterXeonE5-2600产品家族 InterXeonE5-4600产品家族 InterXeonE7-2800产品家族 InterXeonE7-4800产品家族 InterXeonE7-8800产品家族

英特尔i3_i5_i7处理器型号及参数总览表+CPU型号大全

英特尔i3/i5/i7处理器型号及参数总览表 请仔细看完本文,看完后你将会对笔记本芯片有一定了解,买笔记本才不会被JS坑骗。 ~~Kiong 前言:随着英特尔全新32nm移动处理器的推出,英特尔移动处理器大军的规模进一步膨胀。粗略地计算一下,现在市场上可以买到的Core i、酷睿2、 奔腾双核、赛扬双核、凌动处理器几大家族的成员已经超过了80款,即使是经常关注笔记本技术的达人,也很难记住每一款处理器的技术规格。 名词解释 前端总线:是指CPU与北桥芯片之间的数据传输总线,人们常常以MHz表示的速度来描述总线频率。总线的种类很多,前端总线的英文名字是Fr Bus,通常用FSB表示。 睿频:英特尔睿频加速技术。是英特尔酷睿i7/i5 处理器的独有特性。也是英特尔新宣布的一项技术。 英特尔官方技术解释如下:当启动一个运行程序后,处理器会自动加速到合适的频率,而原来的运行速度会提升10%~20% 以保证程运行;应对复杂应用时,处理器可自动提高运行主频以提速,轻松进行对性能要求更高的多任务处理;当进行工作任务切换时,如果存和硬盘在进行主要的工作,处理器会立刻处于节电状态。这样既保证了能源的有效利用,又使程序速度大幅提升。 三级缓存(L3):目前只有酷睿I系列才有,之前的都是L2(二级缓存)。是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的CPU 有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。 制程:制程越小越好。越来越高的工艺制程可以提高芯片的集成度,增加晶体管的数量,扩展新的功能。同时随着晶体管尺寸的缩小,每颗的单位成本也有所降低。此外,更高的工艺制程可以帮助降低CPU的功耗,另外,降低CPU的成本以前扩大CPU产能也是新工艺制的积极影响。 TDP:TDP的英文全称是“Thermal Design Power”,中文直译是“散热设计功耗”。主要是提供给计算机系统厂商,散热片/风扇厂商,以及商等等进行系统设计时使用的。一般TDP主要应用于CPU,CPU TDP值对应系列CPU 的最终版本在满负荷(CPU 利用率为100%的理能会达到的最高散热热量,散热器必须保证在处理器TDP最大的时候,处理器的温度仍然在设计范围之内。 注意:由于CPU的核心电压与核心电流时刻都处于变化之中,这样CPU的实际功耗(其值:功率P=电流A×电压V)也会不断变化TDP值并不等同于CPU的实际功耗,更没有算术关系。

CPU的主要性能参数

CPU的主要性能参数 主频 通常所说的某某CPU是多少兆赫的,而这个多少兆赫就是“CPU的主频”。主频也叫时钟频率,单位是GHZ,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。 有人以为认为CPU的主频指的是CPU运行的速度,实际上这个认识是很片面的。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力是没有直接关系的。当然,主频和实际的运算速度是有关的,但目前还没有一个确定的公式能够定量两者的数值关系,因为CPU的运算速度还要看CPU的流水线的各方面的性能指标(缓存、指令集,CPU的位数等等)。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。因此主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。 外频 外频是CPU与主板上其它设备进行数据传输的物理工作频率,也就是系统总线的工作频率。它代表着CPU与主板和内存等配件之间的数据传输速度。单位也是MHz。CPU标准外频主要有66MHz、100MHz、133MHz、166MHz、200MHz几种。 外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。 倍频 倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应——CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。 理论上倍频是从1.5一直到无限的,但需要注意的是,倍频是以以0.5为一个间隔单位。 倍频一般是不能改的,现在的CPU基本都对倍频进行了锁定。 CPU的其它参数

至强处理器

英特尔至强Xeon cpu处理器型号大全及详细参数 第1页:双核至强UP:3000、3100系列 3000系列“Conroe” 2006年9月末英特尔发布了代号为“Conroe”(产品代码80557)的双核至强 3000系列CPU,它只不过是英特尔主流“Conroe”的重新贴牌产品,商标采用了酷睿2 Duo(用于消费级的桌面产品),和其它大多数至强处理器不同,它们只支持单CPU运算,使用Socket T (LGA775),前端总线速度1066MHz,支持英特尔增强的自动降频和虚拟化技术,但不支持超线程。 3100系列“Wolfdale” 代号为“Wolfdale”(产品代码80570)3100系列双核至强 CPU只是对英特尔主流产品Wolfdale进行了重新包装,采用相同的65纳米制造工艺和6MB二级缓存,和大多数至强不同,它们仅支持单CPU运算,使用Socket T (LGA775),前端总线1333MHz,支持增强的自动降频和虚拟化技术,但不支持超线程。 第2页:四核至强UP:3200、3300、3400和3500系列 ——英特尔的多核之路:四核、六核至强 3200系列“Kentsfield”

2007年1月7日,英特尔发布了重新包装过的四核(2x2)酷睿2 Quad处理器,即至强 3200系列(产品代码80562),2x2四核心包括两个独立的双核芯片,包括三个型号X3210、X3220和X3230,分别运行在 2.13GHz、2.4GHz和2.66GHz。和300系列类似,这些型号只支持单CPU运算,前端总线1066MHz,其目标定位于刀片服务器市场,X3220也当作Core2 Quad Q6600销售,X3230对应到Q6700。 3300系列“Yorkfield” 英特尔发布重新包装的四核酷睿2 Quad Yorkfield Q9400和Q9x50处理器时,同期发布了至强 3300系列(产品代码80569),它包含两个独立的双核芯片,采用了45纳米制造工艺,型号包括X3320、X3350、X3360和X3370,分别运行在2.50GHz、2.66GHz、2.83GHz和3.0GHz,每个芯片统一使用6MB二级缓存(但X3320每块芯片二级缓存只有3MB),前端总线1333MHz,所有型号都支持英特尔64位(x86-64实现),XD位和虚拟化技术,也支持按需供电,使用LAG775 Socket。 3400系列“Nehalem” 英特尔公司于今天发布了基于最新酷睿微体系架构(研发代号:Nehalem)的入门级英特尔至强 3400系列服务器处理器。此系列至强处理器全部采用无铅、无卤素设计,并支持独有的英特尔睿频加速技术(Intel Turbo Boost technology)。大多数型号的英特尔至强3400处理器还支持英特尔超线程(Intel Hyper-Threading Technology)技术。这些全新技术的加入,不仅能够为广大中小企业提供"智能"的性能体验,还有助于服务器在任务负载较轻时提供最优能效表现。 更佳的入门级服务器 现在,需要全天候运营的中小型企业及教育界用户比过去更需要购买基于全新英特尔至强3400系列处理器和英特尔3400及3420芯片组的服务器,这些新产品将帮助他们更高效地运行电子邮件服务、文件服务、打印服务以及动态网络服务等负载,进而提高生产力。此外,教育行业用户还能借助这些服务器实现课堂协作以及学校管理服务,提高教学质量。基于至强3400系列处理器的服务器通过加

cpu的简介及主要性能指标

CPU的簡介及主要性能指標 什麽是CPU? CPU是英語※Central Processing Unit/中央處理器§的縮寫, CPU一般由邏輯運算單元、控制單元和存儲單元組成。在邏輯運算和控制單元中包括一些寄存器,這些寄存器用於CPU在處理資料過程中資料的暫時保存。 CPU主要的性能指標有: 主頻即CPU的時鐘頻率(CPU Clock Speed)。 這是我們最關心的,我們所說的233、300等就是指它,一般說來,< 主頻越高,CPU的速度就越快,整機的就越高。 時鐘頻率: CPU的外部時鐘頻率,由電腦主板提供,以前一般是66MHz,也有主板支援75各83MHz,目前Intel公司最新的晶片組BX以使用100 MHz的時鐘頻率。另外VIA 公司的MVP3、MVP4等一些非Intel的晶片組也開始支援100MHz的外頻。精英公司的BX主板甚至可以支援133 MHz的外頻。 內部緩存(L1 Cache): 封閉在CPU晶片內部的快取記憶體,用於暫時存儲CPU運算時的部分指令和資料,存取速度與CPU主頻一致,L1緩存的容量單位一般爲KB。L1緩存越大,CPU 工作時與存取速度較慢的L2緩存和記憶體間交換資料的次數越少,相對電腦的運算速度可以提高。 外部緩存(L2 Cache): CPU外部的快取記憶體,PentiumPro處理器的L2和CPU運行在相同頻率下的,但成本昂貴,所以 PentiumII運行在相當於CPU頻率一半下的,容量爲512K。爲降低成本Inter公司生産了一種不帶L2的CPU命爲賽揚,性能也不錯。 MMX技術是※多媒體擴展指令集§的縮寫。 MMX是Intel公司在1996年爲增強Pentium CPU在音像、圖形和通信應用方面而採取的新技術。爲CPU增加57條MMX指令,除了指令集中增加MMX指令外,還將CPU晶片內的L1緩存由原來的 16KB增加到32KB(16K指命+16K資料),因此MMX CPU 比普通 CPU在運行含有MMX指令的程式時,處理多媒體的能力上提高了 60%左右。

英特尔至强处理器历代记

十载寒窗英特尔至强处理器历代记https://www.doczj.com/doc/cc13799103.html, 2011-04-11 佚名 IT168 摘要:回顾至强处理器发展的历程,面向双路的产品从最初的至强5000系列到5400系列到最新的至强E7,算下来Intel在双路及四路以上服务器处理器中已经整整更新了10代产品。 2011年4月6日,Intel在北京发布了采用全新命名的至强E7系列,回顾至强处理器发展的历程,面向双路的产品从最初的至强5000系列到5400系列,到Nehalem架构的至强5500、Westmere架构的至强5600;而四路及多路处理器方面,最初的至强7100、六核心的Dunnington至强7400、上一代的Westmere至强7500再到最新的至强E7,算下来Intel在双路及四路以上服务器处理器中已经整整更新了10代产品。 这些产品见证了至强这个品牌一步步走向辉煌,同时这些产品也帮助数以万计的企业获得成功。今天,我们就来回顾一下最近几年Intel至强的10代产品,为了那些曾经忘却的纪念。 一代、Dempsey核心至强5000系列 英特尔公司的“Bensley”平台包括代号为“Dempsey”的双核Xeon DP处理器和代号为“Blackford”的Intel 5000系列芯片组,另外还有一系列的新技术,比如I/O AT技术、FBD内存技术、更新的安全特性等等。 英特尔当时一共发布了8款基于“Dempsey”核心的处理器:Xeon 5080、Xeon 5070、Xeon 5060、Xeon 5063、Xeon 5050、Xeon 5040、Xeon 5030和Xeon 5020。这些处理器依然采用了NetBurest微架构,它们将会是最后一个采用该微架构的Xeon系列产品。在Xeon 5000系列处理器中整合了两个完整的NetBurst微架构处理器,并且对于NetBurst 微架构进行了进一步的优化——主要涉及到超管线技术(Hyper Pipelined Technology)和执行追踪缓存(Execution Trace Cache)。每个处理器拥有独立的2MB二级缓存,其前端总线为1066MHz或者667MHz,可以提供8.5GB/s或者5.3GB/s的传输带宽。 Xeon 5000系列处理器采用了65nm制程,这对于有效的抑制Xeon处理器的发热量具有至关重要的作用。采用90nm制程的Irwindale核心的单核Xeon处理器TDP在130瓦左右,而Xeon 5000系列双核处理器TDP也只有135瓦甚至更低。Xeon 5000系列处理器不再采用Socket604封装,改用了FC-LGA6 LGA771封装,可进一步改进处理器的电气性能,更利于功率传导。 这个系列的处理器依然支持超线程技术(Hyper-Threading Technology),这样每个核心可以处理2个线程,每颗双核心处理器可以并行处理4个线程,双路配置的处理器则能可以同时处理8个线程。另外,这个系列的处理器支持

最新CPU型号大全

CPU型号大全 收录内容 ※Intel桌面:赛扬、奔腾、酷睿2 、酷睿i3、酷睿i5、酷睿i7 ※Intel移动:凌动、赛扬、奔腾、酷睿2、酷睿i3、酷睿i5、酷睿i7 ※AMD桌面:闪龙、速龙、羿龙、速龙II、羿龙II ※AMD移动:锐龙、闪龙、速龙、速龙II、羿龙II 补充说明 ※带☆的为不锁倍频版本 ※EE(Extreme Edition)为Intel至尊版、BE(Black Edition)为AMD黑盒版 ※红色为停产产品 ※不包括90nm及以前的产品 ※总线频率为等效频率 ※列表数据均来自官方网站 Intel桌面系列 赛扬系列

型号核心架构核心代号制造工艺核心/线程主频 频率 二级缓存虚拟化TDP Celeron D 347 Netburst Cedar Mill 65nm 1C/1T 3.06GHz FSB 533MHz 512KB 不支持86W Celeron D 352 Netburst Cedar Mill 65nm 1C/1T 3.2GHz FSB 533MHz 512KB 不支持86W Celeron D 356 Netburst Cedar Mill 65nm 1C/1T 3.33GHz FSB 533MHz 512KB 不支持86W Celeron D 360 Netburst Cedar Mill 65nm 1C/1T 3.46GHz FSB 533MHz 512KB 不支持65W Celeron D 365 Netburst Cedar Mill 65nm 1C/1T 3.6GHz FSB 533MHz 512KB 不支持65W Celeron 420 Core Conroe-L 65nm 1C/1T 1.6GHz FSB 800MHz 512KB 不支持35W Celeron 430 Core Conroe-L 65nm 1C/1T 1.8GHz FSB 800MHz 512KB 不支持35W Celeron 440 Core Conroe-L 65nm 1C/1T 2GHz FSB 800MHz 512KB 不支持35W Celeron 450 Core Conroe-L 65nm 1C/1T 2.2GHz FSB 800MHz 512KB 不支持35W Celeron E1200 Netburst Allendale 65nm 2C/2T 1.6GHz FSB 800MHz 512KB 不支持65W Celeron E1400 Netburst Allendale 65nm 2C/2T 2GHz FSB 800MHz 512KB 不支持65W Celeron E1500 Netburst Allendale 65nm 2C/2T 2.2GHz FSB 800MHz 512KB 不支持65W Celeron E1600 Netburst Allendale 65nm 2C/2T 2.4GHz FSB 800MHz 512KB 不支持65W Celeron E3200 Core Wolfdale 45nm 2C/2T 2.4GHz FSB 800MHz 1MB 不支持65W Celeron E3300 Core Wolfdale 45nm 2C/2T 2.5GHz FSB 800MHz 1MB 不支持65W Celeron E3400 Core Wolfdale 45nm 2C/2T 2.6GHz FSB 800MHz 1MB 不支持65W ?Celeron G1101 Westmere Clarkdale 32nm 2C/2T 2.26GHz DMI 2500MHz 2MB VT-X 73W ?集成GPU频率533MHz 内存支持DDR3-1066 奔腾系列

Intel(英特尔)、AMD(超微)所有CPU型号大全

Intel(英特尔)、AMD(超微)所有CPU型号大全 英特尔的处理器有以下品牌: ?英特尔? 酷睿? 处理器 ?英特尔? 奔腾? 处理器 ?英特尔? 赛扬? 处理器 ?英特尔? 凌动? 处理器 ?英特尔? 至强? 和安腾? 处理器 英特尔? 酷睿? i7-975 处理器至尊版 世界上性能最强的台式机处理器。1 借助英特尔? 酷睿? i7 处理器 975 至尊版的智能化表现,释放台式机计算潜能,轻松应对复杂的多线程游戏和应用。 英特尔? 酷睿? i7 处理器至尊版 用世界上最快的处理器征服极致游戏世界: 英特尔? 酷睿? i7 处理 器至尊版。1 更快速的智能多核技术,满足您的各类需求,带来难以 想象的突破性游戏体验。 英特尔? 酷睿? i7 处理器 智能多核技术速度更快,能够自动为最需要的应用提供处理能力。借助该技术, 新的英特尔? 酷睿? i7 处理器将能为您带来惊人的突破性计算性能。这是全 球最好的台式机处理家族。 英特尔? 酷睿? i5 处理器 智能特性,能够根据任务需求进行加速。英特尔? 酷睿? i5 处理器是一款出 色的解决方案,适用于多媒体多任务处理环境。 英特尔? 酷睿?2 至尊处理器 适用于超级计算。享受英特尔最新双核及四核技术带来的革命性性能 水准,获得逼真的高清晰度体验和多任务响应能力。 英特尔? 酷睿?2 至尊处理器 适用于超级计算。享受英特尔最新双核及四核技术带来的革命性性 能水准,获得逼真的高清晰度体验和多任务响应能力。 英特尔? 酷睿?2 四核处理器 多媒体发烧友们将迎来一次疯狂的体验。借助英特尔? 酷睿?2 四核

处理器,为台式机带来强大的四核性能。它是高度线程化娱乐应用和高效多任务处理的理想引擎。 英特尔? 酷睿?2 双核处理器 至尊威力,铸就优异性能。凭借能效优化的双核技术和优异的能源 使用效率,英特尔? 酷睿?2 双核处理器可以出色地运行要求最苛刻 的应用程序。 英特尔? 奔腾? 处理器 英特尔? 奔腾? 处理器可提供超强的台式机性能、更低的能耗以及更出色的日常计算多任务处理能力。 英特尔? 赛扬? 处理器 基于英特尔? 赛扬? 处理器的台式机平台可为您提供超凡的计算体验,以及源自英特尔的出色品质和可靠性。 -------------------------------------------------------------------- 在同一处理器等级或家族内,编号越高表示特性越多,包括: 高速缓存、时钟速度、前端总线、英特尔? 快速通道互联、新指令或其它英特尔技术1。拥有较高编号的处理器可能某一特性较强,而另一特性较弱。 一、英特尔? 酷睿? 处理器 英特尔? 酷睿? i7 品牌的处理器号由 i7 标识符加三字数字序列组成。

cpu各参数的含义

cpu各参数的含义 2013-09-22 11:20处理器(Processor)框内的信息: 1、名称(Name):代表CPU的名字,比如E2140,Q6600之类。 2、代号(CodeName):代表CPU核心架构的代号,不同核心的cpu性能差距很大. 3、封装(Package):即用绝缘的材料将cpu内核和其他原件一块打包的技术。 4、工艺(Technology):工艺越高,CPU的功耗和发热量就越小,可超频性就越强。 5、核心电压(Core Voltage):核心电压是一个很重要的参数,尤其是对超频来说。一般的核心电压越低,越容易超频。因为核心电压低了,可提升的余地就大,功耗就低,发热量就小,有利于超频玩。所以高手选CPU的时候很注重修订(下面介绍),CPU不同的修订代表了不同的品质,一些就体现在核心电压这块,苛刻的玩家甚至只买生产日期是哪一年那一周的那一批次的产品。 6、规格(Specification):就是对CPU的描述,没啥意思。 7、系列(Family)、扩展系列(Ext.Family)、型号(Model)、扩展型号(Ext.Model):应该是CPU厂商对CPU的定义,该CPU属于那一系列哪一个型号。对一般人没用。 8、步进(Stepping)、修订(Reversion):代表了CPU厂商对该CPU的的改进信息,类似我们开发程序时候的版本号。一般较新的

步进的CPU都比老的好一些,但世事无绝对,可能之前步进的CPU超频性更好一些呢,这也说不准。尽量选择步进新的,毕竟CPU厂不会将它越改越烂。 以上就是处理器(Processor)框内的信息,买到一个CPU后,可对比这些信息,瞅瞅这个CPU是不是真滴,也可看看CPU是否自己中意的那个修订版的。 时钟(Clock)框内的信:(如果是多核心CPU,可在下面选核心,这里显示核心的时钟状态。) 1、核心速度(Core Speed):就是主频。越高越好,超频后也可在这里体现出来。计算方法是主频 = 外频 * 倍频。 2、倍频(Multiplier):就是主频与外频的比例。当一个CPU 主频相对较低,制作工艺较高,倍频也较高,这意味着这个CPU超频比较厉害,比如赛扬系列。大多数CPU的倍频是不允许修改的。但现在的AMD出了不少黑盒版CPU,黑盒版意味着CPU的倍频是可以修改的,这就更容易超频了。此外intel的高端至尊系列好像外频也是不锁的。 3、总线速度(Bus Speed):其实就是外频吧。同主频的情况下,外频越高(倍频不同)性能也就越高。 4、前端总线(FSB):前端总线就是连接CPU跟北桥芯片的总线,这个频率当然是越高越好,但前提是主板支持。对Intel的CPU来说,前端总线连接了CPU跟内存控制器(北桥内),CPU操作内存通过内

CPU型号大全总结CPU型号查询一览表

CPU型号大全总结CPU型号查询一览表 一、X86时代的CPUCPU的溯源可以一直去到1971年。在那一年,当时还处在发展阶段的INTEL公司推出了世界上第一台微处理器4004。这不但是第一个用于计算器的4位微处理器,也是第一款个人有能力买得起的电脑处理器!!4004含有2300个晶体管,功能相当有限,而且速度还很慢,被当时的蓝色巨人IBM 以及大部分商业用户不屑一顾,但是它毕竟是划时代的产品,从此以后,INTEL 便与微处理器结下了不解之缘。可以这么说,CPU的历史发展历程其实也就是INTEL公司X86系列CPU的发展历程,我们就通过它来展开我们的“CPU历史之旅”。 4004处理器核心架构图1978年,Intel公司再次领导潮流,首次生产出16位的微处理器,并命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集,但在i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算指令。由于这些指令集应用于i8086和i8087,所以人们也这些指令集统一称之为X86指令集。虽然以后Intel又陆续生产出第二代、第三代等更先进和更快的新型CPU,但都仍然兼容原来的X86指令,而且Intel在后续CPU的命名上沿用了原先的X86序列,直到后来因商标注册问题,才放弃了继续用阿拉伯数字命名。至于在后来发展壮大的其他公司,例如AMD和Cyrix等,在486以前(包括486)的CPU都是按Intel的命名方式为自己的X86系列CPU命名,但到了586时代,市场竞争越来越厉害了,由于商标注册问题,它们已经无法继续使用与Intel的X86系列相同或相似的命名,只好另外为自己的586、686兼容CPU命名了。 1979年,INTEL公司推出了8088芯片,它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为4.77MHz,地址总线为20位,可使用1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位。1981年8088芯片首次用于IBMPC机中,开创了全新的微机时代。也正是从8088开始,PC机(个人电脑)的概念开始在全世界范围内发展起来。 Intel8086处理器1982年,许多年轻的读者尚在襁褓之中的时候,INTE已经推出了划时代的最新产品枣80286芯片,该芯片比8006和8088都有了飞跃的发展,虽然它仍旧是16位结构,但是在CPU的内部含有13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。从80286开始,CPU的工作方式也演变出两种来:实模式和保护模式。 Intel80286处理器1985年INTEL推出了80386芯片,它是80X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步,与80286相比,80386内部内含27.5万个晶体管,时钟频率为12.5MHz,后提高到20MHz,25MHz,33MHz。80386的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB 内存。它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086处理器来提供多任务能力。除了标准的80386芯片,也就是我们以前经常说的80386DX外,出于不同的市场和应用考虑,INTEL又陆续推出了一些其它类型的80386芯片:80386SX、80386SL、80386DL等。1988年推出的80386SX是市场定位在80286和80386DX之间的一种芯片,其与80386DX 的不同在于外部数据总线和地址总线皆与80286相同,分别是16位和24位即寻址能力为16MB。1990年推出的80386SL和80386DL都是低功耗、节能型芯片,主要用于便携机和节能型台式机。80386SL与80386DL的不同在于前者是基于

CPU主要参数

CPU,全称“Central Processing Unit”,中文名为“中央处理器”,在大多数网友的印象中,CPU只是一个方形配件,正面是金属盖,背面是一些密密麻麻的针脚或触点,可以说毫无美感可言。但在这个小块头的东西上,却是汇聚了无数的人类智慧在里面,我们今天能上网、工作、玩游戏等全都离不开这个小小的东西,它可谓是小块头有大智慧。 作为普通用户、网友,我们并不需要解读CPU里的所有“大智慧”,但CPU既然是电脑中最重要的配件、并且直接决定电脑的性能,了解它里面的部分知识还是有必要的。下面笔者将给大家介绍CPU里最重要的基础知识,让大家对CPU有新的认识。 1、CPU的最重要基础:CPU架构 CPU架构: 采用Nehalem架构的Core i7/i5处理器 CPU架构,目前没有一个权威和准确的定义,简单来说就是CPU核心的设计方案。目前CPU大致可以分为X86、IA64、RISC等多种架构,而个人电脑上的CPU架构,其实都是基于X86架构设计的,称为X86下的微架构,常常被简称为CPU架构。 更新CPU架构能有效地提高CPU的执行效率,但也需要投入巨大的研发成本,因此CPU 厂商一般每2-3年才更新一次架构。近几年比较著名的X86微架构有Intel的Netburst (Pentium 4/Pentium D系列)、Core(Core 2系列)、Nehalem(Core i7/i5/i3系列),以及AMD的K8(Athlon 64系列)、K10(Phenom系列)、K10.5(Athlon II/Phenom II 系列)。

Intel以Tick-Tock钟摆模式更新CPU 自2006年发布Core 2系列后,Intel便以“Tick-Tock”钟摆模式更新CPU,简单来说就是第一年改进CPU工艺,第二年更新CPU微架构,这样交替进行。目前Intel正进行“Tick”阶段,即改进CPU的制造工艺,如最新的Westmere架构其实就是Nehalem架构的工艺改进版,下一代Sandy Bridge架构将是全新架构。AMD方面则没有一个固定的更新架构周期,从K7到K8再到K10,大概是3-4年更新一次。 制造工艺:

历代CPU最全明细参数表

历代CPU最全明细参数表 简介 曾几何时,我们判断计算机性能高低的标准只是处理器产品数字的大小以及外频的高低。数字大的表示电脑的运算速度越快。例如,80286要比8088和8086要快,但80386要比80286快,而80486则是最快的。但是时光荏苒,现在的计算机世界已经不同于十几年前了。那么今天就让我们来看看当前的处理器。 与以往单凭处理器产品数字和外频来判断处理器性能相比,如今判断的标准还加入了处理器产品名称,型号名称,核心名称以及架构。要想通过这些纷繁复杂的技术标准来判断处理器的性能的确不是一件简单的事情。当然,你可以通过一些媒体了解具体某款或者某几款处理器的性能,但是,这多少有些片面。今天我们要做的就是把过去7年内AMD和英特尔公司推出的处理器做一个详细列表,相信这样可以帮助你在更好的了解处理器的同时,也为自己在以后购买处理器时能够做到心中有数。 由于现在的处理器更新换代的速度极快,因此在这次的测评中,我们将英特尔Pentium II处理器,AMD Athlon处理器之前的产品都排除在外。这次测评中两家公司的处理器产品的性能测试都是在适合处理器本身的条件下进行的。 那么我们这次对比处理器的测评都将就那些细节进行评定呢?主频大小,总线频率,缓存大小,晶体管数量,处理器核心名以及其他一些细节都将在下面的测试中被逐项列出。由于处理器的型号是我们对于处理器的第一印象,因此这次的评定也将包括AMD Athlon XP以及后续处理器,英特尔Pentium 4以及后续处理器的型号。我们首先要对处理器的核心名以及架构进行列表。总体来说,它将更好的帮助我们去了解不同的x86处理器的性能究竟如何。 我们首先来看一下AMD处理器,也许有些英特尔的支持者会问为什么不先看英特尔处理器。但是凡事都有先后,A在字母表中排了I前,因此我们还是先来看一下AMD公司的产品 AMD处理器产品列表

AMD CPU型号大全1

AMD CPU型号大全(2009-09-29 09:16:15) 标签:it分类:电脑知识 AMD 闪龙3000+ AM2 1.60GHz Socket AM2 Manila 800MHz 200MHz 0.09微米 256KB/-- 单核 1.40V AMD 闪龙3200+ AM2 1.80GHz Socket AM2 Manila 800MHz 200MHz 0.09微米 128KB/-- 单核 AMD 闪龙3400+ AM2 1.80GHz Socket AM2 Manila 800MHz 200MHz 0.09微米 256KB/-- 单核 1.40V AMD 闪龙 LE-1100 AM2 1.90GHz Socket AM2 Sparta 1000MHz 200MHz 0.065微米 256KB/-- 单核 1.35V AMD 闪龙 LE-1150 AM2 2.00GHz Socket AM2 Sparta 1000MHz 200MHz 0.065微米 256KB/-- 单核 1.20V AMD 闪龙 LE-1200 AM2 2.10GHz Socket AM2 Sparta 200MHz 0.065微米 512KB/-- 单核1.20V AMD 闪龙 LE-1250 AM2 2.20GHz Socket AM2 Sparta 1000MHz 200MHz 0.065微米 512KB/-- 单核 1.40V AMD 闪龙 LE-1640 AM2 2.60GHz Socket AM2 Orleans 1000MHz 200MHz 0.065微米 1024KB/-- 单核 1.35V AMD 闪龙双核 2100+ AM2 1.8GHz Socket AM2 Brisbane 800MHz 200MHz 0.065微米 2x256KB/-- 双核 1.3V AMD 速龙双核 4850e 2.50GHz Socket AM2 Windsor 1000MHz 200MHz 0.065微米 1024KB/-- 双核 AMD 速龙 X2 BE-2300 1.90GHz Socket AM2 Brisbane 1000MHz 200MHz 0.065微米 1024KB/-- 双核 1.25V AMD 速龙64 X2 3600+ AM2 1.90GHz Socket AM2 Windsor 1000MHz 200MHz 0.065微米 2x512KB/-- 双核 AMD 速龙64 X2 3800+ AM2 2.00GHz Socket AM2 Windsor 1000MHz 0.09微米 2x512KB/-- 双核 AMD 速龙64 X2 4000+ AM2 2.00GHz Socket AM2 Brisbane 1000MHz 200MHz 0.065微米 2x512KB/-- 双核 AMD 速龙64 X2 4200+ AM2 2.20GHz Socket AM2 Windsor 1000MHz 200MHz 0.09微米 2x512KB/-- 双核 AMD 速龙64 X2 4400+ AM2 2.30GHz Socket AM2 Brisbane 1000MHz 200MHz 0.065微米 2x512KB/-- 双核 1.30V AMD 速龙64 X2 4600+ AM2 2.40GHz Socket AM2 Brisbane 1000MHz 200MHz 0.065微米 2x512KB/-- 双核 1.30V AMD 速龙64 X2 4800+ AM2 2.50GHz Socket AM2 Brisbane 1000MHz 200MHz 0.065微米

电脑cpu的性能指标基础知识介绍

电脑cpu的性能指标基础知识介绍 2010年02月20日 17时20分26秒组装电脑配置网 CPU主要的性能指标有以下几点: (1)主频,也就是CPU的时钟频率,简单地说也就是CPU的工作频率。 一般说来,一个时钟周期完成的指令数是固定的,所以主频越高,CPU的速度也就越快了。不过由于各种CPU的内部结构也不尽相同,所以并不能完全用主频来概括CPU的性能。至于外频就是系统总线的工作频率;而倍频则是指CPU 外频与主频相差的倍数。用公式表示就是:主频=外频×倍频。我们通常说的赛扬433、PIII 550都是指CPU的主频而言的。 (2)内存总线速度或者叫系统总路线速度,一般等同于CPU的外频。 内存总线的速度对整个系统性能来说很重要,由于内存速度的发展滞后于CPU的发展速度,为了缓解内存带来的瓶颈,所以出现了二级缓存,来协调两者之间的差异,而内存总线速度就是指CPU与二级(L2)高速缓存和内存之间的工作频率。 (3)工作电压。工作电压指的也就是CPU正常工作所需的电压。 早期CPU(386、486)由于工艺落后,它们的工作电压一般为5V,发展到奔腾586时,已经是3.5V/3.3V/2.8V了,随着CPU的制造工艺与主频的提高,CPU 的工作电压有逐步下降的趋势,Intel最新出品的Coppermine已经采用1.6V的工作电压了。低电压能解决耗电过大和发热过高的问题,这对于笔记本电脑尤其重要。 (4)协处理器或者叫数学协处理器。在486以前的CPU里面,是没有内置协处理器的。 由于协处理器主要的功能就是负责浮点运算,因此386、286、8088等等微机CPU的浮点运算性能都相当落后,自从486以后,CPU一般都内置了协处理器,协处理器的功能也不再局限于增强浮点运算。现在CPU的浮点单元(协处理器)往往对多媒体指令进行了优化。比如Intel的MMX技术,MMX是“多媒体扩展指令集”的缩写。MMX是Intel公司在1996年为增强Pentium CPU在音像、图形和通信应用方面而采取的新技术。为CPU新增加57条MMX指令,把处理多媒体的能力提高了60%左右。 (5)流水线技术、超标量。流水线(pipeline)是 Intel首次在486芯片中开始使用的。 流水线的工作方式就象工业生产上的装配流水线。在CPU中由5~6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5~6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此

CPU的性能指标

一、CPU的性能指标: 1、主频(外频,倍频):主频=外频*倍频. CPU的工作频率(主频)包括两个部分:外频与倍频,两者的乘积就是主频。所谓外部频率,指的就是系统总线频率,目前主流CPU的外频大多为66MHz与100MHz。而AMD公司的K7已经使用了高达200MHz的外部频率。倍频的全称是倍频系数。CPU的主频与外频之间存在着一个比值关系,这个比值就是倍频系数,简称倍频。倍频右以从1.5X一直到10X以上,以0.5为一个间隔单位。外频与倍频相乘就是主频,所以其中任何一项提高都可以使CPU的主频下升。 CPU的主频就是CPU 的工作频率,也就是它的速度,单位是MHz。 CPU的外频是其外部时钟频率,由电脑主板提供,单位也是MHz。 CPU的倍频是主频为外频的倍数,故也叫倍频系数,它是没有单位的。 CPU的主频=外频×倍频,例如深受欢迎的64位INTEL赛扬D331的主频是2.66GHz、外频是133MHz、倍频是20,2.66GHz=2660MHz=133MHz×20 主频 CPU内部的时钟频率,是CPU进行运算时的工作频率。一般来说,主频越高,一个时钟周期里完成的指令数也越多,CPU的运算速度也就越快。但由于内部结构不同,并非所有时钟频率相同的CPU性能一样。 外频 即系统总线,CPU与周边设备传输数据的频率,具体是指CPU到芯片组之间的总线速度。 倍频 原先并没有倍频概念,CPU的主频和系统总线的速度是一样的,但CPU的速度越来越快,倍频技术也就应允而生。它可使系统总线工作在相对较低的频率上,而CPU速度可以通过倍频来无限提升。那么CPU主频的计算方式变为:主频= 外频x 倍频。也就是倍频是指CPU和系统总线之间相差的倍数,当外频不变时,提高倍频,CPU主频也就越高。 2、字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。字长的长度是不固定的,对于不同的CPU、字长的长度也不一样。 3、核心数:核心数就是CPU的核心数量,单核就是1,双核就是2,四核就是4但是核心数绝对不是CPU数量。双核的CPU核心数量是2,但是CPU数量是1。双处理器的电脑的话CPU数量是2,但是核心数量不见得是2,而是每个CPU核心数量之和。 4、制作工艺:【表明CPU性能的参数中常有“工艺技术”一项,其中有“0.35um”或“0.25um”等。一般来说“工艺技术”中的数据越小表明CPU生产技术越先进。目前生产CPU主要采用CMOS技术。CMOS是英语“互补金属氧化物半导体”的缩写。采用这种技术生产CPU时过程中采用“光刀”加工各种电路和元器件,并采用金属铝沉淀在硅材料上后用“光刀”刻成导线联接各元器件。现在光刻的精度一般用微米(um)表示,精度越高表示生产工艺越先进。因为精度越高则可以在同样体积上的硅材料上生产出更多的元件,所加工出的联接线也越细,这样生产出的CPU工作主频可以做得很高。正因为如此,在只能使用0.65 u m工艺时生产的第一代Pentium CPU的工作主频只有60/66MHz,在随后生产工艺逐渐发展到0.35um、0.25um时、所以也相应生产出了工作主额高达266MHz的Pentium MMX和主频高达500MHz的Pentium II CPU。由于目前科学技术的限制,现在的CPU生产工艺只能达到0.25 u m,因此Intel、AMD、Cyrix以及其它公司正在向0.18um和铜导线(用金属铜沉淀在硅材料上代替原来的铝)技术努力,估计只要生产工艺达到0.18um后生产出主频为l000MHz的CPU就会是很平常的事了。AMD为了跟Intel继续争夺下个世纪的微处理器发展权,已经跟摩托罗拉(Motorola)达成一项长达七年的技术合作协议。Motorola将把最新开发的铜导线工艺技术(Copper Interconnect) 授权给AMD。AMD准备在2000年之内,制造高达1000MHz(1GHz)的K7微处理器。CPU将向速度更快、64位结构方向前进。CPU的制作工艺将更加精细,将会由现在0.25微米向0.18微米过渡,到2000年中大部分CPU厂商都将采用0.18微米工艺,2001年之后,许多厂商都将转向0.13微米的铜制造工艺,制造工艺的提高,味着体积更小,集成度更高,耗电更少。铜技术的优势非常明显。主要表现在以下方面:铜的导电性能优于现在普遍应用的铝,而且铜的电阻小,发热量小,从而可以保证处理器在更大范围内的可靠性;采用0.13微米以下及铜工艺芯片制造技术将有效的提高芯片的工作频率;能减小现有管芯的体积。与传统的铝工艺技术相比,铜工艺制造芯片技术将有效地提高芯片的速度,减小芯片的面积,从发展来看铜工艺将最终取代铝工艺。】或者【通常我们所说的CPU的“制作工艺”指得是在生产CPU过程中,要进行加工各种电路和电子元件,制造导线连接各个元器件。通常其生产的精度以微米(长度单位,1微米等于千分之一毫米)来表示,未来有向纳米(1纳米等于千分之一微米)发展的趋势,精度越高,生产工艺越先进。在同样的材料中可以制造更多的电子元件,连接线也越细,提高CPU的集成度,CPU的功耗也越小。制造工艺的微米是指IC内电路与电路之间

相关主题
文本预览
相关文档 最新文档