当前位置:文档之家› 风洞实验报告

风洞实验报告

风洞实验报告
风洞实验报告

国内几个大型风洞实验室资料

1)石家庄铁道大学风洞实验室参数

2)湖南大学风洞实验室 湖南大学风工程试验研究中心目前拥有国内先进的大型边界层风洞实验室,风洞试验室占地2000m2,建筑面积3200 m2。该风洞气动轮廓全长53m、宽18 m,为低速、单回流、并列双试验段的中型边界层风洞,其试验速度相对较高的试验段(高速试验段)长17 m,模型试验区横截面宽3 m、高2.5 m,试验段风速0~60 m /s连续可调。高速试验段有前后两个转盘,前转盘位置可模拟均匀流风场,通过在该试验段一定范围内布置边界层发生器,在后转盘位置可进行与边界层有

关的桥梁节段模型试验、局部构件抗风性能试验。试验速度相对较低的试验段(低速试验段)长15 m、模型试验区横截面宽5.5 m、高4.4 m,最大风速不小于16 m /s,可进行长大桥梁全桥模型抗风试验研究。 3)大连理工大学风洞实验室介绍 大连理工大学风洞实验室(DUT-1)建成于2006年4月,是一座全钢结构单回流闭口式边界层风洞,采用全自动化的测量控制系统。风洞气动轮廓长43.8 m,宽13.1 m,最大高度为6.18m;试验段长18m,横断面宽3m,高2.5m,空风洞最大设计风速50m/s,适用于桥梁与建筑结构等抗风试验研究。 4)中国建筑科学研究院实验室介绍 风洞试验室建筑面积4665平米,拥有目前国内建筑工程规模最大、设备最先进的下吹式双试验段边界层风洞,风洞全长96.5m,高速试验段尺寸为4m×3m×22m(宽×高×长),最高风速30m/s;低速段尺寸为6m×3.5m×21m,最高风速18m/s。拥有1280点同步电子扫描阀、多点激光测振仪、高频天平等先进的测试设备,可进行结构抗风和风环境的风洞试验、CFD数值模拟、风振分析等研究和咨询工作。 风洞采用先进的交流变频调速系统,试验段转盘和移测架均由微机控制,自动化程度较高。风洞压力测量系统包含美国Scanivalve公司的3台DSM主机和20个压力扫描阀,能够实现1280点的压力同步测量,可满足海量测点压力测试的要求。振动测量系统包括美国NI公司的动态信号采集系统、PCB和Dytran公司的超小型精密加速度传感器以及德国Polytec公司的四台激光测振仪,可进行建筑物模型气动弹性试验。此外实验室还配备了高频底座天平、

MS82风洞试验技术研究(负责人林麒)

MS82 风洞试验技术研究(负责人:林麒) 8月27日下午地点:4层临4-10 时间 编号 报告题目 报告人单位 主持人 13:30 MS82-1700-I 运输机后体舱门开启流动特性试验研究 胡汉东中国空气动力研究与发展中心 杨希明 13:50 MS82-0056-O 一种改进的内埋武器高速风洞弹射投放实验方法 宋威中国航天空气动力技术研究院 14:00 MS82-0690-O 大长细比模型高速风洞试验支撑干扰分析 秦 汉 中国航天空气动力技术研究院 14:10 MS82-1330-O 翼身融合构型飞机跨声速风洞试验支撑干扰问题研究林榕婷中国商飞北研中心 14:20 MS82-1859-O 小展弦比飞翼低速大迎角支架干扰试验研究 王延灵航空工业空气动力研究院 白鹏 14:30 MS82-1860-O 风洞节流对其高亚声速特性影响试验研究 秦红岗中国空气动力研究与发展中心 14:40 MS82-2136-O 倾转四旋翼无人机风洞虚拟飞行初步验证 聂博文国防科技大学 14:50 MS82-2647-O 高速风洞中大型飞机常用支撑形式干扰特性研究 李 强 中国空气动力研究与发展中心 15:00 MS82-2681-O 基于映像涡系法的闭口矩形实壁风洞洞壁干扰因子计算 马洪雷中国航空工业空气动力研究院 岳连捷 15:10 MS82-2761-O 弹性体模型风洞试验支撑系统虚拟振动试验研究 张 戈 中国航空工业空气动力研究院 15:20 MS82-1850-O 导弹滑块电缆罩气动特性风洞测力试验优化研究 朱中根西安现代控制技术研究所 15:30 15:40 MS82-0819-O 并联级间分离自由飞风洞试验技术及相似律推导 薛 飞 中国航天空气动力技术研究院 8月28日下午地点:4层临4-9 时间 编号 报告题目 报告人单位 主持人 13:30 MS82-1670-I 风洞动态试验中的仿真技术应用 赵俊波中国航天空气动力技术研究院 陈德华13:50 MS82-2868-O 不同收集口角度下风洞流场的数值模拟与试验研究高 娜 中国航空工业空气动力研究院 14:00 MS82-0603-O 基于RBF 神经网络的大迎角耦合振荡气动力建模 卜凡楠厦门大学 14:10 MS82-3570-O 端壁附面层抽吸对压气机叶栅分离影响的仿真研究王东中航发动力所 王铁进14:20 MS82-1760-O 结冰风洞中SLD 模拟方法及其实验验证研究 符 澄 中国空气动力研究与发展中心 14:30 MS82-2393-O 进气道试验中管道效应对湍流度的影响研究 徐彬彬中国空气动力研究与发展中心低速所 14:40 MS82-2994-O 结冰条件下大型民机操稳特性研究与风洞虚拟飞行验证 朱正龙中国空气动力研究与发展中心低速所 14:50 MS82-2986-O 螺旋桨噪声特性风洞试验研究 谭 啸 中国航空工业空气动力研究院 吴佳莉15:00 MS82-3159-O 地效飞机近波浪水面气动特性风洞试验模拟 高立华中国空气动力研究与发展中心 15:10 15:20 MS82-2365-O 可压缩混合层增长率的试验方法研究 王铁进 中国航天空气动力技术研究院

《建筑结构试验》实验报告

《建筑结构试验》实验报告 班级: 学号: 姓名: 南昌航空大学土木工程试验中心 二○一○年四月

目录 试验一电阻应变片的粘贴及防潮技术试验二静态电阻应变仪的使用及接桥试验三电阻应变片灵敏系数的测定 试验四简支钢筋混凝土梁的破坏试验

试验一电阻应变片的粘贴及防潮技术 姓名:学号:星期第讲第组 实验日期:年月日同组者: 一、实验目的: 1.掌握电阻应变片的选用原则和方法; 2.学习常温用电阻应变片的粘贴方法及过程; 3.学会防潮层的制作; 4.认识并理解粘贴过程中涉及到的各种技术及要求对应变测试工作的影响。 二、实验仪表和器材: 1.模拟试件(小钢板); 2.常温用电阻应变片; 3.数字万用表; 4.兆欧表; 5.粘合剂:T-1型502胶,CH31双管胶(环氧树脂)或硅橡胶; 6.丙酮浸泡的棉球; 7.镊子、划针、砂纸、锉刀、刮刀、塑料薄膜、胶带纸、电烙铁、焊锡、焊锡膏等小工具; 8.接线柱、短引线 三、简述整个操作过程及注意事项: 1.分选应变片。在应变片灵敏数K相同的一批应变片中,剔除电阻丝栅有形状缺陷,片内有气泡、霉斑、锈点等缺陷的应变片,将电阻值在120±2Ω范围内的应变片选出待用。 2.试件表面处理。去除贴片位置的油污、漆层、锈迹、电镀层,用丙酮棉球将贴片处擦洗干净,至棉球洁白为止,以保证应变片能够牢固的粘贴在试件表面。 3.测点定位。应变片必须准确地粘贴在结构或试件的应变测点上,而且粘贴方向必须是要测量的应变方向。 4.应变片粘贴。注意分清应变片的正、反面,保证电阻栅的中心与十字交叉点对准。应变片贴好后,先检查有无气泡、翘曲、脱胶等现象,再用数字万用表的电阻档检查应变片有无短路、断路和阻值发生突变(因应变片粘贴不平整导致)的现象。 5.导线固定。接线柱粘帖不要离应变片太远,接线柱挂锡不可太多,导线挂锡一端的裸露线芯不能过长,以31mm为宜。引出线不要拉得太紧,以免试件受到拉力作用后,接线柱与应变片之间距离增加,使引出线先被拉断,造成断路;也不能过松,以避免两引出线互碰

风洞风速与风量测试校准系统

风洞风速与风量测试 校准系统 课程:热工计量技术 学院:计量测试工程学院 班级:10力学1班 姓名:林星驰 学号:100205126 指导老师:孙在 2013年6月20日

目录 一、风洞的介绍及概述 二、实验原理概述 (一)风速的测量校准 1、风速测量原理及装置 2、测量方法及步骤 3、风洞中风速的校准 4、误差分析 (二)风量的测量校准 1、风量测量原理与装置 2、测量方法与步骤 3、风洞中风量的校准 三、心得总结

一.风洞的介绍及概述 风洞实验是飞行器研制工作中的一个不可缺少的组成部分。它不仅在航空和航天工程的研究和发展中起着重要作用,随着工业空气动力学的发展,在交通运输、房屋建筑、风能利用等领域更是不可或缺的。这种方法,流动条件容易控制,可重要依据是运动的相对性原理。实验时,常将模型或实物固定在风复地、经济地取得实验数据。为使实验结果准确,实验时的流动必须与实际流动状态相似,即必须满足相似律的要求。但由于风洞尺寸和动力的限制,在一个风洞中同时模拟所有的相似参数是很困难的,通常是按所要研究的课题,选择一些影响最大的参数进行模拟。此外,风洞实验段的流场品质,如气流速度分布均匀度、平均气流方向偏离风洞轴线的大小、沿风洞轴线方向的压力梯度、截面温度分布的均匀度、气流的湍流度和噪声级等必须符合一定的标准,并定期进行检查测定。 流体力学方面的风洞实验指在风洞中安置飞行器或其他物体模型,研究气体流动及其与模型的相互作用,以了解实际飞行器或其他物体的空气动力学特性的一种空气动力实验方法;而在昆虫化学生态学方面则是在一个有流通空气的矩形空间中,观察活体虫子对气味物质的行为反应的实验。简单地讲,就是依据运动的相对性原理,将飞行器的模型或实物固定在地面人工环境中,人为制造气流流过,以此模拟

小型模拟风洞系统设计报告

综合电子设计 小型模拟 风洞系统 刘石劬 22011231 尹哲浩 22011214 赵正扬 22011212 董元 22011207

一、引言 二、设计思路 2.1 整体功能设想 2.2 模块实现方式确定 三、设计内容及部分电路仿真 3.1 输入模块设计部分 3.1.1 按钮功能电路实现与仿真 3.1.2 控制输入电路实现与仿真 3.2 控制模块设计部分 3.2.1 硬件选型及论证 3.2.2 风扇控制信号的分析 3.3 整体原理图与PCB设计 四、整体实物图即测试结果 五、课程收获与心得 六、参考文献

一、引言 风洞是空气动力学研究的重要地面试验设备,通过对流体力学方法的计算,可以研究物体模型所受不同方向、不同大小的气动阻力影响,为汽车、高速列车等等的选型提供大量的参考依据。同时,风洞也是试验高速飞行器必不可少的一种设备,是保证一个国家航空航天处于领先地位的基础研究设施]1[。随着时代的发展,飞机研究制造业的竞争越加激烈,尤其在军事领域,现有风洞试验设备的模拟能力已经成为制约第四第五代战斗机的研制和未来高超声速飞行器发展的瓶颈。 这次课题设计,我们想以自己现有的能力和一些简单的器材来完成一个简易的小型风洞设计,用以模拟产生不同风力大小的气流。我们采用电脑CPU风扇作为风力的发生装置,以输入信号的占空比来调节风扇转速的大小,并可以根据风扇所发出的风力大小来实现结果的反馈。 二、设计思路 2.1 整体功能设想 风扇的输入信号可以控制风扇实现不同的转速,也可以让风扇的工作处于测试模式下,即风扇的转速按预定的延时变化,风力将由大至小,再由小变大循环往复。也可以通过键盘,让帆板到达指定高度。 2.2 模块实现方式确定 (1) 输入模块:使用者将通过按钮进行输入信号的控制,工作时不会存在两个按钮同时有效的情况。本模块的大体部分会以门电路的形式构成,功能上通过计数器不同的计数值来形成不同的输入信号,但必须保证信号的频率一致。最后,所有档位的信号必须以同一个输出端口输送至风扇,对风扇进行相应的控制。 (2) 控制模块:采用MSP430F6638作为主控芯片,它是由TI公司推出的16位超低功耗、具有精简指令集(RISC)的混合信号处理器。用LSM303作为检测角度的传感器,用AVC 8038风扇作为风力来源。

风洞试验

风洞实验 科技名词定义 中文名称:风洞实验 英文名称:wind tunnel testing 定义:在风洞中进行模拟飞行器在大气中运动时的空气动力学现象。 应用学科:航空科技(一级学科);飞行原理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 流体力学方面的风洞实验指在风洞中安置飞行器或其他物体模型,研究气体流动及其与模型的相互作用,以了解实际飞行器或其他物体的空气动力学特性的一种空气动力实验方法;而在昆虫化学生态学方面则是在一个有流通空气的矩形空间中,观察活体虫子对气味物质的行为反应的实验。 目录

编辑本段原理 风洞实验的基本原理是相对性原理和相似性原理。根据相对性原理,飞机在静止 风洞实验 空气中飞行所受到的空气动力,与飞机静止不动、空气以同样的速度反方向吹来,两者的作用是一样的。但飞机迎风面积比较大,如机翼翼展小的几米、十几米,大的几十米(波音747是60米),使迎风面积如此大的气流以相当于飞行的速度吹过来,其动力消耗将是惊人的。根据相似性原理,可以将飞机做成几何相似的小尺度模型,气流速度在一定范围内也可以低于飞行速度,其试验结果可以推算出其实飞行时作用于飞机的空气动力。[1] 编辑本段优点 风洞实验尽管有局限性,但有如下四个优点:①能比较准确地控制实验条 风洞实验 件,如气流的速度、压力、温度等;②实验在室内进行,受气候条件和时间的影响小,模型和测试仪器的安装、操作、使用比较方便;③实验项目和内容多种多样,实验结果的精确度较高;④实验比较安全,而且效率高、成本低。因此,风洞实验在空气动力学的研究、各种飞行器的研制方面,以及在工业空气动力学和其他同气流或风有关的领域中,都有广泛应用。 编辑本段要求

建筑结构试验实验指导书 土木工程(完整)

建筑结构试验09级实验指导书

说明 一、试验报告必须用墨水笔工整书写,原始记录不得涂改,每个学生必须按时独立完成试验报告,(包括预习思考题及试验作业题)。 二、严格遵守实验室规则: 1.做好试验课前的预习。 2不得动用与本次实验无关的仪器设备。 3试验完毕,清理整理所用仪器设备及环境卫生,填好实验使用登记本,并交给任课老师后方可离开实验室。 4如有仪器设备损坏,按学校有关规定处理。 三、实验指导书所列试验方法均以现行国标和规范为依据。 编者:陈高 2012年5月

目录 实验一等强度梁实验 (1) 一、实验目的: (1) 二、实验原理 (1) 三、实验步骤 (2) 四、实验记录 (3) 实验二纯弯梁实验 (4) 一、实验目的 (4) 二、实验原理 (4) 三、实验步骤 (5) 四、实验结果 (6) 五、实验记录表格 (7) 实验三同心拉杆实验 (8) 一、实验目的 (8) 二、实验原理 (8) 三、实验步骤 (9) 四、实验记录表格 (9) 实验四:偏心拉杆实验 (10) 一、实验目的 (10) 二、实验原理 (10) 三、实验步骤 (12) 四、实验结果处理 (12) 实验五典型桁架结构静载实验 (14) 一、实验目的 (14) 二、实验原理 (14) 三、实验操作步骤简介 (15) 四、实验记录 (16) 实验六混凝土无损检测实验 (18) 一、实验目的 (18) 二、实验仪器 (18) 三、试验方法及步骤 (18) 四、实验报告 (18) 五、思考题 (18)

实验一 等强度梁实验 一、实验目的: 1、学习应用应变片组桥,检测应力的方法 2、验证变截面等强度实验 3、掌握用等强度梁标定灵敏度的方法 4、学习静态电阻应变仪的使用方法 二、实验原理 1、电阻应变测量原理 电阻应变测试方法是用电阻应变片测定构件的表面应变,再根据应变—应力关系(即电阻-应变效应)确定构件表面应力状态的一种实验应力分析方法。这种方法是以粘贴在被测构件表面上的电阻应变片作为传感元件,当构件变形时,电阻应变片的电阻值将发生相应的变化,利用电阻应变仪将此电阻值的变化测定出来,并换算成应变值或输出与此应变值成正比的电压(或电流)信号,由记录仪记录下来,就可得到所测定的应变或应力。 2、测量电路原理 通过在试件上粘贴电阻应变片,可以将试件的应变转换为应变片的电阻变化,但是通常这种电阻变化是很小的。为了便于测量,需将应变片的电阻变化转换成电压(或电流)信号,再通过电子放大器将信号放大,然后由指示仪或记录仪指示出应变值。这一任务是由电阻应变仪来完成的。而电阻应变仪中电桥的作用是将应变片的电阻变化转换成电压(或电流)信号。 3、电桥电路的基本特性 a )在一定的应变范围内,电桥的输出电压U ?与各桥臂电阻的变化率 R R ?或相应的应变片所感受的(轴向)应变) (n ε成线性关系; b )各桥臂电阻的变化率R R ?或相应的应变片所感受的应变)(n ε对电桥输出电压的变化U ?的影响是线形叠加的,其叠加方式为: 相邻桥臂异号, 相对桥臂

风洞试验与数值模拟

风洞试验与数值模拟 ――北京大学在数值模拟方面的技术进展 一.科学研究的方法: 人类在认识自然、认识科学的过程中,曾经创造出了两种方法,即:理论研究和实验研究。理论研究得出的结论,要经过严格的论证,这是十分必要的,但在工程实践中却难以应用。实验研究,结论清晰、直观,也就是俗话说的“看得见,摸的着”,但它的局限性太大,因而应用范围有限。 上世纪四十年代,电子计算机的横空出世,改变了人类的生活和思想。随着近年来计算机软硬件技术的突飞猛进,以前大量无法解决的工程实际问题,已经可以用新的计算方法来加以解决了。因此,第三种科学研究的方法发展出来了,那就是计算科学的方法(或称为数值模拟、数值计算)。它不仅具有理论研究的严谨性,又具有实验研究的直观性,更加具备极其广泛的应用范围。如今,计算科学在科学研究中所占的比重越来越大,并必将成为今后科学技术发展的主流。 二.什么是“风洞试验”: 风洞,从外观上看酷似一座洞,它是通过产生出可人工控制的气流,对试验模型周围的气体的流动进行模拟,并可量度气

流对物体的作用,以及观察流动现象的一种管道状试验设备。 而风洞试验,是实验研究工程问题的一种方法。它是依据运动的相对性原理,将试验原型同比缩小的模型固定在风洞中,人为制造气流流过,获取各测试点的试验数据,并以此寻找出工程问题的解决方案。 风洞试验主要针对相似模型进行测力试验、测压试验和布局选型试验。 三.风洞试验在“挡风抑尘墙”工程实践中的局限性: “挡风抑尘墙”的作用就是降低露天堆场上方的风速,以达到抑尘效果。这是属于流体力学范畴的一类问题。流体力学是物理学的一个分支,是主要研究流体(包括气体和液体)与其中的物体相互作用的一门科学。 研究流体力学的方法同样有理论研究和实验研究。 在理论研究中,以理论流体力学的基本控制方程组和基本定律为出发点,采用适当的前提假设(如空气的不可压缩性假定),经过严格的数学推导,求解出方程中的未知量(如压力,速度等)。 鉴于理论流体动力学的基本控制方程组及其边界条件的强烈的非线性特性,只能在几种简单的情况下得到方程组的解析解,在复杂的情况下(如三维流场,复杂外形等)就无法获得解析解,这就决定了理论研究方法在“挡风抑尘墙”研究中具有很多的局限性,工程实践中很难采用这种方法。

国内几个大型风洞实验室资料

2)湖南大学风洞实验室 湖南大学风工程试验研究中心目前拥有国内先进的大型边界层风洞实验室,风洞试验室占地2000m2,建筑面积3200 m2。该风洞气动轮廓全长53m、宽18 m,为低速、单回流、并列双试验段的中型边界层风洞,其试验速度相对较高的试验段(高速试验段)长17 m,模型试验区横截面宽3 m、高m,试验段风速0~60 m /s连续可调。高速试验段有前后两个转盘,前转盘位置可模拟均匀流风场,通过在该试验段一定范围内布置边界层发生器,在后转盘位置可进行与边界层有关的桥梁节段模型试验、局部构件抗风性能试验。试验速度相对较低的试验段(低速试验段)长15 m、模型试验区横截面宽m、高m,最大风速不小于16 m /s,可进行长大桥梁全桥模型抗风试验研究。 3)大连理工大学风洞实验室介绍 大连理工大学风洞实验室(DUT-1)建成于2006年4月,是一座全钢结构单回流闭口式边界层风洞,采用全自动化的测量控制系统。风洞气动轮廓长 m,宽m,最大高度为;试验段长18m,横断面宽3m,高,空风洞最大设计风速50m/s,适用于桥梁与建筑结构等抗风试验研究。 4)中国建筑科学研究院实验室介绍 风洞试验室建筑面积4665平米,拥有目前国内建筑工程规模最大、设备最先进的下吹式双试验段边界层风洞,风洞全长,高速试验段尺寸为4m×3m×22m(宽×高×长),最高风速30m/s;低速段尺寸为6m××21m,最高风速18m/s。拥有1280点同步电子扫描阀、多点激光测振仪、高频天平等先进的测试设备,可进行结构抗风和风环境的风洞试验、CFD数值模拟、风振分析等研究和咨询工作。 风洞采用先进的交流变频调速系统,试验段转盘和移测架均由微机控制,自动化程度较高。风洞压力测量系统包含美国Scanivalve公司的3台DSM主机和20个压力扫描阀,能够实现1280点的压力同步测量,可满足海量测点压力测试的要求。振动测量系统包括美国NI公司的动态信号采集系统、PCB和Dytran公司的超小型精密加速度传感器以及德国

汽车环境风洞试验室

试验技术中心节能环保室
汽车整车环境模拟(气候)风洞
摘自外网 汽车整车环境模拟风洞可以在实验室中复现自然条件,模拟环境温湿度、日照强度、车速、废气排放与新鲜 空气供给等功能,对汽车开发具有重要意义。本文介绍了汽车环境模拟风洞的构成,列举了国际上部分环境模拟风洞 的主要模拟参数,并就环境模拟风洞制冷空调系统的特点进行了分析和讨论。 关键词:汽车 环境模拟风洞 制冷空调系统
0 前言
汽车环境模拟试验装置可以模拟汽车在实际行驶中遇到的雨、雪、阳光、振动、冷热负荷、高低气压和行驶速 度等。在环境模拟试验装置中进行整车试验具有不受地区、季节及时间限制,可复现自然条件、模拟极值条件,可在 相同环境条件下多次重复试验,有利于评估和详细分析试验数据等优点[1]。
汽车环境模拟试验装置包括环境模拟风洞和环境模拟试验室两类。环境模拟风洞和环境模拟试验室之间有很多 相似之处,但又存在一个关键区别,即对车身周围气流组织及边界层速度分布的模拟精度要求不同。环境模拟风洞不 仅对温湿度、太阳辐射模拟精度有很高的要求,而且对流过车身的空气流组织和速度分布模拟精度要求也很高,而环 境模拟室则对车身周围气流组织状态无精度要求。而实际上,车辆在实际行驶过程中车身周围的气流组织必定会对车 辆及其零部件的性能产生影响,从这个角度讲, 环境模拟风洞试验的结果将更符合实际情况。 本文仅涉及环境模拟风洞 相关技术。
汽车环境模拟风洞通常可以分为高温、低温和高低温三种。根据试验车型及试验所需流场及温、湿度场品质要 求,可以确定环境模拟风洞的规模,然后相应地确定风洞的主要性能指标。
1 汽车环境模拟试验类型
环境模拟风洞可为汽车及其零部件进行舒适性、安全性和可靠性提供多种多样的气候试验研究平台。在汽车环 境模拟风洞中可进行下列试验:
? ? ? ? ?
发动机冷却试验; 空调系统开发; 热燃料处理试验; 汽车城市循环工况分析; 冷、热排放试验;
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.doczj.com/doc/cb7445680.html,

建筑结构实验报告-2011

±2001/024 建筑结构实验报告(一二三) 题目: 姓名:________学号:________组别:________ 实验指导教师姓名:__________________________ 同组成员:____________________________________ 年月日

实验一量测仪器的参观与操作练习 一、实验目的要求: 二、所列量测应变的机械式仪表、装置有:__________、__________、__________、__________、__________、__________。这些仪器、装置都是量测试样的某一预先选定的原始长度的__________变化值,然后计算其应变值的,该原始长度称为__________。该项指标在上述仪器、装置中分别为__________mm、__________mm、__________mm、__________mm。 三、杠杆应变仪的刻度值为______mm,量程为______mm。 四、量测位移的机械式仪器、装置有:__________、__________、__________和__________。 五、百分表、千分表的区别有:(1)__________(2)__________(3)__________;用它测挠度应配__________、测应变应配__________、测转角应配__________、测力应配__________。 六、所列的非破损检测仪器有(1)__________用途:__________(2)__________用途:__________(3)__________用途:__________(4)__________用途:__________。 七、中型回弹仪在评定混凝土抗压强度时除了用回弹仪测定回弹值外,还需要另外测定混凝土的__________,也就是在测定回弹值后在测区内钻出直径大约______mm,深度稍大于__________的圆孔,然后滴入2%__________溶液,量得不变色部分的深度。 八、超声回弹综合法检测混凝土强度,每个测区应测回弹 ________点,超声_______点,请在测区图上分别画出,并标出 测区尺寸和测点的间距(mm)。测试的顺序应先测__________后 测__________。 九、所列的测震仪器有:

简易风洞及控制系统

简易风洞及控制系统(专科组G题) 作者:王康、赵辉、张帅帅 赛前辅导教师:吉武庆 文稿整理辅导教师:吉武庆 摘要 本文介绍了简易风洞控制系统的设计方案。本设计以STC89C52R单片机为主控芯片,利用涡轮式轴流风机来为小球的运动提供动能。通过在风洞表面安装的8个光电式光线传感器来检测小球位置,而后通过PID 算法对轴流风机的抽风量进行进一步调校. 从而形成一个完整的闭环控制系统。 关键词:PID算法,PW调速,闭环控制 Abstract This paper introduces the design plan of a simple wind tunnel control system. The design STC89C52RCmicrocontroller as the main control chip, using turbine type axial flow fan to provide kinetic energy for the movement of the ball. To detect the location of the ball in a wind tunnel by surface mounted 8 photoelectric light sensor, and then through the exhaust volume PID algorithm flow fan on the shaft was further adjusted. So as to form a complete closed-loop control system. Keywords: PID algorithm, PWM speed control, closed loop control

简易风洞及控制系统

简易风洞及控制系统(G题) 摘要:本帆板控制系统由单片机ATMEGA328作为帆板转角的检测和控制核心,实现按键对风扇转速的控制、调节风力的大小、改变帆板转角θ、液晶显示等功能。引导方式采用角度传感器感知与帆板受风力大小的转角θ的导引线。通过PWM波控制电机风扇风力的大小使其改变帆板摆动的角度θ。风扇控制核心采用L298电机驱动模块,用ATMEGA328单片机为控制核心,产生占空比受数字PID 算法控制的PWM脉冲,实现对直流电机转速的控制,同时利用光电传感器将电机速度转化成脉冲频率反馈到单片机中,实现转速闭环控制,达到转速无静差调节的目的。MMA7455三轴加速传感器把角度输出信号传送给ATMEGA328单片机进行处理。 关键词:ATMEGA328,MMA7455,PWM波,PID算法

目录 1. 系统设计 1.1 任务与要求 1.1.1 主要任务 1.1.2 基本要求 1.1.3 说明 1.2总体设计方案 1.2.1 设计思路· 1.2.2 方案论证与比较 1.2.3 系统的组成 2. 单元电路设计 2.1 风速控制电路 2.2小球测距原理 2.3控制算法 3. 软件设计 3.1风速控制电路设计计算 3.2控制算法设计与实现 3.3程序流程图 4. 系统测试 4.1 调试使用的仪器与方法 4.2 测试数据完整性 4.3 测试结果分析 4.4 结束语 5. 总结 参考文献 附录1 元器件明细表 附录2 电路图图纸 附录3 程序清单

1.系统设计 1.1任务与要求 1.1.1 主要任务 设计制作一简易风洞及其控制系统。风洞由圆管、 连接部与直流风机构成,如图所示。 圆管竖直放置,长度约40cm,内径大于4cm且内 壁平滑,小球(直径4cm黄色乒乓球)可在其中上下运 动;管体外壁应有A、B、C、D等长标志线,BC段有 1cm间隔的短标志线;可从圆管外部观察管内小球的位置;连接部实现风机与圆管的气密性连接,圆管底部应有防止小球落入连接部的格栅。控制系统通过调节风机的转速,实现小球在风洞中的位置控制。 1.1.2 基本要求 (1)小球置于圆管底部,启动后5s内控制小球向上到达BC段,并维持5s 以上。 (2)当小球维持在BC段时,用长形纸板(宽度为风机直径的三分之一)遮挡风机的进风口,小球继续维持在BC段。 (3)以C点的坐标为0cm、B点的坐标为10cm;用键盘设定小球的高度位置(单位:cm),启动后使小球稳定地处于指定的高度3s以上,上下波 动不超过±1cm。 (4)以适当的方式实时显示小球的高度位置及小球维持状态的计时。(5)小球置于圆管底部,启动后5s内控制小球向上到达圆管顶部处A端,且不跳离,维持5s以上。 (6)小球置于圆管底部,启动后30s内控制小球完成如下运动:向上到达AB段并维持3~5s,再向下到达CD段并维持3~5s;再向上到达AB段 并维持3~5s,再向下到达CD段并维持3~5s;再向上冲出圆管(可以

数据结构实验报告--图实验

图实验 一,邻接矩阵的实现 1.实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现 2.实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历 3.设计与编码 MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ } void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e)

{ int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: "; cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } } template void MGraph::DFSTraverse(int v) { cout << vertex[v]; visited[v] = 1; for(int j = 0; j < vertexNum; j++) if(arc[v][j] == 1 && visited[j] == 0) DFSTraverse(j); } template void MGraph::BFSTraverse(int v) { int Q[MaxSize]; int front = -1, rear = -1; cout << vertex[v]; visited[v] = 1; Q[++rear] = v; while(front != rear) { v = Q[++front]; for(int j = 0;j < vertexNum; j++) if(arc[v][j] == 1 && visited[j] == 0){ cout << vertex[j]; visited[j] = 1;

风洞试验

《桥梁风工程》之——风洞试验技术 主要内容简介 第一章风洞试验的理论基础——相似性 (概述、相似性基本要求、无量纲参数的来源、基本缩尺考虑) 1.1 概述 理论流体力学——物理实验——数值模拟(风工程研究的“三大手段”); 桥梁、建筑结构在结构设计方面,只要求结构在风荷载作用下具有足够的强度、刚度和稳定性即可,即确保桥梁结构、建筑结构的安全性、舒适性和耐久性即可;(这区别于航空器的设计——力求其周围运动空气对其的阻力最小),主要关注绕尖角的流动和分离流动,因此,称为“钝体空气动力学”。个别建筑、桥梁已开展了实际结构的实测。 Fig.1 Research methods of Wind Engineering of Bluff Body 1932年,Flachsbart O.“建筑物气动特性的模拟应当在具有与自然风相似的风洞气流中进行”。 几何缩尺——经济性和方便性 由于缩尺几何引出了物理相似的一系列问题,相似性准则是风洞试验的理论基础。应该说明的是,由于模型的几何缩尺,导致部分物理现象不能准确反映,如雷诺数效应。因此,在实际设计模型试验时,需要进行一系列权衡,确保主要问题能模拟即可。(科学与艺术结合!) 1.2 模型相似性 在分析一切物理问题,特别是需要通过实验进行研究的问题时,通常需要确定一组无量纲的控制参数。该组无量纲参数通常是根据描述所研究物理系统的偏微分方程得到的,用一个具有对应量纲的参考值遍除所有关键变量,使之无量纲化,于是得到大量的无量纲组合参数,它们就是控制系统的物理特性的因子。如果这些控制参数组从一种情况(原型物)到另一种情况(模型)保持不变,则自然保证了相似性。具体风洞试验相似性无量纲参数推导见下。

风洞特种实验技术

风洞特种实验技术综述 摘要:风洞特种实验技术主要包括:动力模拟试验、多体干扰与分离试验、风洞尾旋试验、风洞模型自由飞试验、铰链力矩试验、结冰试验等。本文对这些实验技术进行概念性综述。 关键词:风洞特种实验技术概念综述 一动力模拟试验[1] 1动力模拟试验的目的 对于航空喷气发动机,不论是涡喷式、涡扇式还是冲压式,其前部都配置进气道,而后部配置尾喷管.这样进气道前面的进气流和尾喷管后面的尾喷流,都会对飞行器的外部绕流产生干扰影响,从而改变飞行器的气动特性———即通常称为“发动机进排气动力影响”。 2动力模拟试验的实验技术的概念 发动机动力模拟风洞试验技术,就是要在风洞试验中,实现其发动机进气和排气流动效应的模拟,以便测定出发动机进排气流对飞行器的气动影响量 .随着目前大推力发动机被广泛采用,动力对飞行器性能的影响更显示出重要性.动力模拟试验已成为飞行器研制中必不可少的风洞试验项目. 二多体干扰与分离试验 1多体干扰与分离试验的重要性[2] 多体干扰与分离动力学是亚轨道飞行器、重复使用跨大气层飞行器和通用再入飞行器研制中的一个关键技术问题,关系到演示验证能否成功 2多体干扰与分离试验的实验技术[3] 试验模型是某典型构型的可重复使用航天飞行器,由助推器以及再入体两部分组成。利用风洞上下投放机构实现两模型间的相对运动,采用两台天平对模型的气动力进行测量,同时利用纹影仪记录模型分离过程中的激波干扰情况。结果结果表明:试验系统设计合理,能准确模拟物体间分离过程,并能精确测量多体干扰的气动力特性,激波干扰清晰可见。 三风洞模型自由飞试验[4] 1风洞模型自由飞试验的意义 它为新型气动布局飞机稳定性与操纵性研究、飞行控制律验证与优化、大迎角过失速机动能力实现、推力矢量以及垂直起降技术发展、主动流动控制技术的发展起到了重要的推进作用。 2水平风洞模型自由飞试验技术 水平风洞模型自由飞是通过远程控制实现飞机模型在风洞试验段无系留六自由度自由飞行的试验技术,可为缩比模型提供在风洞中模拟全尺寸真机飞行运动的仿真试验环境。 3 水平风洞模型自由飞试验平台的关键技术 关键技术包括:动力相似模型设计加工技术;动力模拟技术;舵机运动控制技术;模型姿态实时精确测量技术;飞行控制系统设计与集成技术。 四风洞尾旋试验[5] 1 立式风洞 立式风洞是一种具有垂直试验段的低速风洞。风扇垂直向上抽气,并使上升气流产生的浮力恰好平衡自由飞模型的重量。对于飞机的尾旋研究,大量的和基本的尾旋和改出尾旋特性的试验研究都在立式风洞中进行。

建筑结构试验心得体会

建筑结构试验心得体会 经过这次的建筑结构试验学习,在学习好理论知识和加强实践操作能力同时,时刻注意培养自己的细心的品质。所谓细节决定成败,我想在此处就可以得到一个很好的验证。下面是管理资源吧小编为大家收集整理的建筑结构试验学习心得,欢迎大家阅读。 建筑结构试验心得体会1土木建筑结构实验是研究和发展结构计算理论的重要实;土木建筑结构实验是土木工程专业的一门专业技术课程;通过本门课程的学习,在理论上我学到许多关于结构实;准的规定进行设计;测量方法:机测法;实验规划阶段实验规划是指导整个实验工作的纲领性技;并根据实验设备的能力确定试件的外形和尺寸;进行试;实验加载测试阶段对试件施加外荷载是整个实验工作的。 土木建筑结构实验是研究和发展结构计算理论的重要实践,从材料的力学性能到验证由各种材料构成不同类型结构和构件的基本计算方法,以及近年来发展的大量大跨、超高、复杂结构的计算理论,都离不开实验研究。因此,土木建筑结构实验在土木建筑结构科学研究和技术革新方面起着重要的作用,与结构设计、施工及推动土木工程学科的发展有着密切的关系。 土木建筑结构实验是土木工程专业的一门专业技术课

程,与材料力学、结构力学、混凝土结构、砌体结构、钢结构、地基基础和桥梁结构等课程直接有关,并涉及物理学、机械与电子测量技术、数理统计分析等内容。通过本课程的学习,使我获得土木建筑结构实验方面的基础知识和基本技能,掌握一般建筑结构实验规划设计、结构实验、工程检测和鉴定的方法,以及根据实验结果作出正确的分析和结论的能力,为今后的学习和工作打下良好的基础。 通过本门课程的学习,在理论上我学到许多关于结构实验的知识,建筑结构实验的量方法、程结构实验过程、可靠性鉴定等。土木建筑结构实验中的实验荷载要与结构在实际中的受力情况相一致,实验时的荷载应使结构处于某一种实际可能的最不利的工作情况。当采用等效荷载时,实验荷载的大小要根据相应的等效条件换算得到,同时要注意荷载图式的改变对结构的各种影响。结构实验的加载制度要根据不同的结构按照相应的规范或标准的规定进行设计。 测量方法:机测法。利用机械仪表测量所需的数据或参数,机测法适应性强、简便、可靠、经济,是结构实验中最常用的测量手段。②电测法。通过传感元件把实验需要测量的数据或参数,转换为电阻、电容、电感、电压或电流等电量参数,经放大器放大,然后进行测量,由指示记录设备记录和显示,这种转换和测量技术称为非电量电测技术,具有准确、快速测量、自动控制、连续记录和远距离操纵等优点。

风洞试验

A.风洞实验的基本原理是相对性原理和相似性原理。根据相对性原理,飞机在静止风洞实验 空气中飞行所受到的空气动力,与飞机静止不动、空气以同样的速度反方向吹来,两者的作用是一样的。但飞机迎风面积比较大,如机翼翼展小的几米、十几米,大的几十米(波音747是60米),使迎风面积如此大的气流以相当于飞行的速度吹过来,其动力消耗将是惊人的。根据相似性原理,可以将飞机做成几何相似的小尺度模型,气流速度在一定范围内也可以低于飞行速度,其试验结果可以推算出其实飞行时作用于飞机的空气动力。[1] B.风洞实验原理及实验仪器 一、实验目的 通过参观,让学生了解风洞实验装置的构造、作用,常用的风洞实验仪器及作用,风洞实验的过程和风洞实验的原理。 二、风洞系统简介 风洞作为一套完整的空气动力实验装备,其构造是较为复杂的。按风洞实验段气流速度的大小,一般可分为:低速风洞(M≤0.3),高亚音速风洞(0.3≤M≤0.8),跨音速风洞(0.8≤M≤1.5)。超音速风洞(1.5≤M≤4.5)。高超音速风动(4.5≤M≤10),极高速风洞(M>10)。 1.以805实验室HG-4号超音速风洞为例,它主要由以下几部分组成: l 气源系统:由大型空气压缩机提供清洁干燥的高压空气; l 风洞本体:由高压管道、紧闭阀、快速阀、调压阀、稳定段、喷管、试验段、攻角机构、可调节超音速扩散、亚音速扩散段等组成;

l 控制系统:控制系统及模型状态等; l 测量系统:测量系统系数、模型空气动力及模型转速,并作为纹影显示及摄影等, l 消音系统:降低噪音。 实验过程:空气压缩机把压缩空气打进储气瓶储存起来,压缩空气经管道流向风洞。实验时,预给调压阀一开度,开启紧闭阀至完全打开后,开启快速阀,压缩空气经稳定段至喷管,到达试验段时已获得所需超音速流场,待稳定后测量系统工作。最后气流经扩压段扩压向出口消音塔排去。 2.低速风洞构造、作用:低速风洞的动力由风机提供、风速可通过调整风机的转速来调节。低速风洞有稳定段、实验段和扩压段,没有喷管。为了节约能源和降低噪音,低速风洞常做成环流式的。 3.常用仪器:风洞的常用仪器有压力传感器和天平,测温传感器、压力传感器和温度传感器是监测风洞流场必不可少的仪器。而天平则是用来测量实验模型在风洞中受力情况的一种多元传感器,它是通过受力产生形变,给出形变电信号经换算求出受力的一种精密仪器。 三、思考题 1.超音速流动是如何建立的? 2.超音速流场建立的条件如何? 3.风洞实验是如何测得模型气动力的? C.优点

相关主题
文本预览
相关文档 最新文档