当前位置:文档之家› 超宽预应力混凝土箱梁横向受力分析_吕为

超宽预应力混凝土箱梁横向受力分析_吕为

超宽预应力混凝土箱梁横向受力分析_吕为
超宽预应力混凝土箱梁横向受力分析_吕为

箱梁模板设计计算汇总

箱梁模板设计计算 1箱梁侧模 以新安江特大桥主桥箱梁为例。 现浇混凝土对模板的侧压力计算:新浇筑的初凝时间按8h,腹板一次浇注高度4.5m,浇注速度1.5m/h,混凝土无缓凝作用的外加剂,设计坍落度16mm。 F=0.22*26*8*1.0*1.15*1.51/2=64.45KN/m2 F=26*4.5=117.0KN/m2 故F=64.45KN/m2作为模板侧压力的标准值。 q1=64.45*1.2+(1.5+4+4)*1.4=90.64KN/m2(适应计算模板承载能力) q2=64.45*1.2=77.34KN/m2(适应计算模板抗变形能力) 1.1侧模面板计算 面板为20mm厚木胶板,模板次楞(竖向分配梁)间距为300mm,计算高度1000mm。面板截面参数:Ix=666670mm4,Wx=66667mm3,Sx=50000mm3,腹板厚1000mm。

按计算简图1(3跨连续梁)计算结果:Mmax=0.82*106N.mm,Vx=16315N,fmax=0.99mm。 由 Vx*Sx/(Ix*Tw)得计算得最大剪应力为 2.48MPa,大于1.35MPa不满足。 由 Mx/Wx得计算得强度应力为4.89MPa,满足。 由fmax/L得挠跨比为1/304,不满足。 按计算简图2(较符合实际)计算结果:Mmax=0.25*106 N.mm,Vx=9064N,fmax=0.12mm。 由 Vx*Sx/(Ix*Tw)得计算得最大剪应力为0.68MPa,满足。 由 Mx/Wx得计算得强度应力为3.82MPa,满足。 由fmax/L得挠跨比为1/1662,满足。 由此可见合理的建立计算模型确实能减少施工投入避免不必要的浪费。 1.2竖向次楞计算 次楞荷载为:q3=90.64*103*0.3=27192N/m=27.19N/mm,选用方木100*100mm,截面参数查附表。水平主楞间距为900mm,按3跨连续梁计算。

(参考资料)32m预制箱梁计算书

32m 预制箱梁计算书 1. 计算依据与基础资料 1.1. 标准及规范 1.1.1. 标准 ?跨径:桥梁标准跨径30m ; ?设计荷载:公路-I 级(城-A 级验算); ?桥面宽度:(路基宽26m ,城市主干路),半幅桥全宽13m ,0.5m (栏杆)12.25m (机动车道)+0.5/2m (中分带)=13m 。 ?桥梁安全等级为一级,环境类别一类。 1.1.2. 规范 《公路工程技术标准》JTG B01-2013 《公路桥涵设计通用规范》(JTGD60-2015);(简称《通规》) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004(简称《预规》) 《城市桥梁设计规范》(CJJ11-2011); 1.1.3. 参考资料 《公路桥涵设计手册》桥梁上册(人民交通出版社2004.3) 1.2. 主要材料 1)混凝土:预制梁及现浇湿接缝、横梁为C50、现浇调平层为C40; 2)预应力钢绞线:采用钢绞线15.2s φ,1860pk f MPa =,51.9510p E Mpa = × 3)普通钢筋:采用HRB400,400=sk f MPa ,5 2.010S E Mpa =× 1.3. 设计要点 1)预制组合箱梁按部分预应力砼A 类构件设计; 2)根据小箱梁横断面,采用刚性横梁法计算汽车荷载横向分布系数,将小箱梁简化为单片梁进行计算,荷载横向分配系数采用刚性横梁法计算。 3)预应力张拉控制应力值0.75σ=con pk f ,混凝土强度达到90%时才允许张拉预

应力钢束; 4)计算混凝土收缩、徐变引起的预应力损失时张拉锚固龄期为7d; 5)环境平均相对湿度RH=80%; 6)存梁时间不超过90d。 2.标准横断面布置 2.1.标准横断面布置图 2.2.跨中计算截面尺寸

箱梁的结构与受力特点

(二)箱形截面的配筋 箱形截面的预应力混凝土结构一般配 有预应力钢筋和非预应力向普通钢筋。 1、纵向预应力钢筋:结构的主要受力 钢筋,根据正负弯矩的需要一般布置在顶板 和底板内。这些预应力钢束部分上弯或下弯 而锚于助板,以产生预剪力。近年来,由于 大吨位预应力束的采用,使在大跨径桥梁设 计中,无需单纯为了布置众多的预应力束而 增大顶板或底板面积,使结构设计简洁,而 又便于施工。 2、横向预应力钢筋:当箱梁肋板间距 厚的桥面板。的上、下两层钢筋网间,锚固于悬臂板端。 3时,可布置竖向预应力钢筋,面桥梁都采用三向预应力。 4 钢筋网。必须指出,因此必须精心设计,做到既安全又经济。 第二节 箱形梁的受力特点 作用在箱形梁上的主要荷载是恒载与活载。恒载 一般是对称作用的,活载可以是对称作用,但更多的 情况是偏心作用的,因此,作用于箱形梁的外力可综 合表达为偏心荷载来进行结构分析; 在偏心荷载作用下,箱形梁将产生纵向弯曲、扭 转、畸变及横向挠曲四种基本变形状态。详见图2-4。 1、纵向弯曲 产生竖向变位w ,在横截面上起纵向正应力M σ及剪应力M τ。对于肋距不大的箱形梁,M σ按初等梁 理论计算,当肋距较大时,会出现所谓“剪力滞效应”。 即翼板中的M σ分布不均匀,近肋翼板处产生应力高 βα+= 刚性扭转 横向挠曲 图2-4 箱形梁在偏心荷载 作用下的变形状态

峰,而远肋翼板处则产生应力低谷,这称为“正剪力滞”;反之,如果近肋翼板处产生应力低谷,而远肋翼板处则产生应力高峰,则为“负剪力滞”。对于肋距较大的宽箱梁,这种应力高峰可达相当大比例,必须引起重视。 2、刚性扭转 刚性扭转即受扭时箱形的周边不变形。扭转产生扭转角θ。分自由扭转与约束扭转。 (1)自由扭转:箱形梁受扭时,截面各纤维的纵向变形是自由的,杆件端面虽出现凹凸,但纵向纵维无伸长缩短,能自由翘曲,因而不产生纵向正应力,只产生自由扭转剪应力K τ。 (2)约束扭转:受扭时纵向纤维变形不自由,受到拉伸或压缩,截面不能自由翘曲。约束扭转在截面上产生翘曲正应力w σ和约束扭转剪应力w τ。 产生约束扭转的原因:支承条件的约束,如固端支承约束纵向纤维变形;受扭时截面形状及其沿梁纵向的变化,使截面各点纤维变形不协调也将产生约束扭转。如等厚壁的矩形箱梁、变截面梁、设横隔板的箱梁等,即使不受支承约束,也将产生约束扭转。 3、畸变(即受扭时截面周边变形) 畸变的主要变形特征是畸变角γ。薄壁宽箱的矩形截面受扭变形后,无法保持截面的投影仍为矩形。畸变产生翘曲正应力dw σ和畸变剪应力dw τ。 4、横向弯曲:畸变还会引起箱形截面各板的横向弯曲,在板内产生横向弯曲应力dt σ (纵截面上)。 5、局部荷载的影响:箱形梁承受偏心荷载作用,除了按弯扭杆件进行整体分析外,还应考虑局部荷载的影响。车辆荷载作用于顶板,除直接受荷载部分产生横向弯曲外,由于整个截面形成超静定结构,因而引起其它各部分也产生横向弯曲。图2-5表示箱形截面在顶板上作用车辆荷载,在各板中产生横向弯矩图。这些弯矩在各板的纵截面上产生横向弯曲正应力c σ及剪应力。 综合箱形梁在偏心荷载作用下产生的应力有: 在横截面上:纵向正应力:dw w M z σσσσ++= 剪应力:dw w M K τττττ+++= 在纵截面上;横向弯曲正应力:c dt s σσσ+= 在预应力混凝土梁中,跨径越大,恒载占总荷载比例就越大。一般地,由于恒载产生的对称弯曲应力是主要的,而由于活载偏心所产生的扭转应力是次要的。如果箱壁较厚,或沿梁的纵向布置一定数量的横隔板,限制箱形梁的畸变,则畸变应力也是不大的。但对于少设或不设横隔板的宽箱薄壁梁,畸变应力不可忽视。板的横向应力对于顶板、肋板及底板的配筋具有重要意义,必须引起重视。 图2-5 局部荷载作用下 横向弯矩图

30米箱梁张拉计算

天大二标25米预制箱梁预应力计算书 一、工程概况 我单位承建天大高速公路第二合同段,起点里程K8+660,终点里程K13+000,线路全长4.340km。我标段主要工程为大桥3座,中桥1座,天桥2座,拱型小桥4座,拱涵2个,盖板涵2个,圆管涵1个,箱型通道2个。共有桩基132根,墩台柱88个,系梁54个,盖梁36个,预制箱梁175片,路基挖方216.014万方,路基填方89.651万方,小型构造物779.043m。 我标段共有25m预制箱梁148片,其中边跨边梁28片,边跨中梁28片,中跨边梁46片,中跨中梁46片。 二、编制依据 1、《公路桥涵施工技术规范》JTJ 041-2000 2、《两阶段施工图设计》山西省交通规划勘察设计院 2009年10月 3、委托试验检测报告 三、预应力张拉 依据图纸要求:混凝土达到设计强度的85%后张拉正弯矩区钢束,压注水泥浆并及时清理箱梁底板通气孔,在主梁正弯矩索张拉完毕,孔道压浆强度达40MPa以上才允许移梁或吊装,吊装过程中要保持主梁轴线垂直,防止倾斜,注意横向稳定。 张拉正弯矩钢束时,若主梁连接端的预留钢筋影响张拉操作,可先将其折弯,待张拉完毕后再将其恢复,张拉时采用两端张拉,且应在横桥向对称均匀张拉,顶板负弯矩钢束也可采用两端张拉,并采用逐根对称张拉。 箱梁腹板张拉时钢束均采用两端对称均匀张拉,在张拉过程中应保证两端同步张拉,左右腹板钢束对称均匀张拉,张拉顺序为: N1→N3→N2→N4。 四、实际伸长量的量取 最终伸长量的计算:由15%至30%的伸长量(L2-L1)加上由30%至100%的伸长量(L3-L1),即:△L=(L2-L1)+(L3-L1)。 注意:在量取伸长值的过程中,前后应以同一个位置为基点进行量取,并且使用钢板尺进行量测。

20m箱梁模板计算书

20米箱梁模计算书1.砼侧压力计算 最大侧压力可按下列二式计算,并取其最小值: F=0.22γ c t β 1 β 2 V1/2 F=γ c H 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γ c ---- 混凝土的重力密度(kN/m3)取26 kN/m3 t ------新浇混凝土的初凝时间(h),h=3.5小时。 V------混凝土的浇灌速度(m/h);取27方/h,即27/25/1=1.08 m H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取1.4m β1------外加剂影响修正系数,不掺外加剂时取1; β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—90mm时,取1;110—150mm时,取1.15。此处取1.15, F=0.22γ c t β 1 β 2 V1/2 =0.22x26x3.5x1x1.15x1.081/2 =24kN/m2 F=γ c H =26x1.4=36.4kN/ m2 取二者中的较小值,F=24kN/ m2作为模板侧压力的标准值,并考虑倾倒混凝土产生的水平载荷标准值4 kN/ m2,分别取荷载分项系数1.2和1.4,则作用于模板的总荷载设计值为:F=24x1.2+4x1.4=34.4 kN/ m2,取为35 kN/ m2 有效压头高度:H0=35/26=1.35m 2.面板验算(6mm钢板) 最大跨距: l=300mm, 每米长度上的荷载:q=FD=35x0.9=31.5KN/m。D为背杠的间距 弯矩:Mmax=0.1ql2=0.1x31.5x0.32=0.2835KN.m

箱梁横梁计算

请问大家: 1)桥博计算连续梁的横隔梁时建模仅取横隔梁的宽度还是取横隔梁的两侧渐变段的截面作为模型计算截面? 2)对于箱梁的恒载如何处理,是作为均布荷载加载在桥面板上,还是作为集中力加载在腹板上? 3)对于顶板带横向预应力的桥梁,计算出来的结果是不是不考虑翼板根部的拉应力? 4)对于多室截面恒载如何分担? 希望大家发表自己的看法,如果有相关的算例最好上传学习一下! 向别的老工程师请教后他给我这样的解释:不知道大家有什么见解 1、横梁截面宽度取(b+2bh+12h'f),b为横梁厚度,bh为承托长度,h'f为板厚。 2、箱梁恒载主要都由腹板传递,取集中力加在腹板上。 3、个人认为应当考虑,施加横向预应力主要就是解决挑臂根部和腹板间桥面板下缘的拉应力,横向应力对横向钢束位置的调整非常敏感。 4、多室截面恒载可按腹板数量均分。 其实横向构件的计算分实体横梁和箱梁框架,以上的1、2、4点均用于实体横梁计算,第3点用于桥面板计算。 不知道大家有什么见解?

关于横梁计算,由于在立交和高架设计时经常碰到,我谈一点个人看法, 如果没有张拉横梁预应力,各个腹板的受力极不均匀,位移大的腹板,弯距比较小,承受的力也比较小,但是张拉横向预应力以后,各个腹板受力就比较均匀了,一般边腹板的力与中腹板的力之比在1.0~1.2之间。 对于多箱室的,恒载应该考虑两种情况更安全,一个是各个腹板均分恒载,另一个是边腹板是中腹板的1.2倍, 另外一个就是桥面上的活载,大家是按照横梁上均布还是,腹板均分? 我一般是底板范围均分和腹板均分考虑,毕竟活载比重比较小,计算差别不是很大! 我的观点是: 1、活载应根据车辆荷载进行横向加载,考虑最不利组合。 2、计算宽度取实体厚度。楼上的宽度的取法从理论上讲是正确的。但是保守的取法可以留一定的安全储备。 请各位指正。

现浇连续箱梁预应力张拉计算演示教学

现浇连续箱梁预应力 张拉计算

重庆沙滨路连续箱梁张拉计算预应力施工作业指导书 编制: 审核: 审批: 重庆拓达建设集团有限公司 2011年5月21日

目录 一、张拉前的准备工作 (2) 二、张拉程序 (2) 三、张拉控制数据计算 (2) 四、张拉力与油表读数对应关系 (12) 五、伸长值的控制 (14) 六、质量保证措施 (14) 七、安全保证措施 (15)

预应力施工作业指导书 后张法预施应力是待混凝土构件达到一定的强度后,在构件预留孔道中穿入预应力筋,使预应力筋对混凝土构件施加应力。这是一项十分重要的工作,施加预应力过多或不足都会影响预制构件质量,必须按设计要求,准确地施加预应力。 一、张拉前的准备工作 1、张拉前需完成梁内预留孔道、制束、制锚、穿束和张拉机具设备的准备工作。 2、张拉作业上岗作业人员必须经过特种作业培训,并取得特种作业合格证书。施工前,还必须对所有作业人员进行严格的施工技术交底。 3、钢绞线、锚具、张拉千斤顶、压力表等设备必须经专业检测单位检测,并取得检验合格报告。 4、张拉安全防护设备已安装完毕并在作业区周边布设警示标志,由专人负责看护、挪动。 二、张拉程序 预应力张拉要求混凝土强度达到90%且龄期不少于7天方可张拉,张拉时需纵横向钢束交替进行,纵向钢束张拉按先长后短的原则进行作业。 张拉工序为:0→初应力→控制应力(持荷2分种锚固)。 三、张拉控制数据计算 本作业指导书以标准段3×30m箱梁纵向和横向预应力筋伸长量计算为例进行编制。 ㈠、计算依据

1、采用YJM15系列自锚性能锚具(即:YJM15-15、YJM15-7),张拉设备采用YCW250型、YCW400型配套千斤顶,已通过质量监督检验所检验合格并标定,检验证书附后。 2、本桥采用低松驰高强度预应力钢绞线,单根钢绞线为15.24mm(钢绞线试验面积A g=140.9mm2),标准强度f pk=1860Mpa,弹性模量E p=1.98×105Mpa。锚下控制应力:σcon=0.75f pk=0.75×1860=1395Mpa。 3、张拉时采用预应力筋的张拉力与预应力筋的伸长量双控,并以预应力筋的张拉力控制为主。 4、瓯海大道西段快速路8标高架桥标准段施工图纸及《公路桥涵施工技术规范》JTJ041-2000。 ㈡、理论张拉伸长值的计算 1、按现行桥涵施工规范,预应力筋的理论伸长值△L(mm)为: △L=Pp×L/Ap×Ep (1) Pp—预应力筋的平均张拉力(N); L —预应力筋的长度(mm); Ap—预应力筋的截面积(mm2); Ep—预应力筋的弹性模量(N/mm2)。 2、预应力筋的平均张拉力为: Pp=P(1-e-(kx+uθ))/(kx+uθ) (2) P —预应力筋张拉端的张拉力(N); x —从张拉端至计算截面的孔道长度(m);

30m箱梁模板计算书

中铁三局五公司右平项目 30m箱梁 模板计算书 山西昌宇工程设备制造有限公司 技术部 2015年11月21日

30米箱梁模计算书 本工程所用30m箱梁,梁底模板直接采用混凝土台座,不再另行配置底模板。 1.砼侧压力计算 最大侧压力可按下列二式计算,并取其最小值: F=0.22γ c t β 1 β 2 V1/2 F=γ c H 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γ c ---- 混凝土的重力密度(kN/m3)取26 kN/m3 t ------新浇混凝土的初凝时间(h),h=3.5小时。 V------混凝土的浇灌速度(m/h);取27方/h,即27/25/1=1.08 m H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取1.4m β1------外加剂影响修正系数,不掺外加剂时取1; β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—90mm时,取1;110—150mm时,取1.15。此处取1.15, F=0.22γ c t β 1 β 2 V1/2 =0.22x26x3.5x1x1.15x1.081/2 =24kN/m2 F=γ c H =26x1.4=36.4kN/ m2 取二者中的较小值,F=24kN/ m2作为模板侧压力的标准值,并考虑倾倒混凝土产生的水平载荷标准值4 kN/ m2,分别取荷载分项系数1.2和1.4,则作用于模板的总荷载设计值为:F=24x1.2+4x1.4=34.4 kN/ m2,取为35 kN/ m2 有效压头高度:H0=35/26=1.35m 2.面板验算(6mm钢板) 最大跨距: l=300mm, 每米长度上的荷载:q=FD=35x0.8=28KN/m。D为背杠的间距

关于城市宽箱梁横向分布系数的取值分析

关于城市宽箱梁横向分布系数的取值分析 摘要:变截面连续箱梁桥、连续刚架桥的设计,一般均将桥跨结构视作弹性梁元,采用平面杆系程序计算。荷载偏心用增大系数法考虑,增大系数的取值对于宽跨比很大的城市桥梁具有很大的任意性。本文以某实桥为背景,采用ANSYS 结构分析通用程序计算了多个特征断面各腹板的横向分布系数。据此,对照了按荷载横向分布简化算法的计算结果,所得出的结论,可为同类工程设计提供参考。 关键词:宽箱梁;横向分布;空间分析;简化算法 Abstract: The variable cross section continuous box girder bridges, continuous rigid frame bridge design, generally will bridge structure as an elastic beam element, the plane pole-system program calculation. Eccentric load by increasing the coefficient method to consider, increase coefficient for width span ratio of big city bridges with large arbitrariness. Taking a bridge as the background, using the ANSYS general structural analysis program calculates the multiple features of the web section of transverse distribution coefficient. Accordingly, controlled by lateral load distribution algorithm of calculation results, the conclusion, for similar engineering design to provide a reference. Key words: wide box beam; transverse distribution; spatial analysis; simplified algorithm 1概述 实桥位于某高速公路交点,为三跨(42m+80m+42m)预应力混凝土上承式 拱梁组合体系桥。主梁两侧边墩处各有一片端横梁,宽1.3m,主墩中心及中跨跨中两侧各有两片横梁,宽0.4m,边跨及中跨在主拱与主梁的结合处均设置横梁,宽0.6m。主梁采用单箱三室断面,箱梁顶宽25.5m、底宽17.3m,腹板中距为5.75m 及5.8m,两边悬臂4.1m,跨中梁高2.0m。主拱腿采用钢筋混凝土单箱三室断面,宽17.3m,高1.4m,腹板中距与主梁相同。副拱采用实心矩形断面,宽17.3m,高0.6m。为保持沪杭高速公路车流畅通,主桥采用中心转体施工。主桥总体及主梁断面见图1。 图1主桥总体及主梁断面示意图单位:cm 2ANSYS板壳元空间分析 由于主桥为对称结构,计算模型取1/2模型,模型单元为SHELL63弹性壳单元,

50米箱梁横向计算说明书

50米预应力箱梁横向设计计算 一、箱梁横断面构造 引桥采用多跨预应力混凝土连续梁,其标准横断面布置如图1所示,全桥采用分离式双幅单箱单室截面,桥面板内设置横向预应力,斜腹板内不设竖向预应力钢筋。单幅箱梁跨中梁高2.8m,斜腹板宽度0.50m,底板厚度0.25m;桥面板悬臂端部厚度0.18m,悬臂根部厚度0.5m,箱室顶板跨中厚度0.25m。为了保证荷载传递顺畅,所有的顶板、 二、箱梁横向分析 1.结构离散 箱梁采用单箱单室截面形式,横向分析取纵桥向单位长度箱形框架考虑。箱梁横向分析计算采用桥梁结构计算软件《qjx》进行结构分析,取箱梁为受力分析对象,共划分为54个单元和54个节点,支承形式采用简支形式,结构按施工及使用受力顺序划分为3个阶段,其箱梁结构离散图详见图2所示。

根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》,汽车横桥向距路缘石的最小距离为0.5m ,挂车横桥向距路缘石的最小距离为1.0m ,桥面板采用双悬臂梁结构图式,计算车轮在桥面板上的分布宽度。 汽车—超20级和挂车—120的荷载主要技术指标详见表1。 桥梁设计技术规范规定,箱梁横断面位置上汽车荷载可以按1~4车道布置,其横向布置可以在悬臂板或中板上,而挂车全桥只能布置一辆,且位置一般情况下在专用车道上,因而挂车荷载仅按作用在中板上考虑。 以下仅介绍汽车荷载作用下板的有效分布宽度计算过程: (1)、悬臂板荷载有效分布宽度

悬臂板上的集中荷载在垂直于板跨方向的分布宽度,按下式计算: '21b a a += 式中:—1a 垂直于板跨方向车轮通过铺装层后的分布于板顶的尺寸; —'b 集中荷载通过铺装层分布于板顶的宽度外缘至腹板边的距离。 (2)、跨中板荷载有效分布宽度 a) 车轮作用于板的跨中时: 对于一个车轮荷载,板的有效分布宽度为: 3/1L a a +=,但不小于L 3 2 。 对于两个或几个相同车轮荷载,当一个车轮荷载计算的分布宽度有重叠时,车重取其总和,而分布宽度则按边轮分布外缘计算: 3/1L d a a ++=,但不小于L d 3 2 + 。 式中:—1a 垂直于板跨方向车轮通过铺装层后的分布于板顶的尺寸; —L 板的计算跨径; —d 多个车轮时,外轮的中距。 b) 车轮作用于板的支承处时: 对于一个车轮荷载,板的有效分布宽度为: t a a +=1 式中: —1a 垂直于板跨方向车轮通过铺装层后的分布于板顶的尺寸; —t 板的厚度; (3) 、车轮作用于板的支承附近处时: 在车轮荷载作用下,按支承处板的有效分布宽度45o 刚性扩散角与跨中板有效分布宽度接顺。

框架梁模板计算书

框架梁模板(扣件钢管高架)计算书 本高支撑架计算采用PKPM施工安全设施计算软件计算。计算书中钢管全部按照Φ48×3.0计算。 本高支撑架的计算依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)、《混凝土结构设计规范》GB50010-2002、《建筑结构荷载规范》(GB 50009-2001)、《钢结构设计规范》(GB 50017-2003)等规范编制。 计算梁段:BKL-407(3A)。高支架搭设高度为18.08米,基本尺寸为:梁截面B×D=500mm×700mm,梁支撑立杆的横距(跨度方向) l=1.00米,立杆的步距h=1.50米,梁底增加1道承重立杆。 一、参数信息 1.模板支撑及构造参数 梁截面宽度 B(m):0.50;梁截面高度 D(m):0.70; 混凝土板厚度(mm):120.00;立杆沿梁跨度方向间距La(m):1.00; 立杆上端伸出至模板支撑点长度a(m):0.10; 立杆步距h(m):1.50;板底承重立杆横向间距或排距Lb(m):1.00;

梁支撑架搭设高度H(m):18.28;梁两侧立柱间距(m):0.80; 承重架支设:1根承重立杆,方木支撑垂直梁截面; 采用的钢管类型为Φ48×3; 扣件连接方式:单扣件,考虑扣件质量及保养情况,取扣件抗滑承载力折减系数:0.85; 2.荷载参数 模板自重(kN/m2):0.35;钢筋自重(kN/m3):1.50; 施工均布荷载标准值(kN/m2):2.5;新浇混凝土侧压力标准值(kN/m2):18.0; 倾倒混凝土侧压力(kN/m2):2.0;振捣混凝土荷载标准值(kN/m2):2.0; 3.材料参数 木材品种:杉木;木材弹性模量E(N/mm2):10000.0; 木材抗弯强度设计值fm(N/mm2):17.0;木材抗剪强度设计值fv(N/mm2):1.7; 面板类型:胶合面板;面板弹性模量E(N/mm2):9500.0; 面板抗弯强度设计值fm(N/mm2):13.0; 4.梁底模板参数 梁底方木截面宽度b(mm):50.0;梁底方木截面高度h(mm):100.0; 梁底纵向支撑根数:4;面板厚度(mm):18.0; 5.梁侧模板参数 主龙骨间距(mm):500;次龙骨根数:4; 主龙骨竖向支撑点数量为:2; 支撑点竖向间距为:100mm; 穿梁螺栓水平间距(mm):500; 穿梁螺栓直径(mm):M12; 主龙骨材料:钢管;截面类型为圆钢管Φ48×3.0; 主龙骨合并根数:2; 次龙骨材料:木枋,宽度50mm,高度100mm; 二、梁模板荷载标准值计算 1.梁侧模板荷载

箱梁计算

二、支架设计承载力参数 1、立杆设计荷载 2、横杆设计荷载 3、方木、模板设计参数 [σw] =13MPa [τ]=1、9MPa E=1、0×104 MPa 10×10cm方木截面抵抗矩:

A=bh=100*100=10000mm2 I=bh3/12=100*1003/12=8、33*106mm4 W=bh2/6=100*1002/6=1、67*105mm3 Sm=bh2/8=100*1002/8=1、25*105mm3 三、箱梁砼自重参数 箱梁具体尺寸见设计院图纸。 1、箱梁砼容重按25kN/m3,本次计算按箱梁腹板荷载计算,翼板因荷载偏 小,不在验算范围内。 2、箱梁普通截面段腹板每延米砼恒载计算: 腹板截面S=0、5*1、7=0.85m2, 每延米砼恒载P1=0、85×25=21、25kN/m。 3、横梁、端梁每延米砼恒载计算:(按最不利荷载截面即纵向得横截面计算) 箱梁截面S=16、75×1、7=28.475m2 每延米砼恒载P2=28、475×25=711、875kN/m,中横梁宽为2m,端梁宽

1.2m。 四、荷载组合 1、人员及施工机械设备荷载 P3=3、5kN/m2 2、混凝土倾倒及振捣产生得荷载 P4=2kN/m2 荷载组合按照Ⅱ类荷载组合计算,P=1、2恒载+1、4活载五、支撑体系验算 (一)箱梁普通截面段 1、模板验算 (1)底板模板验算: 模板每延米荷载计算:q=1、2*P1+1、4(P3+P4)*0、5 =1、2*21、25+1、4(3、5+2)*0、5 =29、35KN/m

腹板宽度为500mm,板宽按0.5m计算。 1.计算简图 箱梁模板底横向10×10cm方木间距均为300cm,按均布荷载作用下得二等跨连续梁计算。 2.截面特性 A=bh=500*20=10000mm2? I=bh3/12=500*203/12=333333mm4 W=bh2/6=500*202/6=33333mm3 S m=bh2/8=500*202/8=25000mm3 3.截面验算 查表可知:弯距系数Km 中max=0、096,剪力系数Kv B =0、626+0、625=1、 25,扰度系数Kw中=0、521 (1)抗弯强度验算

T梁预应力张拉计算示例

衡昆国道主干线GZ75~~公路 平远街~锁龙寺高速公路 6合同半坡段K95+300~K100+280.91 T梁预应力拉计算书 中国公路桥梁工程总公司 第七项目经理部

二OO四年八月

20M梁板拉计算算例 K95+796(左)1-1# T梁 一、已知条件 该T梁是1片一端简支一端连续边梁,梁长:L0=1996.5 (cm)。 该T梁设有3束钢束,其中:①号钢束设有5根φ15.24钢绞线,钢束长度(包括每端预留工作长度75cm):L1=L0+96cm;②号钢束设有6根φ15.24钢绞线,钢束长度(包括每端预留工作长度75cm):L2=L0+103cm;③号钢束设有6根φ15.24钢绞线,钢束长度(包括每端预留工作长度75cm):L3=L0+108 cm。 该T梁①、②、③号钢束竖弯角度均为:θ竖=9°27′44″,②、③号钢束平弯角度均为:θ平=6°50′34″。 预应力拉千斤顶工作段长度:L工=55cm,压力表回归方程: 3021号压力表(简称压力表1)为:Y=0.0209X-0.1109、1482号压力表(简称压力表2)为:Y=0.0214X-0.095。 预应力筋为低松弛钢绞线,其截面积为:A p=140 mm2,弹性模量为:E p=1.95×105Mpa,拉控制应力:σk=1395 Mpa,采用两端同时对称拉技术。 二、预应力钢绞线伸长值计算公式 预应力钢绞线伸长值:ΔL=(P p×L)/(A p×E p), 其中: ΔL-预应力钢绞线伸长值(mm) L-预应力钢绞线计算长度(mm),包括千斤顶工作段长度; A p-预应力钢绞线的截面面积(mm2); E p-预应力钢绞线的弹性模量(N/ mm2); P p-预应力钢绞线的平均拉力(N);按JTJ041-2000《公路桥涵施工技术规》附录G-8曲线筋公式计算,即P p =P×(1-e-(kx+μθ))/(kx+μθ);其中: P-预应力钢束拉端的拉力(N); k-孔道每米局部偏差对摩擦的影响系数(波纹管计算取0.0015)。 x-从拉端至计算截面的孔道长度(m); μ-预应力钢绞线与孔道壁的摩擦系数(波纹管计算取0.2); θ-从拉端至计算截面的孔道部分切线的夹角之和(rad)。

箱梁模板施工计算_pdf

箱梁模板施工计算 一、简介 A19~A24箱梁一联五孔125m(5×25m)。A19~A21单箱三室,渐

G .B18~B23箱梁一联五孔120m(20+4×25)单箱三室,在一般结

筑 龙 网 W W W .Z H U L O N G 1、箱梁模板支架体系 2、底模下方木铺设 采用10×15cm 的方木纵向(顺桥向)铺设作为模板主肋,其间距为91.4cm,采用10×10cm 方木横向铺设作为模板次肋,间距30cm,上部面板采用1220×2440×18mm 的竹胶板。 3、结构受力分析 以墩柱两侧4.0m 结构过渡区荷载最大段进行验算,如果满足要求,则一般结构区也满足要求。 (1)、模板主肋

建立受力模型见图3-8 抗弯=M/W=0.077×q×L2/w=0.077×30×1.222×106/375 ]=15MPa ≈9.2MPa<[f m qL4/100EI 挠度:w=K 挠度系数 =0.632×30×1.224/100×0.1×2812.5=1.5×10-3m=1.5mm 据《现行建筑规范大全》规定,结构表面外露的模板,最大变形

筑 龙网 W W W . 值不超出模板构件计算跨度的1/400。 2.44×1/400=0.0061=6.1mm 抗剪τ=σ/A=K 剪力系数 ×ql÷bh=0.607×30×1.22/0.1× 0.15=1.48MPa<1.5Mpa W=bh 2/6=167cm 3,I=bh 3 /12=833cm 4 ,q=32.8×0.3=10KN/m 抗弯=M/W=0.077×q×L 2 /w=0.077×10×0.9142 ×106/167 ≈3.9MPa<[f m ]=15MPa 挠度:w=K 挠度系数qL 4 /100EI =0.632×10×0.9144 /100×0.1×833=0.5×10-3 m=0.5mm 据《现行建筑规范大全》规定,结构表面外露的模板,最大变形值不超出模板构件计算跨度的1/400。 2.44×1/400=0.0061=6.1mm 抗剪 τ=σ/A=K 剪力系数×ql÷bh=0.607×10×0.914/0.1×0.1 =0.55MPa<1.5Mpa

横向框架计算.

申庄立交 申庄立交 15.75m 宽箱梁横向计算 计算: 复核: 日期: 1、结构体系 桥面板长边和短边之比大于 2, 所以按以短边为跨径的单向板计算。桥面板宽为 15.75m , 计算选取纵向 1m 宽横向框架为计算模型。结构所受荷载有,自重,二期恒载;活载:1.3倍公路 -I 级;附加力:1、日照模式; 2、寒潮模式。 结构计算模式如下图 2、计算参数 Ⅰ、材料信息 混凝土 C50 f ck =32.4 MPa f tk =2.65 MPa

E c =3.45×104 MPa 容重:26.5 KN/m3Ⅱ、计算荷载 结构自重:由程序自动计入。 二期恒载:1、桥面铺装(8cm 砼 +9cm沥青 0.08×25+0.1×24=4.16 kN/m 2、每侧防撞护栏 8.25kN 活载:车辆荷载 冲击系数1+μ=1.3 (悬臂1+μ=1.45 (跨中中后车轮着地宽度 a 2=0.2m b 2=0.6m 1 单个车轮 P 作用于悬臂板 P 有效分布宽度 a=a2+2H+2c=0.2+2×0.17+2×(x+0.3+0.17=1.48+2x m 2 单个车轮 P 作用于顶板跨中 P 有效分布宽度 a=a2+2H+L/3=0.2+2×0.17+3.69/3=1.77 m < 2 L /3=2.46 m 取 a=2.46 m 3 单个车轮 P 作用于支承处

P 有效分布宽度 a=a2+2H+t=0.2+2×0.17+0.25=0.79 m 故单轮作用于桥面的荷载分布宽度图如下: 由于单轮的作用于跨中和悬臂分布宽度均大于 1.4m ,存在两轮分布宽度重叠现象,两轮分布宽度图如下,图中阴影部分为两轮分布宽度重叠区域。 3、荷载组合 1恒载 +箱顶车辆 1+附加力(温度

预应力混凝土连续箱梁纵向受力分析

预应力混凝土连续箱梁纵向受力分析 摘要:以某三跨预应力混凝土连续箱梁为例,利用有限元分析软件Midas/Civil分别建立了单梁模型和梁格法模型。通过对两种模型计算结果的比较,分析了单梁模型和梁格模型计算结果之间的差异,提出了设计计算分析中的一些建议。结论对同类桥梁的设计计算分析具有一定的参考意义。 关键词:连续箱梁平面杆系梁格法 1引言 对箱型梁桥进行有限元分析时通常可建立三种模型进行计算分析,即平面杆系、空间杆系以及空间实体模型。平面杆系模型方法简便,仅能反映杆系截面的平均力学特征,可用于简单结构的粗略分析;空间实体模型建模工作量大,适用于结构的局部分析;空间杆系模型在合理建模的情况下,能较为全面地反映结构的空间受力特点,具有基本概念清晰、易于理解和使用等特点[1]。本文从适用性和经济性出发,结合具体实例采用梁格法进行结构分析,并与平面杆系模型的计算结果进行比较分析验证梁格法的适用性。 2工程实例概况 本文以某三跨等截面预应力混凝土连续箱梁桥为例,桥跨布置为20m+32m+20m,桥面宽12.0m,为单箱双室截面,如图1所示;两侧翼缘悬臂板长2.0m,箱底宽7.5m,梁高1.45m,连续梁双点支撑,跨间无横隔板,仅在支点处设支座横梁。设计荷载:汽车-15、挂-80。 图1 桥梁简图(单位:cm) 3计算模型及计算结果分析 本文采用桥梁有限元分析软件Midas/Civil分别建立桥梁的单梁模型和梁格模型。 3.1单梁模型 采用Midas/Civil的空间梁单元建立桥梁的单梁模型,共建立节点73个,单元72个,如图2所示。其中汽车荷载的作用通过定义车道偏心加以考虑。

25m箱梁预应力张拉计算书

25m箱梁预应力张拉计算书 1、工程概况 杏树凹大桥左线桥中心桩号为ZK9+875,上部构造采用16×25m预制预应力混凝土小箱梁,先简支后连续。全桥分4联,桥长406m,,右线中心桩号为YK9+782.5,上部构造采用15×25m预制预应力混凝土小箱梁,先简支后连续。全桥分4联,桥长381m。本桥左线位于R-3600左偏圆曲线上,右线位于R-3400左偏圆曲线上。每跨横桥面由4片预制安装小箱梁构成。25m预制箱梁为单箱单室构造,箱梁高度为140厘米, 跨中断面腹板、底板厚度为18厘米,支点断面腹板、底板厚度为25厘米,顶板一般厚度为18厘米,箱梁底宽为100厘米,中梁翼缘顶宽为240厘米,边梁翼缘顶宽为284.5厘米。 本桥共有C50预应力混凝土箱梁124片。 各梁的预应力筋分布情况如下表所示: 预应力筋均为纵向,分布在底板、腹板及顶板,其中底板4束,腹板4束,顶板5束,对称于梁横断方向中线布置。预应力钢绞线采用抗拉强度标准值f pk=1860 MP、公称直径d=15.2mm的低松驰高强度,其力学性能符合《预应力混凝土用钢绞线》(GB/T5224-2003)的规定,公称截面积Ap=139mm2,

弹性模量Ep=1.95*105MPa,松驰系数:0.3。试验检测的钢绞线弹性模量Ep=1.95*105 MPa。 预应力管道采用金属波纹管,腹板及底板为圆孔,所配锚具为M15-3及M15-4,顶板为长圆孔,所配锚具为BM15-4及BM15-5。 2、后张法钢绞线理论伸长值计算公式及参数 后张法预应力钢绞线在张拉过程中,主要受到两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力。导致钢绞线张拉时,锚下控制应力沿着管壁向梁跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。 2.1、力学指标及计算参数 预应力筋力学性能指标及相关计算参数如下: ※弹性模量:Ep=1.91*105 MPa ※标准强度:f pk =1860MPa ※张拉控制应力:σcon=0.75f pk =1395MPa ※钢绞线松驰系数:0.3 ※孔道偏差系数:κ=0.0015 ※孔道摩阻系数:μ=0.15 ※锚具变形及钢束回缩每端按6mm计 2.2、理论伸长值的计算 根据《公路桥梁施工技术规范》(JTJ 041-2000),关于预应筋伸长值的计算按如下公式进行:

箱梁支架计算书(初稿)

箱梁支架计算书 本计算书分别以箱梁标准断面的横隔梁处及跨中截面、40m+60m+40m 跨箱梁最不利位置为例,对荷载进行计算及对其支架体系进行检算。 5.1荷载计算 5.1.1荷载分析 根据本工程现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式: ⑴ q 1—— 箱梁自重荷载,新浇混凝土密度取2600kg/m 3。 ⑵ q 2—— 箱梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算, 经计算取q 2=1.0kPa 。 ⑶ q 3—— 施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板 及其下肋条时取2.5kPa ;当计算肋条下的梁时取1.5kPa ;当计算支架立柱及替他承载构件时取1.0kPa 。 ⑷ q 4—— 振捣混凝土产生的荷载,对底板取2.0kPa ,对侧板取4.0kPa 。 ⑸ q 5—— 新浇混凝土对侧模的压力。 因现浇箱梁采取水平分层以每层30cm 高度浇筑,查简明手册V 取2.5m/h 浇筑速度控制,砼入模温度T=25℃控制,因此新浇混凝土对侧模的最大压力 2 1 21022.05q V t c ββγ= =0.22×2.4×9.8×200/(25+15)×1.2×1.0×2.51/2 =49.1KN/m2=49.1KPa 式中: q5──新浇筑混凝土对模板的最大侧压力(kN/m2); c γ──混凝土的重力密度(kN/m3),取2400kg/ m3; V ──混凝土的浇筑速度(m/h ); 0t ──新浇混凝土的初凝时间(h ),可按试验确定。当缺乏试验资料时,可采用)15/(2000+=T t (T 为混凝土的温度oC ); 1β──外加剂影响修正系数。不掺外加剂时取1.0,掺具有缓凝作用的外

预应力箱梁横向分析

预应力箱梁横向分析 预应力箱梁横向分析一. 概要 1.分析概要 PSC箱梁进行横向分析时,有理论指出梁单元模型的分析结果往往比有限板单元的分析结果要偏大。通过本例题对配有预应力钢筋的箱梁横向模型进行三维板单元分析并与梁单元模型的结果比较,验证上述理论。 建立几何体生成主梁(板单元网格)生成横向预应力钢筋(线网格)施加恒荷载.移动荷载张拉预应力钢筋查看分析结果 n 几何模型本例题主梁是截面宽度为15.74m,梁高为3m的等截面箱梁。顶板的悬臂板.腹板顶.顶板中心的厚度依次为 0.25.0.45.0.23m,横向预应力钢筋是曲线布置的。建顶板时可采用程序中变厚度板单元,预应力钢筋采用B样条曲线。n 材料及特性主梁采用40MPa的高强度混凝土材料,钢束选择钢筋单元中的预应力类型。顶板采用变厚度的板单元建模,腹板与底板用 0.5m.0.2m厚度的板单元来建模。n 生成主梁(板单元网格)首先利用“定义线”功能定义箱梁截面几何体(如上图所示),再利用“扩展”功能生成50m的全桥板单元网格。n 生成钢束(线单元网格)利用“定义线”功能生成B样条曲线,然后以0.6m 为等间距复制到整个主梁顶板中。n 恒荷载与活荷载结构自重由程序内部自动计算,二期荷载(防撞墙.铺装)通过压力荷载施加在整个桥面板上。

将一辆整车荷载添加在主梁跨中顶板上,按悬臂板.顶板中心弯矩最大布置车辆,共有六种布置方法。每个车轮考虑着地面积施加压力荷载。n 预应力荷载对钢筋单元(预应力类型)施加预应力荷载。n 分析结果将恒载.活荷载的内力结果以及预应力荷载的应力结果与梁单元模型的分析结果相比较。 二. 建立主梁顶板(考虑加腋)3214 操作步骤 Procedure 分析 > 函数. 1.名称 [Top Slab] 2. 独立变量 [X] 3. 编辑表格 [输入顶板相应于X坐标的板厚] 4. 点击 [确认] 独立变量横向顶板的厚度在X方向上有变化,独立变量选择X方向。 数值输入随X方向变化的板厚度。X坐标原点以顶板中心为基准输入。n 建立/修改函数定义随位置变化的可变荷载或边界条件等的空间函数(Spatial Function)。可直接在左侧的表格里输入变量和函数,也可利用方程式生成函数。各变量之间的函数值是线性内差计算的。 三. 建立预应力钢筋 1.定义钢筋特性值操作步骤 Procedure 分析 >特性. 1.选择 [创建 > 钢筋…] 2. 选择 [杆截面]表单 3. 输入“号”, “名称” 后点击 [适用]

相关主题
文本预览
相关文档 最新文档