当前位置:文档之家› OrCAD-PSpice简明教程

OrCAD-PSpice简明教程

OrCAD-PSpice简明教程
OrCAD-PSpice简明教程

可以联系本人免费索要

PSPICE简明教程

宾西法尼亚大学电气与系统工程系

University of Pennsylvania

Department of Electrical and Systems Engineering

编译:陈拓

2009年8月4日

原文作者:

Jan Van der Spiegel, ?2006 jan_at_https://www.doczj.com/doc/cb2208334.html,

Updated March 19, 2006

目录

1.介绍

2.带OrCAD Capture的Pspice用法

2.1 第一步:在Capture 中创建电路

2.2 第二步:指定分析和仿真类型

偏置或直流分析(BIAS or DC analysis)

直流扫描仿真(DC Sweep simulation)

2.3 第三步:显示仿真结果

2.4 其他分析类型:

2.4.1瞬态分析(Transient Analysis)

2.4.2 交流扫描分析(AC Sweep Analysis)

3.附加的使用Pspice电路的例子

3.1变压器电路

3.2 使用理想运算放大器的滤波器交流扫描(滤波器电路)

3.3 使用实际运算放大器的滤波器交流扫描(滤波器电路)

3.4 整流电路(峰值检波器)和参量扫描的使用

3.4.1 峰值检波器仿真(Peak Detector simulation)

3.4.2 参量扫描(Parametric Sweep)

3.5 AM 调制信号

3.6 中心抽头变压器

4.添加和创建库:模型和元件符号文件

4.1 使用和添加厂商库

4.2 从一个已经存在的Pspice模型文件创建Pspice符号

4.3 创建你自己的Pspice模型文件和符号元件

参考书目

1. 介绍

是一种强大的通用模拟混合模式电路仿真器,可以用于验证电路设计并且预知 SPICE

电路的行为,这对于集成电路特别重要,1975年SPICE最初在加州大学伯克利分校被开发时也是基于这个原因,正如同它的名字所暗示的那样:

S imulation P rogram for I ntegrated C ircuits E mphasis.

PSpice 是一个PC版的SPICE(Personal-SPICE),可以从属于Cadence设计系统公司的OrCAD公司获得。学生版(功能受限)随教科书奉送。OrCAD的学生版称为PSpice AD Lite。有关PSpice AD Lite的信息可以从OrCAD的网站获得:https://www.doczj.com/doc/cb2208334.html,/pspicead.aspx

Pspice的学生版有下面的限制:电路最多有64个节点,10个晶体管和2个运算放大器。 SPICE可以进行各种类型的电路分析。最重要的有:

z非线性直流分析:计算直流传递曲线。

z非线性瞬态和傅里叶分析:在大信号时计算作为时间函数的电压和电流;傅里叶分析给出频谱。

z线性交流分析:计算作为频率函数的输出,并产生波特图。

z噪声分析

z参量分析

z蒙特卡洛分析

另外,Pspice有标准元件的模拟和数字电路库(例如:NAND,NOR,触发器,多选器,FPGA,PLDs和许多数字元件)。这使得它成为一种广泛用于模拟和数字应用的有用工具。

所有分析都可以在不同温度下进行。默认的温度是300K。

电路可以包含下面的元件:

z Independent and dependent voltage and current sources独立和非独立的电压、电流源z Resistors电阻

z Capacitors电容

z Inductors电感

z Mutual inductors互感器

z Transmission lines传输线

z Operational amplifiers运算放大器

z Switches开关

z Diodes二极管

z Bipolar transistors双极型晶体管

z MOS transistors金属氧化物场效应晶体管

z JFET结型场效应晶体管

z MESFET金属半导体场效应晶体管

z Digital gates数字门

z其他元件(见用户手册)。

2. 带OrCAD Capture 的PSpice(9.2 学生发行版)

在开始仿真电路之前,你需要指定电路配置,这可以用多种方法进行。方法之一是按照元件、连接、元件的模型和分析的以文本文件输入电路描述。该文件被称为SPICE输入文

件或源文件(可参考:https://www.doczj.com/doc/cb2208334.html,/%7Ejan/spice/spice.overview.html )。

另一种方法是使用原理图输入程序,例如OrCAD CAPTURE 。OrCAD Capture 与PSpice Lite AD 在随教科书提供的同一张光盘上。

OrCAD Capture CIS 版集成了具有器件信息系统(Component Information System ,简称CIS)的OrCAD Capture 原理图设计应用功能。该软件的设计着重考虑了降低花在查询现有重复采用的器件上面的时间,以及减少手工登记元器件的信息内容和元器件数据库的维护。对元器件的查询是基于它们所拥有的电性能参数,通过采用OrCAD Capture CIS 软件可以自动地检索相关联的器件情况。

Capture 是一个用法友好的程序,它允许你获取电路的原理图并且指定仿真的类型。Capture 不但可以产生输入文件而且可以用于PCB 布局设计程序。

下面的图概要说明了有关用Capture 和PSpice 仿真一个电路的不同步骤。我们将通过几个例子简要地描述这些步骤的每一步。

图1:用Pspice 仿真电路的步骤

元件的值可以用下面的度量因子指定(大小写均可):

T or Tera (= 1E12) U or Micro (= E-6)

G or Giga (= E9) N or Nano (= E-9)

MEG or Mega (= E6) P or Pico (= E-12)

K or Kilo (= E3) F of Femto (= E-15)

M or Milli (= E-3)

在Pspice 和Hspice 中都允许大写和小写字母。例如,可以下面的方法指定一个225pF 的电容:225P ,225p ,225pF ;225pFarad ;225E-12;0.225N 。

注意:兆被写为MEG ,例如一个15兆欧姆的电阻可以被指定为15MEG ,15MEGohm , 15meg 或15E6。小心M 与Mega !如果你写15Mohm 或15M ,Spice 将会把它们读为15 milliOhm !

作为例子,我们将对下面的电路进行不同类型的仿真。

第一步:用Capture 创建电路

z 创建一个新的模拟,混合AD 项目

z 放置电路元件

z 连接元件

z 指定值和名字

第二步:指定仿真类型 z 创建一个仿真模板 z 选择分析类型: 偏置,DC 扫描,晶体管,AC 扫描 z 运行

PSpice 第三步:观察结果

z 添加曲线到探测窗口

z 用光标分析波形描

z 运行 Pspice

z 保存或打印结果

图2:要被仿真的电路(OrCAD Capture的屏幕快照)

2.1第一步:在Capture 中创建电路

2.1.1 创建新项目

1.打开OrCAD Capture CIS Lite Edition。

2.创建一个新项目:File > New > Project。

3.输入项目的名字,例如Bias and DC Sweep。项目文件的扩展名为.opj,双击项目文

件可以打开项目。

4.选择Analog or Mixed-AD模拟或混合-AD。

5.在Location框中输入项目路径。点击OK。

6.在Create PSpice Project对话框打开时,选择“Create Blank Project”。

一个新的页将在Project Design Manager中打开,如下所示。

图3:OrCAD Capture界面

2.1.2. 放置元件并连接它们

1. 在Capture中点击原理图窗口。

2. 用Place > Part命令放置元件或点击Place Part图标,打开如图4的对话框。

图4:放置元件窗口Place Part

3.选择包含所需元件的库。在Part 文本框中输入元件名字的开始部分,如图中的R,

元件列表将卷动到其名字包含输入字母的元件处。第一次使用Capture时如果没有库可用,你必须点击Add Library添加库按钮,打开Add Library窗口将,选择需要的库。Spice库在路径Capture\Library\Pspice下。常用的Library有下面几个:

Analog:包含无源元件(R、L、C),互感器,传输线,以及电压和电流非独立的源(电压控制的调用源E、电流控制的电流源F、电压控制的电流源G和电流控制的电压源H)。

Source:给出不同类型的独立电压和电流源,例如:Vdc(直流电压),Idc(直流电流),Vac(交流电压),Iac(交流电流),Vsin(正弦电压),Vexp(指数电压),脉冲,分段线性,等。先浏览一下库,看那些元件可用。

Eval:提供二极管(D…),双极型晶体管(Q…),MOS晶体管,结型场效应晶体管(J…),真实运算放大器;如u741,开关(SW_tClose, SW_tOpen),各种数字门和元件。

Abm:包含一个可以应用于信号的数学运算符选择,例如:乘法(MULT),求和(SUM),平方根(SWRT),拉普拉斯(LAPLACE),反正切(ARCTAN),等。

Special:包含多种其他元件,像参数、节点组,等。

4.从库中选择电阻、电容和直流电压以及电流源。你可以用鼠标左键放置元件,用鼠

标右键点击旋转元件。如果要放置相同元件的另一个实例,可以再次点击鼠标左键。

对某个元件完成特定的操作后按ESC键, 或右击并选择End Mode。可以给电容器添加初始化条件;双击该元件将打开看起来像电子表格的Property属性窗口,在IC 列的下面输入初始化条件的值,例如,2V。对于我们的例子我们假定IC是0V(这

是默认值)。移动元件时Snap to grid工具控制元件是否吸附到网格上。

5.在放置好所有的元件后,你需要点击GND图标放置Ground地端子(在右边的工

具栏中,见图3)。当放置地窗口打开时,选择GND/CAPSYM 并且给它命名为0。

不要忘记改变其名字为0,否则PSpice 将给出一个错误或“Floating Node”。原因是SPICE 需要一个地端子作为参考节点,其名字或节点号必须是0。

图5:放置低端子对话框;地端子的名字应该是0

6.现在用从菜单用Place > Wire命令或点击Place Wire图标连接元件。

7.你可以用PLACE > NET ALIAS菜单命令为网络或节点指定别名。我们将输出和输

入节点命名为Out 和In,见图2。

快捷键:

I: 放大 O:缩小

C: 以光标所指为新的窗口显示中心

W: 画线On/Off

P: 快速放置元件

R: 元件旋转90°

N: 放置网络标号

J : 放置节点On/Off

F: 放置电源

H: 元件标号左右翻转

V: 元件标号上下翻转

G: 放置地

B: 放置总线On/Off

E: 放置总线端口

Y: 画多边形

T: 放置TEXT

PageUp : 上移一个窗口 Ctrl+ PageUp : 左移一个窗口

PageDn : 下移一个窗口 Ctrl+ PageDn : 右移一个窗口

Ctrl+F: 查找元件 Ctrl+E: 编辑元件属性

Ctrl+C: 复制 Ctrl+V: 粘贴

Ctrl+Z: 撤消操作

2.1.

3. 为元件指定值和名字

1. 双击电阻旁边的数字改变电阻值。你也可以改变电阻的名字。对于电容、电压和电流源的操作是一样的。

2. 为节点指定名字(例如:Out 和In 节点)。

3. 保存项目。

2.1.4. 生成网表

网表用简单的格式给出所有元件的列表:

R_name node1 node2 value

C_name nodex nodey value, etc.

1. 用PSpice > Create Netlist 菜单命令产生网表。

2. 在项目Project Manager 管理窗口(在文件窗口的左边)中双击Outputs/https://www.doczj.com/doc/cb2208334.html, 文件可以查看网表,如下表。

关于元件中电流方向的注释:

在元件中,例如在电阻中,正电流方向是从节点1到节点2的。对于水平方向的元件节点1是左边的引脚,对于垂直方向的元件节点1是上面的引脚。将元件旋转180度可以交换引脚号。为了验证节点号你可以查看网表,例如:

R_R2 node1 node2 10k

R_R2 0 OUT 10k

因为我们兴趣在从OUT 输出节点到地的电流方向,我们需要旋转电阻R2两次以使节点名相互交换,重新生成网表,查看变化: R_R2 OUT 0 10k 2.2 第二步:指定分析和仿真的类型

如在介绍中所提及的那样,Spice 允许你做直流偏置,直流扫描,傅里叶瞬态分析,交流分析,蒙特卡洛/最差情况扫描,参量扫描和温度扫描。我们将首先解释怎样在图2的电路上做直流偏置和直流扫描。

因为节点1在图2中表示为

上,且是out

2.2.1 偏置或直流分析

1.打开原理图,在PSpice菜单上选择New Simulation Profile。

2.在文本框Name中输入一个描述性的名字,例如Bias。

3.从Inherit From列表中选择none并点击Create。

4.当Simulation Setting仿真设置窗口打开时,对于Analyis Type分析类型,选择Bias

Point偏置点并点击OK。

5.现在你已经准备好运行仿真了:PSpice> Run。

6.一个状态窗口将打开,让你知道是否仿真成功,如果有错,可查看仿真输出文件,

或Session Log窗口(该窗口不能关闭)。

7.为了看到直流偏置点的仿真结果,你可以打开仿真输出文件或返回原理图并点击V

图标(偏置电压显示)和I图标(偏置电流显示)显示电压和电流,见图6。

为了检查电流方向,你必须查看网表:电流的正方向是从节点1流到节点2(见上面有关电流方向的注释)。

图6:显示在原理图上的偏置分析结果

2.2.2 直流扫描仿真

使用相同的电路进行0和20V之间的电压源扫描的误差估计。保持电流源恒定在1mA。

1.从Pspice菜单创建一个新的New Simulation Profile仿真配置文件;我们将称它为

DC Sweep,Inherit From还是none。

2.为了分析DC Sweep;输入将被扫描的电压源的名字:V1,分别指定开始值、结束

值和步距:0,20和0.1V,(见图7)。

图7:设置DC Sweep仿真

3.运行仿真Pspice > Run。PSpice将产生一个包含电路中所有电压和电流值的输出文

件。

2.3 第三步:显示仿真结果

Pspice有一个用户友好的界面于显示仿真结果,一旦仿真结束,如图8所示的Probe探针窗口将打开。你可以用下面两种方法添加踪迹以显示仿真结果。

图8:探针窗口

1.从TRACE菜单选择ADD TRACE并且选择你想要显示的电压和电流。在我们的例

子中,我们将添加V(out)和V(in),点击OK。

图9:Add Traces添加踪迹窗口

2.你也可以在原理图中用V oltage Markers电压标记添加踪迹。从PSpice菜单选择

Markers > V oltage Level。在Out和In节点上放置标记。做完后,右击并选择End Mode。

图10:用Voltage Markers电压标记V(out)和V(in)显示仿真结果

3.返回探针窗口,波形出现了。

4.你可以添加第二个Y轴并用它显示电阻R2上的电流,就像下面图11显示的那样。

从探针窗口菜单选择Plot > Add Y Axis,下一步,为I(R2)添加踪迹。

5.你也可以在曲线图上用光标取V out和Vin踪迹上某些点的实际值。从探针窗口菜单

选择Trace > Cursor > Display。

6.光标将与第一个踪迹相关联,作为指示,在窗口底部V(OUT)的图例被很小的虚线

矩形所围。左击第一条踪迹,X和Y轴的值被显示在Probe Cursor探针光标窗口

中。在Probe Cursor窗口中,左击踪迹时A1的值变化,右击踪迹可以改变A2的值,dif给出A1和A2的差。点击左、右键时拖动光标可以观察A1或A2值的连续变化。

图越大光标定位的精度越高。在图例上先点右击再选左键切换所关注的踪迹。

7.为了将光标与第二个踪迹(用于V(IN))相关联,右击窗口底部V(IN)的图例。你

将看到围绕在V(IN)周围的轮廓,当你右击第二个踪迹时光标会吸到它上面。第一

个和第二个光标的值以及它们之间的差值将显示在Probe探针窗口。

8.双击X和Y轴可以改变它们的刻度等属性。

9.在添加踪迹时你可以在踪迹上进行数学计算,如图9,在Add Trace窗口的右边所

示。

图11:直流扫描的结果,显示Vout,Vin和通过电阻R2的电流。光标被用于V(out)和V(in) 右击一条踪迹的图例,可以改变其颜色等属性。

选择一条踪迹的图例,按Delete键,可以删除该踪迹。

2.4 其他的分析类型

2.4.1 瞬态分析(时域分析)

我们将使用同样的电路做瞬态分析,但在电路中添加了一个开关来控制施加在C1上的电压和电流源,如图12所示。

图12:用于瞬态分析的电路

1.如上图所示从EV AL库插入Sw_tCLOSE开关。双击开关TCLOSE的值,输入Value

为5m,使得TCLOSE = 5 ms。

2.设置瞬态分析:从菜单选择PSpice > New Simulation Profile命令。命名为Transient。

3.当仿真设置窗口打开时,选择Time Domain (Transient)时域瞬态分析。输入运行时

间,我们设它为200 ms。对于Maximum Step 最大步长的大小,你可以让它空着或

输入10us,如果空着波形不光滑,越小波形越光滑。

4.运行Pspice。一个探针窗口将打开。

5.你现在可以添加踪迹以显示结果。我们在探针窗口中用Plot > Add Plot to Windew

命令添加一个图表,在窗口的上面的图表中绘制通过电容C1的电流,其方向可以

通过旋转电容并重新创建网表来改变;在窗口的下面的图表中绘制电容上的电压。

用光标找指数曲线的时间常数(找0.632 x 14.994V(out)max = 9.48V。光标给出相对

应时间约为30ms,该处的时间常数30-5=25ms(计算式R1||R2·C1),因为开关在

5ms 处被关闭,所以要减去5ms)。

图13:图12的瞬态仿真结果

6.我们可以用一个改变结束时间的电压源代替开关。如图14,我们使用SOURCE库

中的 VPULSE和IPULSE源。输入电平(V1和V2),延时(TD),上升(TR)和下降(TF)时间,脉冲宽度(PW)和周期(PER),这些值都在下面的图中。关于这些参数的详情和其他Spice元件的描述可以从用户指南或Spice教程中找到https://www.doczj.com/doc/cb2208334.html,/~jan/spice/。

图14:使用脉冲电流和电压源的电路

7.在做过瞬态仿真之后,其结果可以像前面我们做过的那样被显示出来。

8.瞬态分析最后的例子是用一个正弦信号VSIN。电路示于图15。我们设正弦的幅度

为10V,频率为10 Hz。

图15:具有正弦输入的电路

9.为瞬态分析创建一个仿真配置文件Simulation Profiler,并且运行Pspice。

10.对于V out和Vin仿真的结果见图16。

图16:正弦输入的瞬态仿真

2.4.2 交流扫描分析(频域分析)

交流分析将使用一个正弦电压,其频率在一个指定的范围内扫描。仿真计算频率所对应

的电压和电流的幅度以及相位。当输入幅度被设置为1V时,输出电压基本上是传递函数。对比正弦瞬态分析,交流分析不是时域仿真而是电路的正弦稳态仿真。当电路包含像二极管和晶体管这样的非线性元件时,这些元件将用它们的小信号模型代替,小信号模型的参数值根据相应的偏置点计算。

在第一个例子中,我们我们将展示一个简单的RC滤波器,相应的电路图见图17。

图17:用于交流扫描仿真的电路

1.创建一个新的项目并构造电路。

2.从Sources 库选择V AC作为电压源。

3.设置输入源的振幅为1V。

4.创建仿真配置文件,命名为AC Sweep。在Simulation Settings仿真设置窗口中,选

择AC Sweep/Noise。

5.输入开始和结束频率和十进制刻度的点数。对于我们的例子,它们分别设置为

0.1Hz,10 kHz和11。

6.运行仿真。

7.在探针窗口中为输入电压添加踪迹。除了显示输出电压的大小,我们添加第二个窗

口以显示相位。在Add Trace添加踪迹窗口中,电压可以用指定Vdb(out)的方法用

dB显示(在Trace Expression 框中直接输入VDB(OUT) 。对于相位输入VP(OUT))。

8.另一个以dB为单位显示电压和相位的可选方法是在原理图上使用标记:用PSpice >

Markers > Advanced > dBMagnitude of V oltage和Phase of V oltage菜单命令,在感兴

趣的节点上放置标记。

9.我们在图18中使用光标找3dB的点。与时间常数25 ms (R1||R2·C1)处相应的频率

是6.37 Hz(f3db=1/(2πRC)),幅度约为-9dB。在0.1Hz处的V out衰减约为-6dB或因

数2(20logX=6dB,X=2),A1和A2之差约为3dB。相应的输出电压振幅值已在

图16的瞬态分析期间获得。

图18:交流扫描分析结果

3. 随Pspice的附加电路例子

3.1变压器电路

SPICE没有理想变压器模型,理想变压器可以用互感器仿真,这时变压比N1/N2 = sqrt(L1/L2)=n。在PSpice中该元件被称为XFRM_LINEAR(在模拟库中)。设置耦合系数K 接近或等于1(例如K=1),并且这样选择L,让wL >> 被感应器看到的等效电阻(当理想变压器次级端接一个电阻R时,初级的等效输入电阻为n2R。R ab=10+n2×500)。

图3.1.1:理想变压器电路

对于我们的例子,让wL2 >> 500 Ohm或L2> 500/(60*2pi);让L2至少大10倍,例如L2=20H。然后L1可以从匝数比L1/L2 = (N1/N2) 2得到。对于匝数比10,L1=L2x100=2000H。在PSpice Capture 中该电路作为入门,见图3.1.2,结果见图3.1.3。

下面的电路需要直流接地连接。这可以用添加一个到地的大电阻或给初级和次级电路一个公共点来实现。下面的例子说明怎样仿真一个变压器。

图3.1.2:在PSpice Capture中作为入门的理想变压器电路 创建仿真配置文件,命名为XFRM_LINEAR。在Simulation Settings仿真设置窗口中,选择Time Domain (Transient) ,Run to设置为60ms,Maximum step设置为10us。运行仿真。

图3.1.3:图3.1.2电路的瞬态仿真结果

3.2 使用理想运算放大器的滤波器交流扫描(滤波器电路)

我们用Pspice仿真下面电路。

图3.2.1:使用理想运算放大器的有源滤波器电路

我们已经对于输入和输出使用了off-page电路端口连接器(>>)(从右边的工具栏点击Place off-page connector图标)。双击off-page连接器的名字可以改变它。如果有两个连接器(或节点)有相同的名字,这两个节点将被连接在一起(不需要画导线)。从SOURCE库中选择V AC作为电压源,设置其振幅为1V,所以输出电压将与滤波器的放大特性(或传递函数)相应。

创建仿真配置文件,命名为Ideal Op-amp Filter。在Simulation Settings仿真设置窗口中,选择交流扫描,并输入开始、结束频率和每十分刻度的点数分别为0.01Hz,10 kHz和11。

下图给出了结果。左边的Y轴给出了大小,右边的Y轴给出了相位。光标用来找带通滤波器的3db点,相应的低高截止频率分别为0.63 Hz和32 Hz。这些数字相对应的时间常数值在图3.2.1中给出。这些点所在的相位为-135和-224度。

图3.2.2:有源滤波器的交流扫描结果

3.3 使用实际运算放大器的滤波器交流扫描(滤波器电路)

真实运算放大器电路如下图所示。我们选择U741运算放大器构造滤波器。仿真结果在图3.3.2中,在该频率范围内我们期望真实和理想运算放大器之间的差别最小。

图3.3.1:使用U741的有源滤波器电路

图3.3.2:使用真实运算放大器U741的有源滤波器电路的交流扫描结果

3.4 整流器电路(峰值检波器)和参量扫描的使用

3.4.1: 峰值检波器的仿真

图3.4.1:使用D1N4148二极管的整流器电路,负载电阻为500 Ohm 创建仿真配置文件,命名为Rectifier Circuit。在Simulation Settings仿真设置窗口中,选择Time Domain (Transient),并输入开始、结束时间分别为0s,100ms,Maximum Step 最大步长输入10us。

仿真结果在图3.4.2中给出。如光标所指示,波纹的峰峰值为777mV。最大输出电压是13.997V,小于15V的输入电压峰值。

图3.4.2:整流器电路的仿真结果

3.4.2 参量扫描

看负载电阻的变化对输出电压和输出波纹电压的影响可以用PARAM参量元件实现。

图3.4.3:负载电阻的参量扫描电路

添加参量元件

a.

1)双击负载地址R1的值(500 Ohms)改为{Rlval},使用花括号。Pspice解释,

波形括号之间的文本作为求值的表达式。完成后点击OK。

2)添加PARAM元件到电路中,在SPECIAL库中可以找到该元件。

3)双击PARAM元件,打开Property Editor属性编辑窗口。你需要添加一个新的

列到该参数表中。点击New Column按钮并输入Property Name属性名称Rlval

(不带花括号)。

4)你将注意到新列Rlval 已经被创建了。在Rlval的下面输入电阻的初始值:让

它为500,如图3.4.4。

图3.4.4:PARAM 元件的Property Editor窗口,显示新创建的Rlval列

5)当你在单元各中输入值500后,再点击DISPLAY按钮,指定要显示的东西,

选择Name and Value。点击OK。

6)在关闭Property Editor窗口之前,点击APPLY按钮。

7)保存设计。

为参量分析创建仿真配置文件

b.

1)选择PSice > New Simulation Profile。

2)键入配置文件的名字,例如Parametric。

3)在Simulation Setting仿真设置窗口中,选择Analysis标签。

4)对于Analysis type分析类型选择Transient瞬态(或你想要做的分析类型;在本

例中我们将做瞬态分析)。并输入开始、结束时间分别为0s,100ms,Maximum

Step 最大步长输入10us。

5)在Options选项下面,选择Parametric Sweep参量扫描,见图3.4.5。

6)对于扫描变量,选择全局参数并输入Parameter name参数名:Rlval。在Sweep

type扫描类型的下面给出Start value起始值、End value结束值和Increment增

量,对于这些参数我们分别用250、1kOhm和250。(见图3.4.5)。

7)点击OK。

图3.4.5:参量扫描的仿真设置窗口

运行PSpice并显示波形

c.

1)运行PSpice。

2)当仿真结束时,Probe探针窗口被打开并且弹出Available Sections窗口,选择全

部并点击OK。

3)添加V(OUT)为显示踪迹,多踪迹将显示,如图3.4.6。

4)可以用光标确定踪迹上的指定值;还可以通过双击Y和X轴来调节数轴。

5)结果显示电阻越大纹波越小。

电阻越大,时间常数越大,对

应C放电时间越慢

图3.4.6:负载电阻的参量扫描结果,从250到1000 Ohm变化,步长为250 Ohm。 3.5 AM调制信号(AM调制)

幅度调制(AM)信号的表达式为:

其中一个正弦高频载波cos(2πf c t)被一个频率为f m的正弦调制。调制频率可以是任意信号。对于本例我们假定它是一个正弦波。M是调制指数。

为了在Pspice中产生AM信号,我们可以使用MULT乘法函数,它可以从ABM库中找到。图3.51显示了能够在电阻R1上产生AM信号的电路图。

图3.5.1:产生AM信号的电路图

瞬态仿真的结果示于下图。如果还想查看仿真输出信号的傅里叶频谱。在探针窗口中点击位于顶部工具栏中的FFT图标,或使用PSPICE > FOURIER菜单命令。被显示踪迹的傅里叶频谱将被显示。可以双击X轴来改变它X轴的刻度。图3.5.3给出了与位于5kHz的主峰和两个分别位于4.5 和5.5 kHz处的边峰相对应的傅里叶频谱,这表示调制频率是500Hz。你可以用光标得到精确的值。

图3.5.2:上面电路的仿真波形(瞬态分析),A=1V,f=500 Hz,f =5kHz,m=0.5

图3.5.3:图3.5.2波形的傅里叶频谱

3.6. 中间抽头变压器

在Pspice中没有直接用于中间抽头的变压器模型。然而,我们可以用互相偶联的电感来模拟一个中间抽头的变压器。图3.6.1显示了电路的原理图。我们使用一个初级电感Lp 和两个次级电感Ls1和Ls2串联。另外我们添加一个K-Linear元件(在ANALOG库中)。

图3.6.1:比率为10:1的中间抽头变压器

在原理图上放置好元件后给每个元件设定其值。输入电压为100V、60Hz的正弦曲线。注意我们添加了一个小电阻R1与电压源和电感串联,该电阻用来防止直流短路(没有该电阻Spice会给出一个错误),我们设置该电阻小于等于1 Ohm。假定我们想要一个对每个次级输出的比率为10:1的降压变压器,电感的比率Ls1/Lp和Ls2/Lp必须为1/102(或=sqrt(Ls1/Lp)=0.1)。我们让Lp=1000、Ls1、Ls2=10H。

双击K-Linear元件并且在列标题L1、L2、L3下面输入值Lp、Ls1、Ls2。完成后点击Apply按钮并关闭属性窗口。

图3.6.2:设置L1、L2、L3

电工学简明教程(第二版)第十章课后答案

判断图中各个电路能不能放大交流信号 解:a )PNP 型,有偏置电阻,电容极性正确,电压极性正确,可以放大 B )NPN 型,电压极性正确,电容极性正确,但无集电极电阻,无法将集电极的电流变化转化为电压变化,无法实现电压放大 C )能,但无发射极电阻,无法稳定静态工作点 D )输入信号被短路,集电结正偏,无法实现放大 如图,V U CC 12 =,Ω=k R C 2,Ω=k R E 2,Ω=k R B 300,晶体管的50=β。电路有两个输出端。试求1)电压放大倍数i o u U U A &&11=和i o u U U A &&11= 2)输出电阻1o r 和2o r

解:先求静态值 mA I A R R U I U I R I R U I R I R V U E B E CC B BE B E B B BE E E B B CC 53.130)1()1(12=?=++≈? +++=++==μββ Ω=++=k I r B be 07.126) 1(200β 画出等效微变电路 1)197.0)1(-11-≈-=++==E B be B C B i o u R I r I R I U U A &&&&&ββ 1)1()1(22≈+++==E B be B E B i o u R I r I R I U U A &&&&&ββ 2)Ω==k R r C o 21 Ω== 4.212βbe o r r

如图所示分压式偏置放大电路,已知V U CC 24 =,Ω=k R C 3.3,Ω=k R E 1.5,Ω=k R B 331,Ω=k R B 102,Ω=k R 5.1L ,晶体管的66=β,并设0S ≈R 。1)试求静态值CE B C U I I ,,;2)画出微变等效电路;3)计算晶体管的输入电阻;4)计算电压放大倍数;5)计算放大电路输出端开路时的电压放大倍数,并说明负载电阻对电压放大倍数的影响;6)估算放大电路的输入电阻和输出电阻 解1)直流通路如下 V U R R R V CC B B B B 58.52 12=+= V R I R I U mA I A I mA R U V I I C C E E CC C B E BE B B E 34.6U 66.3,5572.3)1(CE =--===?=-= +=μβ 2)微变等效电路 3)Ω=++=k I r B be 70.626 )1(200β

各科书的下载地址

[Word格式]《成本会计》习题及答案(自学推荐,23页) [Word格式]《成本会计》配套习题集参考答案 [Word格式]《实用成本会计》习题答案 [Word格式]《会计电算化》教材习题答案(09年) [JPG格式]会计从业《基础会计》课后答案 [Word格式]《现代西方经济学(微观经济学)》笔记与课后习题详解(第3版,宋承先)[Word格式]《宏观经济学》习题答案(第七版,多恩布什) [Word格式]《国际贸易》课后习题答案(海闻 P.林德特王新奎) [PDF格式]《西方经济学》习题答案(第三版,高鸿业)可直接打印 [Word格式]《金融工程》课后题答案(郑振龙版) [Word格式]《宏观经济学》课后答案(布兰查德版) [JPG格式]《投资学》课后习题答案(英文版,牛逼版) [PDF格式]《投资学》课后习题答案(博迪,第四版) [Word格式]《微观经济学》课后答案(高鸿业版) [Word格式]《公司理财》课后答案(英文版,第六版) [Word格式]《国际经济学》教师手册及课后习题答案(克鲁格曼,第六版) [Word格式]《金融市场学》课后习题答案(张亦春,郑振龙,第二版) [PDF格式]《金融市场学》电子书(张亦春,郑振龙,第二版) [Word格式]《微观经济学》课后答案(平狄克版) [Word格式]《中级财务会计》习题答案(第二版,刘永泽) [PDF格式]《国际经济学》习题答案(萨尔瓦多,英文版) [JPG格式]《宏观经济学》课后答案(曼昆,中文版) [PDF格式]《宏观经济学》答案(曼昆,第五版,英文版)pdf格式 [Word格式]《技术经济学概论》(第二版)习题答案 [Word格式]曼昆《经济学原理》课后习题解答 [PDF格式]西方经济学(高鸿业版)教材详细答案 [Word格式]完整的英文原版曼昆宏观、微观经济学答案 [Word格式]《金融市场学》课后答案(郑振龙版) 化学物理 [Word格式]《固体物理》习题解答(方俊鑫版) [Word格式]《简明结构化学》课后习题答案(第三版,夏少武) [Word格式]《生物化学》复习资料大全(3套试卷及答案+各章习题集) [PDF格式]《光学教程》习题答案(第四版,姚启钧原著) [Word格式]《流体力学》实验分析答案(浙工大版) [Word格式]《高分子化学》课后习题答案(第四版,潘祖仁主编) [PDF格式]《化工热力学》习题与习题答案(含各种版本) [Word格式]《材料力学》习题答案 [Word格式]《量子力学导论》习题答案(曾谨言版,北京大学) [PDF格式]《理论力学》习题答案(动力学和静力学)

《数学物理方法》各章节作业题

《数学物理方法》各章节作业题 要求:每章讲完后的下一周同一时间将作业收齐并交到辅导教师(2016级硕士生刘璋诚、王俊超和2015级硕士生魏弋翔、 徐鹏飞)处。例如,第一周星期四讲完第一章,则第二周 星期四上课时交第一章的作业,以此类推。 说明:若无特别标注,下面的页码均指梁昆淼编《数学物理方法》。 (第三版的页码用红字标出,第四版的页码用蓝字标出) 希望:若对我的讲授和布置的作业有任何批评和建议,欢迎同学们及时指出和告知,不胜感激。(最好用E-mail:) 辅导答疑安排:待定 辅导答疑教师:刘璋诚、王俊超、魏弋翔、徐鹏飞 第一部分复变函数论 “第一章复变函数的一般概念”作业题(2月23日交)

第5页(第三版)第6页(第四版): 第1题中(1),(2),(4),(6),(10); 第2题中(1),(2),(3),(7); 第3题中(2),(3),(7),(8); 第9页(第三版)第8页(第四版): 第2题中(1),(3),(7),(9); 第3题。 “第二章复变函数的导数”作业题(2月27日交) 第13页(第三版)第12页(第四版):习题; 第18页(第三版)第16页(第四版): 第1题; 第2题中(2),(3),(4),(8),(10),(11); 第23页(第三版)第20页(第四版): 第1题 第3题。 “第三章复变函数的积分”作业题(3月6日交) 第38页(第三版)第31页(第四版): 第1题,第2题; 补充题1:有一无限长的均匀带电导线与Z轴平行,且与XY平面相交于 ,线电荷密度为λ,求此平面场的复势,并说明积分

?-l z dz α的物理意义。 补充题2:计算()?-l n z dz α,n为正整数,且n≠+1。 “第四章 复数级数”作业题(3月16日交) 第46页(第三版) 第37页(第四版):第3题,第4题; 第52页(第三版) 第41页(第四版):(1),(3),(4),(8); 第60页(第三版) 第47页(第四版): (1),(2),(4),(5),(9),(11),(15); 第64页(第三版) 第50页(第四版):习题。 “第五章 留数定理”作业题(3月23日交) 第71页(第三版) 第55页(第四版): 第1题中(1),(2),(3),(5),(9),(10); 第2题中(1),(4); 第3题; 第81页(第三版) 第63页(第四版): 第1题中(4),(5),(7),(8); 第2题中(4),(6); 第3题中(1),(2),(7),(8)。 第二部分 积分变换

陈世民理论力学简明教程(第二版)课后答案

第零章 数学准备 一 泰勒展开式 1 二项式得展开 ()()()()()m 23m m-1m m-1m-2 f x 1x 1mx+x x 23=+=+++K ! ! 2 一般函数得展开 ()()()()()()()()230000000f x f x f x f x f x x-x x-x x-x 123! ''''''=++++K ! ! 特别:00x =时, ()()()()()23 f 0f 0f 0f x f 0123! x x x ''''''=++++K !! 3 二元函数得展开(x=y=0处) ()()00f f f x y f 0x+y x y ????=++ ?????,22222 000221f f f x 2xy+y 2x x y y ?????++ ? ??????? K ! 评注:以上方法多用于近似处理与平衡态处得非线性问题向线 性问题得转化。在理论力问题得简单处理中,一般只需近似到三阶以内。 二 常微分方程 1 一阶非齐次常微分方程: ()()x x y+P y=Q 通解:()()()P x dx P x dx y e c Q x e dx -????=+ ? ?? ? 注:()()(),P x dx P x dx Q x e dx ? ±??积分时不带任意常数,()x Q 可为 常数。 2 一个特殊二阶微分方程

2y A y B =-+& & 通解:()02B y=Kcos Ax+A θ+ 注:0,K θ为由初始条件决定得常量 3 二阶非齐次常微分方程 ()x y ay by f ++=&&& 通解:*y y y =+;y 为对应齐次方程得特解,*y 为非齐次方程得一个特解。 非齐次方程得一个特解 (1) 对应齐次方程 0y ay by ++=&&& 设x y e λ=得特征方程2a b 0λλ++=。解出特解为1λ,2λ。 *若12R λλ≠∈则1 x 1y e λ=,2 x 2y e λ=;12 x x 12y c e c e λλ=+ *若12R λλ=∈则1 x 1y e λ=,1 x 2y xe λ=; 1 x 12y e (c xc )λ=+ *若12i λαβ=±则%x 1y e cos x αβ=,%x 2y e sin x αβ=;x 12y e (c cos x c sin x)αββ=+ (2) 若()2000x f a x b x c =++为二次多项式 *b 0≠时,可设*2y Ax Bx C =++ *b 0≠时,可设*32y Ax Bx Cx D =+++ 注:以上1c ,2c ,A,B,C,D 均为常数,由初始条件决定。 三 矢量 1 矢量得标积 x x y y z z A B=B A=A B cos =A B +A B +A B θ??r r r r

电工学简明教程第二版答案(第一章)

第一章习题答案 A 选择题 1.4.1(A ) 1.4.2(C ) 1.4.3(C ) 1.4.4(B ) 1.5.1(B ) 1.5.2(B ) 1.6.1(B ) 1.6.2(B ) 1.8.1(B ) 1.9.1(B ) 1.9.2(B )1.9.3 (B ) 1.11.1(A) 1.1 2.1(B) 1.12.3 (B) 1.12.4 (B) 1.12.5 (B) B 基本题 1.4.5 (1)略 (2)元件1和2为电源 ,元件3,4和5为负载 (3)(-560-540+600+320+180)*w=0 平衡 1.4.6 380/(2110/8+R)=8/110,所以R ≈3.7K Ω,W R =(8/110)2×3.7K ≈20W 1.4.7 电阻R=U/I=6/50*310-=120Ω,应选者(a )图. 1.4.8 解:220/(R1+315)=0.35A ,得R1≈314Ω. 220/(R2+315)=0.7A , 得R2≈0Ω. 1.4.9(1)并联R2前,I1=E/( 0R +2R e +1R )=220/(0.2+0.2+10)≈21.2A. 并联R2后,I2=E/( 0R +2R e +1R ∥2R )≈50A. (2)并联R2前,U2=R1*I1=212V,U1=(2R e +1R )*I1=216V. 并联R2后,U2=(1R ∥2R )*I1=200V,U1=2R e +1R ∥2R =210V. (3)并联R2前,P=212*21.2=4.5KW. 并联R2后,P=200*50=10KW. 1.5.3 I3=I1+I2=0.31uA ,I4=I5-I3=9.61-0.31=9.3uA ,I6=I2+I4=9.6uA. 1.6.3 因为电桥平衡,所以不管S 断开还是闭合 ab R =5R ∥(1R +3R )∥(2R +4R )=200Ω. 1.6.4 解: a U =1U =16V,b U =<[(45+5) ≈5.5]+45>×16/<[(45+5) ∥5.5] ∥5.5+45>≈1.6. c U =(45+5)∥5.5×b U /总R ≈b U /10=0.16V ,同理d R ≈c U /10=0.016V.

数学专业参考书——学数学的必看

数学专业参考书——学数学的必看 学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理: 从《数学分析》开始讲起: 《数学分析》是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期共计15学分270学时。将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。 记住以下几点: 1.对于数学分析的学习,勤奋永远比天分重要。 2.学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。 3.别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。 4.看得懂的仔细看,看不懂的硬着头皮看。 5.课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。 6.开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。 7.经常回头看看自己走过的路 以上几点请在学其他课程时参考。 《数学分析》书: 初学从中选一本教材,一本参考书就基本够了。我强烈推荐11,推荐1,2,7,8。另外建议看一下当不了教材的16,20。 中国人自己写的: 1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒) 应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。网络上可以找到课后习题的参考答案,不过建议自己做。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。不过仍然不失为一本好书。能广泛被使用一定有它自己的一些优势。 2《数学分析》华东师范大学数学系著 师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。课本最后讲了一些流形上的微积分。虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。 3《数学分析》陈纪修等著 以上三本是考研用的最多的三本书。 4《数学分析》李成章,黄玉民 是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。 5《数学分析讲义》刘玉链 我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。不要因为是函授教材就看不起,事实上最初的函授工作都是由最好的教授做的。细说就远了,总之可以看看。

电工学简明教程(第二版)第九章课后答案

9.2.4 如图所示各电路图中,V E 5=,tV u i ωsin 10=,二极管的正向压降可忽略不计,试分别画出输出电压0u 的波形 解:首先分析二极管的两个状态:正向导通,反向截止;根据状态,正向导通时二极管两端电压为其正向压降,反向截止时相当于开路;最后分析输出电压 a ) 二极管正极接正弦电压,负极接直流5V ,当正弦电压瞬时值大于5V 时,二极管导通, V u 50=;当正弦电压瞬时值小于5V 时,二极管截止,i u u =0 b ) 二极管正极接5V 直流电压,负极接正弦电压,当正弦电压瞬时值小于5V 时,二极管导 通,i u u =0,当正弦电压瞬时值大于5V 时,二极管截止,V E u 5 0== c ) 二极管正极接5V 直流电压,负极接正弦电压,当正弦电压瞬时值小于5V 时,二极管导 通,V u 5 0=,当正弦电压瞬时值大于5V 时,二极管截止,i u u =0 d ) 二极管正极接正弦电压,负极接直流5V ,当正弦电压瞬时值大于5V 时,二极管导通, i u u =0;当正弦电压瞬时值小于5V 时,二极管截止, V u 5 0=

9.3.4 有两个稳压管其稳压电压分别为和,正向压降都是,如果要得到,3V,6V,9V和14V 几种稳定电压,这两个稳压管(还有限流电阻)应该如何连接?画出各个电路 解:理解稳压二极管的三个状态,正向导通时两端电压为正向压降;若反向电压小于稳压电压,则处于反向截止状态,相当于开路;反向电压大于稳压电压,则处于稳压状态,两端电压为稳压电压。 设DZ1稳压电压为,DZ2稳压电压为。

9.4.10 如图所示各个电路,试问晶体管处于何种工作状态 解:首先看清楚晶体管类型,NPN 还是PNP ,CBE 极各在哪一端,电阻分别是什么电阻 方法一:定性判断,a 中B C E E >,0>B E ,放大状态;b 中B C E E =,0>B E ,非放大非截止,可能是饱和;c 中0=-=B B BE B B I mA R U U I 24.0,饱和状态 c )mA R U I O CC C 12=≈ ,饱和时基极电流mA I I C B 3.0=='β,此时基极电流mA R U U I B BE B B 33.0-=-= ,为负数,截止状态

电工学简明教程全部答案

第一章习题答案 A 选择题 (A ) (C ) (C ) (B ) (B ) (B ) (B ) (B ) (B ) (B ) (B ) (B ) (B) (B) (B) B 基本题 (1)略 (2)元件1和2为电源 ,元件3,4和5为负载 (3)(-560-540+600+320+180)*w=0 平衡 380/(2110/8+R)=8/110,所以R ≈Ω,W R =(8/110)2×≈20W 电阻R=U/I=6/50*310-=120Ω,应选者(a )图. 解:220/(R1+315)=,得R1≈314Ω. ~ 220/(R2+315)=, 得R2≈0Ω. 并联R2前,I1=E/( 0R +2R e +1R )=220/(++10)≈. 并联R2后,I2=E/( 0R +2R e +1R ∥2R )≈50A. (2)并联R2前,U2=R1*I1=212V,U1=(2R e +1R )*I1=216V. 并联R2后,U2=(1R ∥2R )*I1=200V,U1=2R e +1R ∥2R =210V. (3)并联R2前,P=212*=. 并联R2后,P=200*50=10KW. I3=I1+I2=uA ,I4=I5-I3=,I6=I2+I4=uA. 因为电桥平衡,所以不管S 断开还是闭合 ab R =5R ∥(1R +3R )∥(2R +4R )=200Ω. 解: a U =1U =16V,b U =<[(45+5) ≈]+45>×16/<[(45+5) ∥] ∥+45>≈. c U = (45+5)∥×b U /总R ≈b U /10=,同理d R ≈c U /10=. ~ 解:当滑动端位于上端时,2U =(R1+RP )1U /(R1+RP+R2)≈. 当滑动端位于下端时,2U =R2*1U /(R1+RP+R2)≈. 所以输出范围为

理论力学简明教程复习题题库(物理专业用)

理论力学复习题 计算题题库 第一章质点力学 点沿空间曲线运动,在点M 处其速度为j i v 34+= ,加速度a 与速度 v 夹角030=β,且2/10s m a =。求轨迹在该点密切面内的曲率半径ρ和 切向加速度τa 。 答:由已知条件j i v 34+=得 s m v /53422=+= 法向加速度20/530sin s m a a n == 则曲率半径m a v n 52 ==ρ 切向加速度 20/66.830cos s m a a ==τ 一点向由静止开始作匀加速圆周运动,试证明点的全加速度和切向加速度的夹角α与其经过的那段圆弧对应的圆心角β之间有如下关系βα2tan = 证明:设点M 沿半径为R 的圆作圆周运动,t 时刻走过的路程为AM=s ,速度为v ,对应的 圆心角为β。由题设条件知() ()b C ds dv v dt dv a a Ra v a a n === ==τττα2 tan C 为常数 积分(b)式得??=s v ds a vdv 0 τ 所以()c s a v τ22= 将(c )式代入(a ),并考虑βR s =,所以βα2tan = 质点M 的运动方程为)(2),(32m t y m t x == 求t=1秒时,质点速度、切

向加速度、法向加速度的大小。 解:由于)(44),(3s m t y s m x === 所以有() s m y x v 516922=+=+= 又:222169t y x v +=+= 则 ()() ()s m t t t t v a t 2.3169232321692 12 1 21 21 2=+=?+==- () ()() s m a a a s m y x a s m y x t n 4.22.3164,4,02 2222=-=-==+=== 点M 沿半径为R 的圆周运动。如果 K K a a n (-=τ 为已知常数),以初始位置为原点,原点初速度为0v 。求点的弧坐标形式的运动方程及点的速度减少一半时所经历的时间。 解:设点的初始位置为A 。依题意 KR v K a a dt dv n 2 -=-==τ 积分上式??-=v v t dt KR v dv 0021 KR t v v -=-110 得t v KR RKv v 00+= 则弧坐标形式的运动方程为?? ? ?? +=+=?KR t v KR dt t k KR KRv s t 00001ln 当2 0v v = 时0v KR t = 一质点沿圆滚线θsin 4a s =的弧线运动,如θ 为常数,则其加速度亦为一常数,试证明之。式中θ为圆滚线某点P 上的切线与水平线(x 轴)所成的角度,s 为P 点与曲线最低点之间的曲线弧长。 解:因θsin 4a s = 故θωθθ cos 4cos 4a a dt ds v ===

大学几乎所有学科的课本答案

大学几乎所有学科的课本答案 ! 任明嘉的日志 经济金融 [PDF格式]《会计学原理》同步练习题答案 [Word格式]《成本会计》习题及答案(自学推荐,23页) [Word格式]《成本会计》配套习题集参考答案 [Word格式]《实用成本会计》习题答案 [Word格式]《会计电算化》教材习题答案(09年) [JPG格式]会计从业《基础会计》课后答案 [Word格式]《现代西方经济学(微观经济学)》笔记与课后习题详解(第3版,宋承先)[Word格式]《宏观经济学》习题答案(第七版,多恩布什) [Word格式]《国际贸易》课后习题答案(海闻P.林德特王新奎) [PDF格式]《西方经济学》习题答案(第三版,高鸿业)可直接打印 [Word格式]《金融工程》课后题答案(郑振龙版) [Word格式]《宏观经济学》课后答案(布兰查德版) [JPG格式]《投资学》课后习题答案(英文版,牛逼版) [PDF格式]《投资学》课后习题答案(博迪,第四版) [Word格式]《微观经济学》课后答案(高鸿业版) [Word格式]《公司理财》课后答案(英文版,第六版)

[Word格式]《国际经济学》教师手册及课后习题答案(克鲁格曼,第六版) [Word格式]《金融市场学》课后习题答案(张亦春,郑振龙,第二版)[PDF格式]《金融市场学》电子书(张亦春,郑振龙,第二版) [Word格式]《微观经济学》课后答案(平狄克版) [Word格式]《中级财务会计》习题答案(第二版,刘永泽) [PDF格式]《国际经济学》习题答案(萨尔瓦多,英文版) [JPG格式]《宏观经济学》课后答案(曼昆,中文版) [PDF格式]《宏观经济学》答案(曼昆,第五版,英文版)pdf格式 [Word格式]《技术经济学概论》(第二版)习题答案 [Word格式]曼昆《经济学原理》课后习题解答 [PDF格式]西方经济学(高鸿业版)教材详细答案 [Word格式]完整的英文原版曼昆宏观、微观经济学答案 [Word格式]《金融市场学》课后答案(郑振龙版) 化学物理 [Word格式]《固体物理》习题解答(方俊鑫版) [Word格式]《简明结构化学》课后习题答案(第三版,夏少武) [Word格式]《生物化学》复习资料大全(3套试卷及答案+各章习题集)[PDF格式]《光学教程》习题答案(第四版,姚启钧原著) [Word格式]《流体力学》实验分析答案(浙工大版) [Word格式]《高分子化学》课后习题答案(第四版,潘祖仁主编)

理论力学简明教程复习题题库--(物理专业用) 新 优质文档

《理论力学》复习题 题库 第一章质点力学 点沿空间曲线运动,在点M 处其速度为j i v 34+= ,加速度a 与速度 v 夹角030=β,且2/10s m a =。求轨迹在该点密切面内的曲率半径ρ和 切向加速度τa 。 答:由已知条件j i v 34+=得 s m v /53422=+= 法向加速度20/530sin s m a a n == 则曲率半径m a v n 52 ==ρ 切向加速度 20/66.830cos s m a a ==τ 一点向由静止开始作匀加速圆周运动,试证明点的全加速度和切向加速度的夹角α与其经过的那段圆弧对应的圆心角β之间有如下关系βα2tan = 证明:设点M 沿半径为R 的圆作圆周运动,t 时刻走过的路程为AM=s ,速度为v ,对应的 圆心角为β。由题设条件知 () ()b C ds dv v dt dv a a Ra v a a n === ==τττα2 tan C 为常数 积分(b)式得??=s v ds a vdv 00τ 所以()c s a v τ22= 将(c )式代入(a ),并考虑βR s =,所以βα2tan =

质点M 的运动方程为)(2),(32m t y m t x == 求t=1秒时,质点速度、切向加速度、法向加速度的大小。 解:由于)(44),(3s m t y s m x === 所以有() s m y x v 516922=+=+= 又:222169t y x v +=+= 则()() ()s m t t t t v a t 2.3169232321692 12 121 21 2=+=?+==- () ()() s m a a a s m y x a s m y x t n 4.22.3164,4,02 2222=-=-==+=== 点M 沿半径为R 的圆周运动。如果 K K a a n (-=τ 为已知常数),以初始位置为原点,原点初速度为0v 。求点的弧坐标形式的运动方程及点的速度减少一半时所经历的时间。 解:设点的初始位置为A 。依题意 KR v K a a dt dv n 2 -=-==τ 积分上式??-=v v t dt KR v dv 00 2 1 KR t v v -=-110 得t v KR RKv v 00+= 则弧坐标形式的运动方程为?? ? ?? +=+=?KR t v KR dt t k KR KRv s t 00001ln 当20v v = 时0 v KR t = 一质点沿圆滚线θsin 4a s =的弧线运动,如θ 为常数,则其加速度亦为一常数,试证明之。式中θ为圆滚线某点P 上的切线与水平线(x 轴)所成的角度,s 为P 点与曲线最低点之间的曲线弧长。

电工学简明教程(第二版)第二章课后答案

2.4.5 有一由RLC 元件串联的交流电路,已知Ω=10R ,H L 4.311= ,F C μ3140 106 =。在电容元件的两端并联一短路开关S 。1)当电源电压为220V 的直流电压时,试分别计算在短路开关闭合和断开两种情况下电路中的电流I 及各元件上的电压R U ,L U ,C U ;2)当电源电压为正弦电压t u 314sin 2220=时,试分别计算在上述两种情况下电流及各电压的有效值 解:1)电源电压为直流时 短路开关闭合时,电容被短路,0=C U , 由于输入为直流,感抗0==L X L ω,0=L U V U R 220=,22A == R U I R 短路开关断开时,电容接入电路,∞=C X ,电路断开0A =I ,0==L R U U , 220V =C U , 2)电源电压为正弦电压t u 314sin 2220=,可知314=ω 开关闭合时,电容被短路,0=C U 感抗Ω== 10L X L ω,A 2112 2 =+= L X R U I V I U L L 2110X == V I U R R 2110X == 开关断开时,电容接入电路容抗Ω== 101 C X C ω,感抗Ω==10L X L ω 22A ) (2 2 =-+= C L X X R U I V I U L L 220X == V I U R R 2110X == V I U C C 2110X == 本题要点:电阻电容电感性质,电容隔直通交,电感阻交通直;相量计算

2.4.10 无源二端网络输入端的电压和电流为V t u )20314(sin 2220 +=, A t i )33-314(sin 24.4 =,试求此二端网络由两个元件串联的等效电路和元件的 参数值,并求二端网络的功率因数以及输入的有功功率和无功功率 解:由电压和电流相位关系可知,电压超前电流,为感性电路 Ω=== 504 .4220I U Z 电压和电流相位差 53)(-33-20==? 6.053cos = Ω===3053cos 50cos ?Z R Ω===4053sin 50sin ?Z X L 有功功率W UI P 8.5806.0*4.4*220cos ===? 无功功率ar 4 .7748.0*4.4*220sin V UI Q ===? 本 题 要 点 : i u C L C L I U Z R X X X X j R Z ???∠∠=∠=-∠-+=+=arctan )(R )X -(X 22C L 阻抗三角形,电压三角形,功率三角形

数学专业参考书整理推荐

学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理: 从数学分析开始讲起: 数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期共计15学分270学时。将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。 记住以下几点: 1,对于数学分析的学习,勤奋永远比天分重要。 2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。 3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。 4,看得懂的仔细看,看不懂的硬着头皮看。 5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。 6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。 7,经常回头看看自己走过的路 以上几点请在学其他课程时参考。 数学分析书: 初学从中选一本教材,一本参考书就基本够了。我强烈推荐11,推荐1,2,7,8。另外建议看一下当不了教材的16,20。 中国人自己写的: 1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒) 应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。网络上可以找到课后习题的参考答案,不过建议自己做。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。不过仍然不失为一本好书。能广泛被使用一定有它自己的一些优势。 2《数学分析》华东师范大学数学系著

数学物理方法123章作业解答

另:()y x u u ,=,()y x v v ,=,?? ?==? ρ?ρsin ,cos y x ? ?ρ ρ ρ sin cos y u x u y y u x x u u ??+ ??= ????+ ????= ?? ρ ?????ρ?ρρ??ρ? ρ??= ??+ ??= ??+ ??- =??? ? ????+-??=???? ??????+????= ??u x u y u y v x v y v x v y y v x x v v cos sin cos sin cos )sin (111 ? ?ρ ρ ρ sin cos y v x v y y v x x v v ??+ ??= ????+ ????= ?? ρ ?????ρ?ρρ??ρ? ρ??- =??- ??- =??+ ??- =??? ? ????+-??=???? ??????+????= ??v x v y v y u x u y u x u y y u x x u u cos sin cos sin cos )sin (111 所以,有 ?????? ???-=????=??ρ?ρ?ρρv u v u 11 第18页 第2题

第27页 指出下列多值函数的支点及其阶。 (1) ) (a z - 解:根式的可能支点是∞点和根式内多项式的零点,现在来逐个考察这些点的性质。 ① a z =:在此点的邻域内任取一点 1 11φρi e a z +=(11 <<ρ),则有 2 11)(φ φ ρρi i e e a z = = - 当保持 1ρ不变 π φφ211+→(绕 a z =一周)时,有

数学物理方法第十二章

第12章 第12.1节 一、数学物理问题分为正向问题和逆向问题。 正向问题,即为已知源求场;逆向问题,即为已知场求源。 前者是经典数学物理所讨论的主要内容.后者是高等数学物理所讨论的主要内容。 二、数学物理方程的类型和所描述的物理规律多数为二阶线性偏微分方程 1.振动与波(振动波,电磁波)传播满足波动方程。 2.热传导问题和扩散问题满足热传导方程。 3.静电场和引力势满足拉普拉斯方程或泊松方程。 三、三类典型的数学物理方程 1.双曲型方程(以波动方程为代表) 错误!未找到引用源。 2.抛物型方程(以热传导方程为代表) 错误!未找到引用源。 3.椭圆型方程(以泊松方程为代表) 错误!未找到引用源。当f(x,y,z)=0时,退化为拉普拉斯方程。 四、三类数学物理方程的一种最常用解法 分离变量法 -> 偏微分方程 -> 标准的常微分方程 ->标准解,即为各

类特殊函数 第12.2节 一、振动方程 1.弦的横振动 考察一根长为 l 且两端固定、水平拉紧的弦. 确定弦的微分方程的方法: 1)要研究的物理量是弦沿垂直方向的位移u(x,t) 2)被研究的物理量遵循牛顿第二定律。 3)按物理定理写出数学物理方程(即建立泛定方程) 其中必须注意两点:(a)由于数学物理方程必须反映弦上任一位置上的垂直 位移所遵循的普遍规律,所以考察点不能取在端点上,但可以取除端点之外 的任何位置作为考察点.(b)由于物理问题涉及的因素较多,往往还需要引 入适当假设才能使方程简化. 根据牛顿第二定律F =ma运动的方程可以描述为: 错误!未找到引用源。 仅考虑微小的横振动,夹角θ1 θ2为很小的量, cosθ1≈cosθ2≈1 Sinθ1≈tgθ1sinθ2≈tgθ2 ?s≈ds≈?x=dx

物理学要学习专业课程

力学和热学 (1)与(2) Mechanics and Thermal Physics (1) and (2) 课程编号:22189936、22189937 总学时:28、72 学分:2、4 课程性质:专业必修课 课程内容:本课程由力学和热学两大部分组成。力学和热学都是大学物理的基础部分,是物理学各门课程的重要基础课程。力学的主要内容包括三方面:在牛顿力学方面, 主要学习牛顿定律、动量定理和动量守恒定律、动能原理及机械能守恒定律;在 刚体定轴转动方面,主要学习转动定律和角动量守恒;在振动和波方面,主要学 习简谐振动和平面简谐波。热学的主要内容包括分子物理学和热力学,主要学习 温度,热力学第一定律、第二定律,热机效率及熵增加;气体分子运动论的基本 方法,气体压强公式,分子平均动能,气体分子的麦克斯韦速率分布律,能量均 分定理。 先修课程:高等数学A(1) 参考书目:《力学》,漆安慎、杜婵英,高等教育出版社,1997年;《热学教程》(第二版),黄淑清、聂宜如、申先甲编,高等教育出版社,1994年 电磁学 Electromagnetism 课程编号:22189903 总学时:72 学分:4 课程性质:专业必修课 课程内容:本课程主要包括真空中的静电场,静电场中的导体和电介质,恒定电流,恒定磁场,磁介质,电磁感应,电磁场和电磁波,及电磁学与当代高新技术等内容。通 过学习本课程,使学生了解如何发现问题,分析和解决问题,建立理论及实验检 验这一过程,为学生在将来的技术创新和应用能力的培养上打下一定的基础。本 课程是后续课程比如量子力学和固体物理等的基础;电磁作用是一种基本的相互 作用,不仅对人类的生产生活影响极广,而且也与当代高科技密切相关,本课程 是学生将来发展高新技术的重要基础。 先修课程:高等数学,力学 参考书目:《电磁学》贾瑞皋,薛庆忠编高等教育出版社 2003年出版 《电磁学》《电磁学》贾起民,郑永令,陈暨耀编高等教育出版社2003年出版

电工学简明教程第二版答案

第一章习题答案 A 选择题 1.4.1(A ) 1.4.2(C ) 1.4.3(C ) 1.4.4(B ) 1.5.1(B ) 1.5.2(B ) 1.6.1(B ) 1.6.2(B ) 1.8.1(B ) 1.9.1(B ) 1.9.2(B )1.9.3 (B ) 1.11.1(A) 1.1 2.1(B) 1.12.3 (B) 1.12.4 (B) 1.12.5 (B) B 基本题 1.4.5 (1)略 (2)元件1和2为电源 ,元件3,4和5为负载 (3)(-560-540+600+320+180)*w=0 平衡 1.4.6 380/(2110/8+R)=8/110,所以R ≈3.7K Ω,W R =(8/110)2×3.7K ≈20W 1.4.7 电阻R=U/I=6/50*310-=120Ω,应选者(a )图. 1.4.8 解:220/(R1+315)=0.35A ,得R1≈314Ω. 220/(R2+315)=0.7A , 得R2≈0Ω. 1.4.9(1)并联R2前,I1=E/( 0R +2R e +1R )=220/(0.2+0.2+10)≈21.2A. 并联R2后,I2=E/( 0R +2R e +1R ∥2R )≈50A. (2)并联R2前,U2=R1*I1=212V,U1=(2R e +1R )*I1=216V. 并联R2后,U2=(1R ∥2R )*I1=200V,U1=2R e +1R ∥2R =210V. (3)并联R2前,P=212*21.2=4.5KW. 并联R2后,P=200*50=10KW. 1.5.3 I3=I1+I2=0.31uA ,I4=I5-I3=9.61-0.31=9.3uA ,I6=I2+I4=9.6uA. 1.6.3 因为电桥平衡,所以不管S 断开还是闭合 ab R =5R ∥(1R +3R )∥(2R +4R )=200Ω. 1.6.4 解: a U =1U =16V,b U =<[(45+5) ≈5.5]+45>×16/<[(45+5) ∥5.5] ∥5.5+45>≈1.6. c U =(45+5)∥5.5×b U /总R ≈b U /10=0.16V ,同理d R ≈ c U /10=0.016V. 1.6.5 解:当滑动端位于上端时,2U =(R1+RP )1U /(R1+RP+R2)≈8.41V. 当滑动端位于下端时,2U =R2*1U /(R1+RP+R2)≈5.64V. 所以输出范围为5.64-8.14. 1.6.6

电工学简明教程(第二版)第十章课后答案

10.2.10 判断图中各个电路能不能放大交流信号 解:a )PNP 型,有偏置电阻,电容极性正确,电压极性正确,可以放大 B )NPN 型,电压极性正确,电容极性正确,但无集电极电阻,无法将集电极的电流变化转化为电压变化,无法实现电压放大 C )能,但无发射极电阻,无法稳定静态工作点 D )输入信号被短路,集电结正偏,无法实现放大 10.2.12 如图,V U CC 12=,Ω=k R C 2,Ω=k R E 2, Ω=k R B 300,晶体管的50=β。电路有两个输出端。试求1)电压放大倍数i o u U U A 11=和i o u U U A 11= 2)输出电阻1o r 和2o r

解:先求静态值 mA I A R R U I U I R I R U I R I R V U E B E CC B BE B E B B BE E E B B CC 53.130)1()1(12=?=++≈? +++=++==μββ Ω=++=k I r B be 07.126) 1(200β 画出等效微变电路 1)197.0)1(-11-≈-=++==E B be B C B i o u R I r I R I U U A ββ 1)1()1(22≈+++==E B be B E B i o u R I r I R I U U A ββ 2)Ω== k R r C o 21 Ω==4.212β be o r r

10.3.4 如图所示分压式偏置放大电路,已知V U CC 24=,Ω=k R C 3.3,Ω=k R E 1.5,Ω=k R B 331,Ω=k R B 102,Ω=k R 5.1L ,晶体管的66=β,并设0S ≈R 。1)试求静态值CE B C U I I ,,;2)画出微变等效电路;3)计算晶体管的输入电阻;4)计算电压放大倍数;5)计算放大电路输出端开路时的电压放大倍数,并说明负载电阻对电压放大倍数的影响;6)估算放大电路的输入电阻和输出电阻 解1)直流通路如下 V U R R R V CC B B B B 58.52 12=+= V R I R I U mA I A I mA R U V I I C C E E CC C B E BE B B E 34.6U 66.3,5572.3)1(CE =--===?=-= +=μβ 2)微变等效电路 3)Ω=++=k I r B be 70.626 )1(200β

相关主题
文本预览
相关文档 最新文档