当前位置:文档之家› 集成电路技术十年发展报告

集成电路技术十年发展报告

集成电路技术十年发展报告
集成电路技术十年发展报告

集成电路技术十年发展报告

集成电路技术十年发展

2012-11-27 17:06:17

清华大学教授、微电子学研究所所长魏少军

一、总体情况

集成电路产业是关系国民经济和社会发展全局的基础性、先导性和战略性产业,是电子信息产业的核心,是关系到国家经济社会安全、国防建设极其重要的基础产业。集成电路产业的竞争力已经成为衡量国家间经济和信息产业可持续发展水平的重要标志,是世界各先进技术国抢占经济科技制高点、提升综合国力的重要领域。

新世纪以来,我国的集成电路科技与产业在国务院国发2000(18号)文件和各级地方政府的持续支持下,获得了长足进步,取得了一系列重要成果:

(一)集成电路产业链格局日渐完善

中国集成电路产业结构逐步由小而全的综合制造模式逐步走向设计、制造、封装测试三业并举,各自相对独立发展的格局。目前,中国集成电路产业已经形成了集成电路设计、芯片制造、封装测试及支撑配套业共同发展的较为完善的产业链格局。

(二)集成电路设计产业群聚效应日益凸现

以上海为中心的长江三角洲地区、以北京为中心的环渤海地区以及以深圳为中心的珠江三角洲地区已经成为国内集成电路产业集中分布的区域。全国集成电路设计、制造和封装产业90%以上的销售收入集中于以上三个地区。其

中,包括上海、江苏和浙江的长江三角洲地区是国内最主要的集成电路制造基地,在国内集成电路产业中占有重要地位

(三)集成电路设计技术水平显著提高

国内集成电路设计企业的技术开发实力也有显著的提高,已经取得多项掌握核心技术的研发成果。2000年以来,“申威”高性能CPU、“龙芯”和“众志”桌面计算机用CPU、苏州国芯C*Core和杭州中天CK-Core嵌入式CPUIP核、智能卡集成电路芯片、第二代居民身份证专用芯片、自主高清电视(HDTV)标准和自主音视频标准AVS芯片、华为网络通讯交换装备核心系统芯片、大唐电信COMIPTM和展讯移动通信终端SoC、超大规模集成电路制造工艺、智能卡芯片专用工艺及高压特色工艺等技术和产品都取得了重要成果,大部分成果取得了产品化和产业化的重大进展,并获得国家科技进步奖励。

(四)人才培养和引进开始显现成果

集成电路是知识密集型的高技术产业,其持续、快速、健康的发展需要大量高水平的人才。但是,人才匮乏,人员流失严重却一直是困扰我国集成电路科技和产业发展的主要问题之一。为扭转这一局面,加大集成电路专业人才的培养力度,2003年国务院科教领导小组批准实施国家科技重大专项——集成电路与软件重大专项,并实施了“国家集成电路人才培养基地”计划。随后教育部、科技部批准建设国家集成电路人才培养基地。

二、集成电路设计

集成电路设计业是包括中国在内的全球整个集成电路产业中最为活跃的部分。集成电路设计企业在新兴产品的开发上扮演着关键作用。在中央处理器(CPU)、数字信号处理器(DSP)、半导体存储器、可编程逻辑阵列

(FPGA)、专用集成电路(ASIC)和系统芯片(SoC)等主流产品领域,都可以发现集成电路设计企业的身影。在过去的十年间,我国集成电路设计业在

CPU、智能卡专用芯片、3G通信芯片、数字电视芯片、第二代居民身份证芯片等领域取得了令人瞩目的成果。

(一)自主知识产权CPU

CPU被誉为电子信息产品的心脏,是集成电路产品的制高点。十年间,我国在超级计算机用高性能CPU、桌面计算机/服务器CPU和嵌入式CPU领域取得了一系列重要突破,部分产品达到国际领先水平,极大地提高了我国在CPU 领域的科技水平和支撑电子信息产业发展的能力。

在超级计算机用高性能CPU领域,我国实现了从无到有的重大历史跨越。经过十余年不懈努力,掌握了高性能CPU体系架构设计的核心技术,突破了微结构设计、Cache设计、核间通信、总线设计、存储器接口设计、低功耗设计、可靠性及安全性设计等关键技术,达到了国际领先水平。

上海高性能集成电路设计中心在科学技术部和上海市的大力支持下于2003年8月创建,主要从事自主知识产权的国产高性能CPU开发并推进技术成果产业化。该中心积极响应国家“自主可控、自主创新”的总体战略要求,坚持“全定制自主设计、全流程可控生产”的技术路线,积极承担国家重大科研攻关项目,不断提升科研创新能力、突破高性能CPU研制关键技术,瞄准高性能计算和信息安全应用需求,立足国内条件,深度研发国产高性能CPU。目前,该中心已完成两代“申威”系列高性能CPU研制,同时建立了完整的高端处理器研发技术体系,具备了从架构研究、逻辑设计到物理实现全过程的自主研发能力。

2006

年,该中心在国家863计划超大规模集成电路设计专项“国产高性能SOC 芯片”课题支持下,成功研制出第一代国产64位通用处理器——“申威1”。该处理器为RISC结构,采用0.13微米CMOS代工工艺,集成近5700万只晶体管,峰值运算速度达到每秒50亿次浮点运算。具有高性能、高可靠、高频率等特点,是我国第一款从结构设计、电路设计、版图设计、正确性验证到流片生产和测试完全在国内完成的高性能通用CPU,成功实现了高频率、大尺寸、全定制芯片的全自主设计和全国内生产,创造了当时单核最高工作频率和最高运算速度的全国纪录,获当年集成电路领域唯一一个“Aa”级评价。

2010年,该中心在国家“核高基”科技重大专项“高性能多核CPU研发与应用”课题支持下,成功研制出第二代具有自主知识产权的国产16核处理器——“申威1600”。该处理器采用自主指令集,65纳米代工工艺,最高核心工作频率

达1.1GHz,峰值运算速度达每秒1408亿次双精度浮点结果,是我国第一款自主研制的

64位通用多核处理器,也是世界上首款投入实用的16核处理器,在多项核心关键技术上有重大创新和突破,整体技术居国内领先、达到国际先进水平。

2012年初,该中心成功完成“申威1600”改进型——“申威1610”处理器研制。该处理器已通过测试和系统验证。“申威1610”是我国目前唯一一款自主设计的频率突破1.5GHz的高端通用多核处理器。该芯片采用多项新技术提高频率、提升性能、增强功能、降低功耗。测试结果表明,该处理器核心工作频率能稳定超过1.5GHz,最高达到1.6GHz,最高峰值运算速度为每秒2048亿次浮点运算,运行功耗在50W以内,能效比提升近一倍,在计算能力、磁盘访问、网络处理等方面已达到了国际主流处理器的同等水平。

上述两代“申威”处理器已在国家相关领域的关键项目中成功应用85000片以上。其中,“申威1”处理器于2008年实现批量生产并全部应用于国产百万亿次计算机系统;“申威1600”处理器于2010年开始批量生产并于2011年应用于科技部超级计算(济南)中心“神威蓝光”高性能计算机系统中。该系统全部采用“申威1600”处理器,仅用8704颗处理器芯片即达到每秒千万亿次峰值性能,

是国内迄今为止唯一一台全部采用国产处理器实现速度超过千万亿次的高性能超级计算机。“申威

1600”在高性能计算领域的成功应用,使我国成为继美国、日本之后能够使用自主设计的处理器构建千万亿次级高性能计算机的国家,对实现重大信息系统自主可控发展具有重大意义。

此外,“申威1600”还成功应用于国产服务器、桌面终端、千兆防火墙、工控机等产品中,部分产品已在国家核心部门和重点项目中进行了重要示范应用。上海高性能集成电路设计中心还联合国内知名软件厂商,围绕“申威”处理器构建了完整的生态产业链,在产品化和产业化方面,该中心已和中国电子信息产业集团(CEC)等大型国有企业开展深度合作,取得了阶段性进展。

安全服务器办公计算机千兆防火墙国产数控主机

在桌面计算机/服务器CPU领域,中科龙芯和北大众志等单位开展了以“龙芯”、“众志”为代表的国产桌面和服务器

CPU技术研发。以“龙芯”CPU为例,中科龙芯于2002年8月研制成功国内第一款32位通用CPU“龙芯1号”,2003年10月研发成功国内第一款64位通用CPU“龙芯2号”(“龙芯2B”);在此基础上,中科龙芯又在CPU体系结构、物理设计、测试验证等CPU设计核心技术方面取得重要进步,分别于2004年9月和2006年3月研制成功“龙芯2号”系列的后续型号“龙芯2C”和“龙芯2E”。其中,代表我国“十五”期间处理器研制最高水平的“龙芯2E”处理器使用90nm工艺,最高主频达到1GHz,实测性能与中低档PentiumIV相当,标志着我国在自主CPU设计技术上达到了当时国际先进水平。

“十一五”期间,自主CPU技术水平进一步提高,并进行了从实验室样品到面向市场的产品的有益尝试。以“龙芯”CPU为例,一方面,开展了四核“龙芯3号”的研制,并于2009年9月研制成功我国首款64位四核CPU“龙芯3A”。“龙芯3A”采用65纳米CMOS工艺设计,片内集成了4个四发射64位处理器核和4MB二级Cache,主频达到1GHz,功耗小于15瓦,峰值性能达到每秒160亿次浮点运算,片上包含4.25亿只晶体管。另一方面,中科龙芯在科技部的安排和部署下,与欧洲的意法半导体公司合作,在“十五”期间取得的“龙芯2E”技术成果上,通过质量、成本和成熟度等的优化设计,研制了首款龙芯系列的CPU 产品“龙芯2F”,随后又对“龙芯3A”进行了产品化。同时,中科龙芯于2006年初在江苏省常熟市建立了“龙芯”产业化基地进行“龙芯”系列CPU的应用推广,完成了基于“龙芯”CPU的桌面整机产品中试。2010年初,在科学院和北京市的支持下,中科院计算所在北京成立了“龙芯中科技术有限公司”并使龙芯团队逐步向企业转型,实现了“龙芯”

CPU的企业化运做。

“十一五”后期,桌面CPU和服务器CPU进一步提升了技术水平并进行了初步应用,如“十一五”末研发完成的“龙芯3C”采用32nm工艺设计,片内集成8

个64位超标量向量处理器核,共有十多亿只晶体管;“龙芯2号”最新产品“龙芯2H”采用65nm工艺,片内集成四发射64位处理器核、流媒体处理、图形图像处理以及南桥、北桥等配套芯片组功能,为低成本电脑提供了单片解决方案。从“十二五”开始,“核高基”科技重大专项从产业链的全程支持自主桌面和服务器CPU的发展,联合包括操作系统、办公软件、数据库、中间介、ODM/OEM、整机、系统集成等企业,基于自主CPU构造完整的产业链,形成了良好的发展势头。在此基础上,国家有关部门下决心在部分重要领域大力推广自主可控软硬件系统的应用。软硬件协同发展、整机与应用带动芯片和软件发展已经成为广泛共识。到2011年底,基于国产CPU的桌面计算机和服务器推广应用达到了十万套的量级。

在嵌入式CPU领域,浙江大学、苏州国芯和杭州中天致力于研发具有国际水平的嵌入式CPU,完成了具有自主知识产权的C-Core(含苏州国芯C*Core和杭州中天CK-Core)系列嵌入式CPU,性能与当时国际先进的同类嵌入式CPU 相当。上述嵌入式CPU均在国际主流先进集成电路代工线(台积电、中芯国际等)实现了IP核硬化,客户可以方便地在上述工艺线研发SoC。目前,国产嵌入式CPU已经形成了每年千万颗级的产业化规模。相关成果在2009年获得了国家科技进步二等奖。

C*300、CK500和CK600系列嵌入式CPU面向嵌入式系统和终端SoC应用领域,具有可扩展指令、可配置硬件资源、可重新综合、易于集成等优点,可

以通过静态设计、动态电源管理和低电压供电来减少功耗,也可以通过进入省电模式来节省功耗,还可以实时地关断内部功能模块。于此同时,相关单位还研制成功了基于

C*300、CK500和CK600系列嵌入式CPU的SoC应用开发平台,完善与优化了C*300、CK500和CK600系列嵌入式CPU的应用环境,推动了产业化进程。C*300、CK500和CK600系列嵌入式CPU已形成较为完善的开发验证平台和集成开发环境,形成了从高端到低端多款微控制器芯片,可满足频率300M以下的SoC应用需求,形成了完整的软件工具链,破解了国产嵌入式CPUIP核产业化应用的难题。C*300、CK500和CK600系列嵌入式CPU的应用领域包括:数字音视频类:包括数字电视及机顶盒、安防监控等;信息安全类:包括加密网络、商用金融设备、信息安全终端;消费类电子产品及医疗电子;工业控制类、通讯类的多种应用。

CK500系列和CK600系列嵌入式CPU是基于M*Core指令自主研发的嵌入式CPU。CK500微体系结构包括:精简指令集计算机结构(RISC);16位高代码密度指令集;32位地址与数据通路;单发射,乱序执行,按序退休,具有7级流水线;大部分指令在一个CPU时钟内完成;高度硬件可配置;两级转移预测;AMBA内部总线与接口;支持大端(BigEndian)与小端(LittleEndian);支持3种低功耗模式;支持硬件调试模块;支持普通中断和快速中断;CPU性能达到1.1DMIPS/MHz。

CK600是一款具备较高性能的嵌入式CPU,采用双发射超标量架构,主要面向中高端嵌入式应用,具有高性能、低功耗和高代码密度等特征。CK600系列处理器主要包括CK610、CK610E、CK610S、CK610M、CK610-F、CK620和CK610ESM-F等多种配置型号。CK600和CK500在指令和工作环境上全兼容。

CK600的微体系结构包括:RISC体系架构;16比特指令,32比特地址与数据通路;8级流水线,双发射架构;2个ALU,2个Shifter,1个MAD和1个LSU;哈佛结构两路组相连指令和数据Cache;两级转移预测,2Kb分支历史表(BHT);非阻塞指令发射和数据Cache访问机制;数据Cache写回和写通动态可配置;乱序随机执行和硬件保留栈;返回地址预测,4入口硬件返回地址栈;内部双通用数据总线(CDB);数据宽度可配置的AHB/AXI内部总线接口(32/64/128);可扩展的协处理器接口;CPU性能:1.82DMIPS/MHz。

CK500与CK600系列嵌入式CPU形成了完整的开发工具链和软硬件环境,以支持基于各系列嵌入式CPU核的SoC产品开发。主要包括CKCoreCPU 软件开发套件、CKCore编译、链接和调试工具链及开发板、硬件仿真器等。CK系列CPU软件开发套件涵盖了从启动代码和内核移植到应用程序开发调试的所有阶段。主要包含组件有:基于Eclipse的IDE;编译工具;全功能图形调试器;软件仿真器;代码示例项目。

根据国家新一代信息技术产业和信息化对高水平嵌入式CPU的应用需求,同时体现自主创新、重点突破的战略思路,国家科技重大专项不失时机地部署了面向产业化应用国产自主创新指令体系CPU的研发。杭州中天微系统公司与浙江大学协同创新,在执行2010-2011国家科技重大专项的任务中成功研发了自主创新指令集系统的32位高性能嵌入式CK800系列CPU。这是一款基于CKCore自主创新指令架构与16/32位混合指令编码系统,同时设计有高性能矢量DSP运算指令与单精度、双精度浮点指令,CK800系列CPU以先进的指令架构与流水线技术在性能和频率等方面达到业界领先水平。面向嵌入式系统产

品设计的自主创新指令集CPU,将为我国自主创新指令集CPU参与国际竞争开创新的局面。

CK800系列嵌入式CPU采用CKCore自主指令系统,具有高性能、高代码密度、低功耗和可扩展等特点。CKCORE自主指令系统面向未来高性能需求而设计,采用32/16混合指令编码技术,其中:32位指令功能完善用于提升指令集的综合性能;16位指令是32位指令的子集,功能相对简单用于提升指令代码密度和降低功耗。

CK810基于CKCoreV2自主指令架构与16/32位混合指令编码系统。硬件上采用先进的10级流水线技术与乱序猜测执行框架,具有高主频、高单位性能、高代码密度、高功耗效率等优点。CK810可应用于新一代移动通信设备、下一代高清数字电视机顶盒、汽车电子等高性能嵌入式应用领域。CK810系列嵌入式CPU包括针对浮点加强的CK810F、针对DSP运算加强的CK810D及针对多核的CK810MP,CK810性能大体与国际主流的同档次嵌入式CPU相当。

CK803是一款高性能、低功耗嵌入式CPU核,可应用于低功耗、高性能、高实时性的嵌入式领域,如微控制器、汽车电子、工业控制、无线网络及各种便携式应用。CK803采取取指、解码、执行回写3级流水线。取指阶段设计专用指令预取缓存器,消除32位指令非对齐顺序预取产生的流水线气泡。设计低成本的分支预测机制,并通过编译器与硬件共同作用提高分支预测的准确率。精简解码阶段的逻辑与地址计算的优化,实现存储/载入指令的全流水运行。低成本硬件乘法与除法单元满足简单的算法运算,可配置的多媒体处理增强单元可以处理乘法、乘累加与乘累减DSP运算。

CK802具备极低成本、极低功耗和高代码密度等优点。它以8位CPU的成

本获得32位嵌入式CPU的运行效率与性能。CK802主要针对智能卡、智能电网、低成本微控制器、无线传感网络等嵌入式应用。

集成电路的现状与发展趋势

集成电路的现状与发展趋势 1、国内外技术现状及发展趋势 目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。1999年全球集成电路的销售额为1250亿美元,而以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展的数据表明,每l~2元的集成电路产值,带动了10元左右电子工业产值的形成,进而带动了100元GDP的增长。目前,发达国家国民经济总产值增长部分的65%与集成电路相关;美国国防预算中的电子含量已占据了半壁江山(2001年为43.6%)。预计未来10年内,世界集成电路销售额将以年平均15%的速度增长,2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路已曰益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 集成电路的集成度和产品性能每18个月增加一倍。据专家预测,今后20年左右,集成电路技术及其产品仍将遵循这一规律发展。集成电路最重要的生产过程包括:开发EDA(电子设计自动化)工具,利用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经应用开发将其装备到整机系统上与最终消费者见面。 20世纪80年代中期我国集成电路的加工水平为5微米,其后,经历了3、1、0.8、0.5、0.35微米的发展,目前达到了0.18 微米的水平,而当前国际水平为0.09微米(90纳米),我国与之相差约为2-3代。 (1)设计工具与设计方法。随着集成电路复杂程度的不断提高,单个芯片容纳器件的数量急剧增加,其设计工具也由最初的手工绘制转为计算机辅助设计(CAD),相应的设计工具根据市场需求迅速发展,出现了专门的EDA工具供应商。目前,EDA主要市场份额为美国的Cadence、Synopsys和Mentor等少数企业所垄断。中国华大集成电路设计中心是国内唯一一家EDA开发和产品供应商。 由于整机系统不断向轻、薄、小的方向发展,集成电路结构也由简单功能转向具备更多和更为复杂的功能,如彩电由5片机到3片机直到现在的单片机,手机用集成电路也经历了由多片到单片的变化。目前,SoC作为系统级集成电路,能在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上实现一个完整系统的功能。它的制造主要涉及深亚微米技术,特殊电路的工艺兼容技术,设计方法的研究,嵌入式IP核设计技术,测试策略和可测性技术,软硬件协同设计技术和安全保密技术。SoC以IP复用为基础,把已有优化的子系统甚至系统级模块纳入到新的系统设计之中,实现了集成电路设计能力的第4次飞跃。

论集成电路发展的挑战与机遇

论集成电路发展的挑战与机遇 摘要:集成电路的发展史就是微电子技术生成史,从晶体管到微处理器和光刻技术等,集成电路技术以尺寸缩小、集成度提高为发展路径,必然受到材料、工艺和物理理论等挑战。但集成电路正面临产业调整与市场的双重机遇。 关键词:集成电路;挑战;机遇 目前,以数字化和网络化为特征的信息技术正渗透和改造着各产业和行业,深刻改变着人类生产生活方式以及经济、社会、政治、文化各领域。信息技术根源于集成电路技术的巨大发展,把人类社会在21世纪定格为信息社会。 一、集成电路与摩尔预测 集成电路就是将晶体管等有源元件和电阻、电容等无源元件,按电路”集成”,完成特定电路或功能的系统,集成电路体积不断减小,制造工艺技术日益精细,可一次加工完成。集成电路的学科基础是微电子学,微电子学脱胎于电子学和固体物理学的交叉技术学科,主要研究在半导体材料上构成微型电子电路、子系统及系统。以微电子学发展起来集成电路技术,包括半导体材料及器件物理,集成电路及系统设计原理和技术,芯片加工工艺、功能和特性测试技术等。当下,集成电路技术已成信息社会发展基石,集成电路将信息获取、传递、处理、存储、交换等功能集成于芯片,芯片可低成本大批量生产,且功耗低体积小,迅速成为各产业、国防的技术基础。摩尔于1964年总结集成电路发展历程,对未来集成电路发展趋势

做出预测。即:集成电路单个芯片上集成元件数,一般称为集成电路的集成度,每18个月增加一倍,即集成度每三年翻两番,尺寸缩小2倍,集成电路芯片需求量也以相同速度增加,集成电路性能提高,价格下降。几十年来,集成电路技术居然一直按摩尔定律指数增长规律发展壮大。 二、集成电路高速发展 集成电路技术伴随物理、材料和技术成果而实现各阶段的飞速发展。晶体管之前,电子管和电阻、电容等元件靠焊装构成电路系统。第一台计算机连线和焊接点很多,电路系统体积大,可靠性差。电子装备可靠性和小型化使”集成”成为需求。人们开始将电阻、电容等无源元件和有源元件制做在同一块半导体材料上。1958年9月实现第一个集成电路震荡器演示实验,标志着集成电路诞生,当时该实验在锗晶体管基础上完成。第一块集成电路发明是一个技术创新,对物理学发展产生很大影响。平面技术发明是推动集成电路产业化的关键。包括氧化、扩散、薄膜生长和光刻刻蚀等在内的平面技术,论重要性首推二氧化硅绝缘层的发现。早期晶体管基区宽度不好控制,不易做薄,频率提高受限制。1956年,科学家发现二氧化硅不仅具掩蔽作用,还是高频损耗小、击穿电场强度高的良好绝缘体。直到今天,二氧化硅仍是集成电路主要绝缘层材料。金属-氧化物-半导体场效应晶体管(mos.fet)器件是目前超大规模集成电路基本电路形式。平面工艺的光刻技术是另一关键,光刻是一种精密表面加工技术。1957年首次引入到半导体工艺技术,将光刻技术和二氧化

集成电路技术发展趋势

集成电路技术发展趋势 1 国内外技术现状及发展趋势 目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。1999年全球集成电路的销售额为1250亿美元,而以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展的数据表明,每l~2元的集成电路产值,带动了10元左右电子工业产值的形成,进而带动了100元GDP的增长。目前,发达国家国民经济总产值增长部分的65%与集成电路相关;美国国防预算中的电子含量已占据了半壁江山(2001年为43.6%)。预计未来10年内,世界集成电路销售额将以年平均15%的速度增长,2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路已日益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 集成电路的集成度和产品性能每18个月增加一倍。据专家预测,今后20年左右,集成电路技术及其产品仍将遵循这一规律发展。 集成电路最重要的生产过程包括:开发EDA(电子设计自动化)工具,利用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经应用开发将其装备到整机系统上与最终消费者见面。 20世纪80年代中期我国集成电路的加工水平为5微米,其后,经历了3、1、0.8、0.5、0.35微米的发展,目前达到了0.18微米的水平,而当前国际水平为0.09微米(90纳米),我国与之相差约为2-3代。 (1)设计工具与设计方法。随着集成电路复杂程度的不断提高,单个芯片容纳器件的数量急剧增加,其设计工具也由最初的手工绘制转为计算机辅助设计(CAD),相应的设计工具根据市场需求迅速发展,出现了专门的EDA工具供应商。目前,EDA主要市场份额为美国的Cadence、Synopsys和Mentor等少数企业所垄断。中国华大集成电路设计中心是国内唯一一家EDA开发和产品供应商。 由于整机系统不断向轻、薄、小的方向发展,集成电路结构也由简单功能转向具备更多和更为复杂的功能,如彩电由5片机到3片机直到现在的单片机,手机用集成电路也经历了由多片到单片的变化。目前,SoC作为系统级集成电路,能在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上实现一个完整系统的功能。它的制造主要涉及深亚微米技术,特殊电路的工艺兼容技术,设计方法的研究,嵌入式IP核设计技术,测试策略和可测性技术,软硬件协同设计技术和安全保密技术。SoC以IP 复用为基础,把已有优化的子系统甚至系统级模块纳入到新的系统设计之中,实现了集成电路设计能力的第4次飞跃。 (2)制造工艺与相关设备。集成电路加工制造是一项与专用设备密切相关的技术,俗称"一代设备,一代工艺,一代产品"。在集成电路制造技术中,最关键的是薄膜生成技术和光刻技术。光刻技术的主要设备是曝光机和刻蚀机,目前在130nm的节点是以193nmDUV(Deep Ultraviolet Lithography)或是以光学延展的248nmDUV为主要技术,而在l00nm的节点上则有多种选择:157nm

集成电路封装的发展现状及趋势

集成电路封装的发展现 状及趋势 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

序号:39 集成电路封装的发展现状及趋势 姓名:张荣辰 学号: 班级:电科本1303 科目:微电子学概论 二〇一五年 12 月13 日

集成电路封装的发展现状及趋势 摘要: 随着全球集成电路行业的不断发展,集成度越来越高,芯片的尺寸不断缩小,集成电路封装技术也在不断地向前发展,封装产业也在不断更新换代。 我国集成电路行业起步较晚,国家大力促进科学技术和人才培养,重点扶持科学技术改革和创新,集成电路行业发展迅猛。而集成电路芯片的封装作为集成电路制造的重要环节,集成电路芯片封装业同样发展迅猛。得益于我国的地缘和成本优势,依靠广大市场潜力和人才发展,集成电路封装在我国拥有得天独厚的发展条件,已成为我国集成电路行业重要的组成部分,我国优先发展的就是集成电路封装。近年来国外半导体公司也向中国转移封装测试产能,我国的集成电路封装发展具有巨大的潜力。下面就集成电路封装的发展现状及未来的发展趋势进行论述。 关键词:集成电路封装、封装产业发展现状、集成电路封装发展趋势。 一、引言 晶体管的问世和集成电路芯片的出现,改写了电子工程的历史。这些半导体元器件的性能高,并且多功能、多规格。但是这些元器件也有细小易碎的缺点。为了充分发挥半导体元器件的功能,需要对其进行密封、扩大,以实现与外电路可靠的电气连接并得到有效的机械、绝缘等

方面的保护,防止外力或环境因素导致的破坏。“封装”的概念正事在此基础上出现的。 二、集成电路封装的概述 集成电路芯片封装(Packaging,PKG)是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连线,引出接线端并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺。此概念称为狭义的封装。 集成电路封装的目的,在于保护芯片不受或少受外界环境的影响,并为之提供一个良好的工作条件,以使集成电路具有稳定、正常的功能。封装为芯片提供了一种保护,人们平时所看到的电子设备如计算机、家用电器、通信设备等中的集成电路芯片都是封装好的,没有封装的集成电路芯片一般是不能直接使用的。 集成电路封装的种类按照外形、尺寸、结构分类可分为引脚插入型、贴片型和高级封装。 引脚插入型有DIP、SIP、S-DIP、SK-DIP、PGA DIP:双列直插式封装;引脚在芯片两侧排列,引脚节距,有利于散热,电气性好。 SIP:单列直插式封装;引脚在芯片单侧排列,引脚节距等特征与DIP基本相同。

专业发展报告

专业发展前沿总结 数学科学是研究数、量的关系和空间形式的一个庞大科学体系,它包含纯粹数学、应用数学以及这二者与其它学科的交叉部分。它是一门集严密性、逻辑性、精确性和创造力与想象力于一体的学问,也是自然科学、技术科学、社会科学、管理科学等的巨大智力资源。数学为其它科学提供语言、观念和工具,它与计算机技术的紧密结合产生了可直接应用的数学技术,成为许多高、新技术的核心。按照马克思的看法,一门科学只有当它成功地应用了数学的时候,才算是成熟的科学。数学也是一种文化,在人类理性的认识世界的过程中起着重要的作用。从古时候起,数学就被当作了人类文明的一个智力顶峰。数学的传播与发展对提高国民素质、提高人们的分析与决策能力、推理与创造能力至关重要。数学研究本身则造就出一批富于创新精神的科学研究人才。推动数学发展的动力既来自于内部,即解决自身的问题,也来自于外部研究现实世界提出的模式。当今,数学科学包含了许多分支与丰富的内容,其发展的主要趋势为:数学各分支的融汇;与其它科学更加深入的交叉;以及更加自觉地扩大数学的应 用范围,使它的触角伸向几乎一切领域。 现代控制理论现代控制理论现代控制理论现代控制理论 定义:现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。 现代控制理论的发展过程:现代控制理论实在20世纪50年代中期迅速兴起的空间技术推动下发展起来的,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控制问题十分复杂年,苏联科学家庞特里亚金提出了名为极大值的原理综合控制系统的心方法。1960~1961年,美国学者R.E.布什建立了卡尔曼-布什滤波理论。因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究扩大,包括了更为复杂的控制问题。到60年代初,一套以状态空间法、大值原理、动态规划、卡尔曼理和方法为基础的分析和设计控制系统的新的运力和方法已经确立。 现代控制理论所包含的学科内容十分广泛,主要方面有:线性系统理论、非线性系统理论最优控制理论、随机控制理论和适应控制理论。 线性系统理论是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。 金融和高科技中的数学建模、计算与运筹决策 计算科学是伴随计算机的发展而兴起的一门科学。利用计算机的计算(或模拟或仿真) 来揭示自然界以及人类社会物质生产过程中的复杂运动和现象。计算与理论和实验一起成为人们研究的三大手段。计算科学包括科学与工程计算以及高性能计算系统研制相关的数学问题。从学科内容来讲有三部分:一是包含了各科学领域内的计算性质的学科分支,如计算数学,以及与相关学科相结合的计算分支学科。二是包含了不同工程技术领域在实验与生产过程中所采用的大型计算。第三部分是与计算机科学有关的数学分支。计算科学是计算机科学、数学与相关学科相交叉融合的边缘性学科。其基础是数学,以计算(或模拟) 方法、算法以及与计算系统相关的优化问题的研究为其主要内容。我国的计算科学研究和实践曾为原子弹和氢

中国集成电路行业研究报告

中国集成电路产业研究报告 一、产业现状 根据魏少军教授在早前于珠海举办的ICCAD 2018公布的数据显示,从事集成电路设计的1698家中国企业中,有783家是从事消费类产品的研发的;然后有307家是从事通信相关的;模拟相关的则有210家。 但从营收上看,拥有最多集成电路设计公司的消费类芯片领域,却只贡献了整体营收的23.95%,远远落后于以智能手机为代表的通信领域的营的1046.75亿元。再看模拟和功率方面,这两个领域加的公司总数量其实是超过通信芯片公司的,但是营收却仅仅为通信芯片的21%。再看计算机芯片方面,虽然这个领域公司贡献的营收同比暴增了180.18%,但是营收与通信芯片领域相去甚远。 二、产业链 集成电路作为半导体产业的核心,市场份额达83%,由于其技术复杂性,产业结构高度专业化。随着产业规模的迅速扩张,产业竞争加剧,分工模式进一步细化。目前市场产业链为IC设计、IC制造和IC封装测试。 在核心环节中,IC设计处于产业链上游,IC制造为中游环节,IC封装为下游环节。 全球集成电路产业的产业转移,由封装测试环节转移到制造环节,产业链里的每个环节由此而分工明确。 由原来的IDM为主逐渐转变为Fabless+Foundry+OSAT。 (一)IC设计企业: 1、 EDA设计:三星、英特尔、SK海力士、美光、博通、高通、东芝、 德州仪器、英伟达、西部数据; 2、 IP设计:华为海思、展讯、RDA、华大半导体、大唐电信、国民技

术、汇顶科技、中星微电子、北京君正; (二)IC制造企业 台积电、美国格罗方德、台湾联华电子、韩国三星、上海中芯国际、力晶科技、TOWER JAZZ、台湾Vanguard、华虹宏力; (三)IC封测 1、封装企业,台湾日月光、美国安靠、江苏长电科技、台湾力成科技、甘肃天水华天、江苏南通通、富微电子、京元电子、联测 2、测试企业:台湾颀邦科技、富士通微电子、韩国Nepes、马来西亚Unisem、苏州晶方半导体科技、深圳气派科技、无锡华润安盛、广东风华芯电 三、产业规模 据中国半导体行业协会(CSI A)公布数据,2018年中国集成电路产业销售收入达6532亿元,同比增长20.7%,增速较2017年回落4.1个百分点,属较快的增长。 2014-2018年中国集成电路产值(亿元) 四、竞争格局 中国集成电路芯片设计企业的营收分布(按照产品领域划分)

集成电路技术及其发展趋势

集成电路技术及其发展趋势 摘要目前,以集成电路为核心的电子产业已超过以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。作为当今世界竞争的焦点,拥有自主知识产权的集成电路已日益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 关键词集成电路系统集成晶体管数字技术

第一章绪论 1947年12月16日,基于John Bardeen提出的表面态理论、Willianm Shockley给出的放大器基本设想以及Walter Brattain设计的实验,美国贝尔实验室第一次观测到具有放大作用的晶体管。1958年12月12日,美国德州仪器公司的Jack 发明了全世界第一片集成电路。这两项发明为微电子技术奠定了重要的里程碑,使人类社会进入到一个以微电子技术为基础、以集成电路为根本的信息时代。50多年来,集成电路已经广泛地应用于军事、民用各行各业、各个领域的各种电子设备中,如计算机、手机、DVD、电视、汽车、医疗设备、办公电器、太空飞船、武器装备等。集成电路的发展水平已经成为衡量一个国家现代化水平和综合实力的重要标志[1]。 现代社会是高度电子化的社会。在日常生活中,小到电视机、计算机、手机等电子产品,大到航空航天、星际飞行、医疗卫生、交通运输等行业的大型设备,几乎都离不开电路系统的应用。构成电路系统的基本元素为电阻、电容、晶体管等元器件。早期的电路系统是将分立的元器件按照电路要求,在印刷电路板上通过导线连接实现的。由于分立元件的尺寸限制,在一块印刷电路板上可容纳的元器件数量有限。因此,由分立元器件在印刷电路板上构成的电路系统的规模受到限制。同时,这种电路还存在体积大、可靠性低及功耗高等问题。 半导体集成电路是通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路规则,互连“集成”在一块半导体单晶片上。封装在一个外壳内,执行特定的电路或系统功能。与印刷电路板上电路系统的集成不同,在半导体集成电路中,构成电路系统的所有元器件及其连线是制作在同一块半导体材料上的,材料、工艺、器件、电路、系统、算法等知识的有机“集成”,使得电路系统在规模、速度、可靠性和功耗等性能上具有不可比拟的优点,已经广泛的应用于日常生活中。半导体集成电路技术推动了电子产品的小型化、信息化和智能化进程。它彻底改变了人类的生活方式,成为支撑现代化发展的基石[2]。 1959年,英特尔(Intel)的始创人,Jean Hoerni 和Robert Noyce,在Fairchild Semiconductor开发出一种崭新的平面科技,令人们能在硅威化表面铺上不同的物料来制作晶体管,以及在连接处铺上一层氧化物作保护。这项技术上的突破取代了以往的人手焊接。而以硅取代锗使集成电路的成本大为下降,令

未来十年中国集成电路产业的发展机遇与挑战

未来十年中国集成电路产业的发展机遇与挑战 若干年之后如果再回过头来看,2010年将会成为中国集成电路产业发展史上的一个重要的里程碑年份。因为它是几个重要事件的节点,一是国发[2000]18号文即《鼓励软件产业和集成电路产业发展的若干政策》颁布十周年。同时,国家扶持和鼓励集成电路产业发展的新的优惠政策——业界称新18号文经过长期酝酿和准备,有可能在年底正式推出。二是今年是“十二五”承上启下的一年,“十二五”集成电路产业专项规划正在紧锣密鼓制定之中,产业主管部门正在动员各方力量“总结成果,破解难题,规划未来”,明年正式出台的新的规划蓝图将对未来五年我国集成电路产业发展产生重大的深远的影响;三是由于2008-2009年经济危机的影响,全球产业资源进行了一轮很猛烈的重组,2010年世界集成电路产业走出全球金融危机的阴影,站在一个新的起点上,进入新一轮增长期,产业链各个环节的企业都在重新布局调整,抢点新的竞争制高点。 这是一个回顾过去,展望未来,制定行动计划的时刻。 过去十年我国集成电路产业所取得的发展成就,有目共睹,不少业内人士进行了很好的总结和归纳,无需赘言。未来十年,我国集成电路产业面临那些大的发展机遇?如何把握机遇在国际竞争中不断发展壮大却是值得业界认真思考的问题。 在全球集成电路产业价值链创造中中国的位置 在经济全球化和区域经济一体化的进程中,集成电路产业可以说是国际化竞争最激烈,产业资源全球流动和配置最为彻底的产业之一,任何一个国家和地区在集成电路产业价值创造体系中都自觉或不自觉的被推到了“最能发挥资源禀赋,形成国际比较优势”的产业链位置,这一结果是通过国际竞争和资源流动自然形成的。通过下面的表格可以比较直观的看出中国目前在全球集成电路产业价值链创造中的位置。 表一,全球集成电路产业价值链创造中中国的位置(2007)(单位:十亿美元) 中国集成电路产业的特点是市场需求大,产业规模小,绝大部分产品依赖进口。本土设计、生产的集成电路产品只能满足国内约24%的需求,我国每年进口的集成电路产品超过1000亿美元,是排名第一的大宗进口产品,其进口额超过了石油和钢材进口额的总和。美欧日韩凭借技术领先战略,主导着产业和技术发展方向,作为后进国家我们还处在“追随”和“赶超”的位置,从产业分工和价值链来看,我们处在从价值链底端向上爬升的过程。 表二,全球半导体区域市场需求规模与产值创造比较表(2009)(单位:十亿美元) 资料来源:WSTS(2010/02);工研院IEK IT IS计划(2010、04) 从表二可以看出全球集成电路的市场和产业格局,基本上北美是供应商,亚太是消费者,欧洲和日本每年创造的产值与消耗掉的集成电路产品大体相当,其中日本在集成电路设备和技术上有一定优势,产值略大于消费。如果把区域概念浓缩一下,北美以美国为主,亚太以中国为主进行对比,可以发现两国形成非常强的互补与对接,中国每年进口超过1000亿美元的集成电路产品,约占全球市场的一半,而美国集成电路产业每年创造1000多亿美元的产值,绝大部分产品销往了中国。中国是全球集成电路的“消费中心”,美国则是“利润中心”。 从华虹NEC 909工程上马时,国家高层领导在政治局会议上表态“砸锅卖铁也要搞半导体”,到2000年国务院18号文件的出炉,再到最近提出“拥有强大的集成电路产业和技术,是迈向创新型国家的重要标志”无不彰显着国家意志与决心。但是在全球集成电路产业分工体系和密如蛛网的“协约”、“标准”、“

中药行业发展报告

中药行业市场现状及发展趋势分析 医药工业是世界公认的永不衰落的朝阳产业。90年代以来,一直保持7.7%的年均增长率,是世界贸易中增长最快的五类产品之一。 在全球性回归大自然的今天,纯天然药物(民族民间药和中药属天然药物类)是继化学药物、生物制药、基因工程类药品之后,最具发展前景的药物。天然药物因无明显毒副作用,在治疗局部疾病的同时,能明显地调节人体的免疫功能,给药途径方便等优势,广泛地受到世界不同肤色人们的青睐。 中药产业一直以来都是我国的传统优势产业,其有几千年悠久历史,是中华民族的瑰宝,多年来,中药都以其产量多、分布广、毒副作用小等优势占据着我国医药产业的半壁江山,但是另一方面,我国对中药产业的重视程度不足,中药产业的技术标准体系也不健全,导致中药产业发展缓慢。 近年来,我国的中药产业在充满挑战与威胁的世界环境中渐渐迎来了希望的曙光。2006年,国家出台《国家中长期科学和技术发展规划纲要(2006-2020年)》,要求我国要在中药产业中重点开展理论创新和研究;2007年,《中医药创新发展规划纲要》指出要建立中医药标准规范体系,出台新医改政策;随后席卷全球的金融危机与甲型H1N1在世界范围内爆发都将给我国的中药行业的发展产生深远的影响。 1、我国中药行业的历史发展状况 1.1国内市场状况 我国的中医药历史悠久,经过数千年的发展,国内早已经形成了相对比较成熟的民族医药体系。改革开放以来,我国医药工业发展迅速,产值年均递增16

6%,远高于GDP增速,是国民经济中发展最快的行业之一。而中药在医药行业中增长又最为强劲,仅2005年国内中药企业达1000多家,可生产中成药4000余种,产量也由1998年的3428万吨增长到的6O。29万吨,中成药和中药饮片的销售占国内医药市场份额的三成以上。 中药产业一直处于不断的发展和扩张中。2003年,中药工业实现总产值800亿元,继续保持了持续扩张的发展势头。2004年,中药行业在国家实施宏观调控的大背景下依然呈现出平稳增长的态势。与2003年比较,2004年医药制造业总体和化学药的增长步伐都明显回落,而中药行业则与上期基本持平,利润增速还有所提升,行业的经营稳定性相对突出。1997到2004年,中药工业总产值增长3倍多,占整个医药工业生产总值的比例由1997年的18.60%增长到2004年的26.10%。由于支持中药行业长期发展的因素,如人口增长、老龄化、城镇化等持续存在,可以预计中药行业的这种稳定增长态势仍将持续。 1.2国际市场状况 中药在国际市场上的竞争力也逐渐强化,我国中药的出口额在1995年达到创纪录的7.7亿美元之后,曾持续走低,连年大幅度滑坡,落后于我国外贸出口的平均增长速度。2002年之后这种势头有所好转,出口额开始回升,2003年,则取得稳定增长,于8年后再次突破7亿美元,2008年更是突破了10亿美元大关。可以说国产中药在国际市场上的影响力大大增强,正处于上升阶段。 中药出口从1950年到2007年的近60年间,出口大致可分为3个阶段:1950-1979年处于发展初期,1979-1999处于平稳增长期,1999-2007处于高速增长期。1950-1969年出口额仅在5000万美元以下,从1974年开始出口过1亿美元,1994年开始中药出口突破5亿美元,2006年开始中药出口突

集成电路技术十年发展报告【精编版】

集成电路技术十年发展报告【精编版】

集成电路技术十年发展2012-11-27 17:06:17

清华大学教授、微电子学研究所所长魏少军 一、总体情况 集成电路产业是关系国民经济和社会发展全局的基础性、先导性和战略性产业,是电子信息产业的核心,是关系到国家经济社会安全、国防建设极其重要的基础产业。集成电路产业的竞争力已经成为衡量国家间经济和信息产业可持续发展水平的重要标志,是世界各先进技术国抢占经济科技制高点、提升综合国力的重要领域。 新世纪以来,我国的集成电路科技与产业在国务院国发2000(18号)文件和各级地方政府的持续支持下,获得了长足进步,取得了一系列重要成果: (一)集成电路产业链格局日渐完善 中国集成电路产业结构逐步由小而全的综合制造模式逐步走向设计、制造、封装测试三业并举,各自相对独立发展的格局。目前,中国集成电路产业已经形成了集成电路设计、芯片制造、封装测试及支撑配套业共同发展的较为完善的产业链格局。 (二)集成电路设计产业群聚效应日益凸现 以上海为中心的长江三角洲地区、以北京为中心的环渤海地区以及以深圳为中心的珠江三角洲地区已经成为国内集成电路产业集中分布的区域。全国集成电路设计、制造和封装产业90%以上的销售收入集中于以上三个地区。其中,包括上海、江苏和浙江的长江三角洲地区是国内最主要的集成电路制造基地,在国内集成电路产业中占有重要地位 (三)集成电路设计技术水平显著提高

国内集成电路设计企业的技术开发实力也有显著的提高,已经取得多项掌握核心技术的研发成果。2000年以来,“申威”高性能CPU、“龙芯”和“众志”桌面计算机用CPU、苏州国芯C*Core和杭州中天CK-Core嵌入式CPUIP核、智能卡集成电路芯片、第二代居民身份证专用芯片、自主高清电视(HDTV)标准和自主音视频标准AVS芯片、华为网络通讯交换装备核心系统芯片、大唐电信COMIPTM和展讯移动通信终端SoC、超大规模集成电路制造工艺、智能卡芯片专用工艺及高压特色工艺等技术和产品都取得了重要成果,大部分成果取得了产品化和产业化的重大进展,并获得国家科技进步奖励。 (四)人才培养和引进开始显现成果 集成电路是知识密集型的高技术产业,其持续、快速、健康的发展需要大量高水平的人才。但是,人才匮乏,人员流失严重却一直是困扰我国集成电路科技和产业发展的主要问题之一。为扭转这一局面,加大集成电路专业人才的培养力度,2003年国务院科教领导小组批准实施国家科技重大专项——集成电路与软件重大专项,并实施了“国家集成电路人才培养基地”计划。随后教育部、科技部批准建设国家集成电路人才培养基地。 二、集成电路设计 集成电路设计业是包括中国在内的全球整个集成电路产业中最为活跃的部分。集成电路设计企业在新兴产品的开发上扮演着关键作用。在中央处理器(CPU)、数字信号处理器(DSP)、半导体存储器、可编程逻辑阵列(FPGA)、专用集成电路(ASIC)和系统芯片(SoC)等主流产品领域,都可以发现集成电路设计企业的身影。在过去的十年间,我国集成电路设计业在

集成电路的发展与应用

粉体(1)班学号:1003011020 集成电路技术的发展与应用 摘要: 集成电路(Integrated Circuit,简称IC)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,这样,整个电路的体积大大缩小,且引出线和焊接点的数目也大为减少,从而使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。它在电路中用字母“IC”(也有用文字符号“N”等)表示。 关键词:集成电路模拟集成电路电子元件晶体管发展应用集成电路对一般人来说也许会有陌生感,但其实我们和它打交道的机会很多。计算机、电视机、手机、网站、取款机等等,数不胜数。除此之外在航空航天、星际飞行、医疗卫生、交通运输、武器装备等许多领域,几乎都离不开集成电路的应用,当今世界,说它无孔不入并不过分。 在当今这信息化的社会中,集成电路已成为各行各业实现信息化、智能化的基础。无论是在军事还是民用上,它已起着不可替代的作用。 一、集成电路的定义、特点及分类介绍 1、什么是集成电路:所谓集成电路(IC),就是在一块极小的硅单晶片上,利用半导体 工艺制作上许多晶体二极管、三极管及电阻、电容等元件,并连接成完成特定电子技术功能的电子电路。从外观上看,它已成为一个不可分割的完整器件,集成电路在体积、重量、耗电、寿命、可靠性及电性能方面远远优于晶体管元件组成的电路,目前为止已广泛应用于电子设备、仪器仪表及电视机、录像机等电子设备中。[1] 2、集成电路的特点:集成电路或称微电路(microcircuit)、微芯片(microchip)、 芯片(chip)在电子学中是一种把电路(主要包括半导体装置,也包括被动元件等)小型化的方式,并通常制造在半导体晶圆表面上。前述将电路制造在半导体芯片表面上的集成电路又称薄膜(thin-film)集成电路。另有一种厚膜(thick-film)混成集成电路(hybrid integrated circuit)是由独立半导体设备和被动元件,集成到衬底或线路板所构成的小型化电路。集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。 3、集成电路的分类: (1)按功能结构分类:集成电路,又称为IC,按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路三大系。

集成电路行业研究分析报告

我国集成电路行业分析报告 一、行业概述 (一)行业定义 根据《国民经济行业分类》,集成电路业(Integrated Circuit,英文缩写为IC,行业分类代码4053)是指单片集成电路、混合式集成电路和组装好的电子模压组件、微型组件或类似组件的制造,包括半导体集成电路、膜集成电路、集成电路芯片、微型组件、集成电路及微型组件的零件。 (二)行业分类 集成电路行业分类方法很多,从制造流程来看,集成电路的制造流程主要经过集成电路设计、制造、封装测试等环节,因此集成电路行业也分为集成电路设计、集成电路制造、集成电路封装测试等三个子行业。 (三)行业特点 1、产业规模迅速扩大,行业周期波动趋缓 集成电路作为信息产业的基础和核心,具有很高的渗透性和高附加值特性,由于其倍增效应大,各国对该行业都极为重视,发达国家和许多新兴工业化国家和地区竞相发展,使得这一行业的规模迅速扩大。 全球集成电路产业一直保持着周期性的上升与下降,主要特点是:平均每隔四至五年一个周期,国际集成电路市场呈现周期性的繁荣与下降衰退,几乎每隔十年出现一个大低谷或者大高峰。人们称这种周期性变化为“硅周期”。供求关系的变化是硅周期存在的主要原因,全球经济状况也强烈影响着集成电路产业的周期变化。 2、技术密集度高,工艺进步疾速如飞 技术进步是推动集成电路产业不断发展的主要动力之一,工艺技术持续快速发展,带动了芯片集成度持续迅速的提高,单元电路成本呈指数式降低。集成电路技术进步遵循摩尔定律,即集成电路芯片上的晶体管数目,约每18个月增加1倍,性能也提升1倍,而价格降低一半;集成电路晶体管技术的特征尺寸平均每年缩小到0.7倍或每两年0.5倍。 3、资本密集度不断加大,规模经济特征明显 集成电路行业的投资强度和技术门槛越来越高,设备费用和研发费用都非常大。一条12英寸集成电路前工序生产线投资规模超过15亿美元,产品设计开发成本上升到几百万美元乃至上千万美元。企业的资金实力和技术创新能力成为竞争的关键。集成电路的芯片产量和性能飞速提高,而芯片的平均成本却在不断下降,因此只有依靠大规模生产,实现规模经济,才能降低单位成本,实现盈利。随着技术不断进步,集成电路行业的资本密集度将不断增强。 4、专业分工是方向,竞争与协作并存 在集成电路发展早期,主要是由一些大的公司和研究机构参与,因此商业模式上以IDM (Integrated Device Manufacturers,即集成设备制造商)为主,其特征是经营范围覆盖IC设计、芯片制造、封装测试,甚至下游的终端产品制造。如三星、英特尔、德州仪器、东芝、意法半导体等,全球前二十大半导体厂商大多为IDM厂商。 随着行业的发展,产业链上IC设计、芯片制造、封装、测试各环节的技术难度不断加大,进入门槛不断提升,产业链开始向专业化分工方向发展。专业分工带来三大优势:第一、成本更省(台积电成本可以做到英特尔的一半);第二、协助行业内公司专注于擅长的环境(规模效应);第三、解决巨额投资门槛(更多公司进入上游芯片设计环节)。 二、政策环境 集成电路产业作为国防安全和经济发展的支柱产业,国家从政策上给予了高度重视和大力支持,推动加大资金投入力度,加快行业创新与发展,对集成电路行业实施税收优惠等,主要法规、政策及内容见下表:

集成电路产业发展现状与未来趋势分析

集成电路产业发展现状与未来趋势分析 一、概念介绍 集成电路,英文为Integrated Circuit,缩写为IC;顾名思义,就是把一定数量的常用电子元件,如电阻、电容、晶体管等,以及这些元件之间的连线,通过半导体工艺集成在一起的具有特定功能的电路。 为什么会产生集成电路?我们知道任何发明创造背后都是有驱动力的,而驱动力往往来源于问题。那么集成电路产生之前的问题是什么呢?我们看一下1942年在美国诞生的世界上第一台电子计算机,它是一个占地150平方米、重达30吨的庞然大物,里面的电路使用了17468只电子管、7200只电阻、10000只电容、50万条线,耗电量150千瓦。 显然,占用面积大、无法移动是它最直观和突出的问题;如果能把这些电子元件和连线集成在一小块载体上该有多好!我们相信,有很多人思考过这个问题,也提出过各种想法。典型的如英国雷达研究所的科学家达默,他在1952年的一次会议上提出:可以把电子线路中的分立元器件,集中制作在一块半导体晶片上,一小块晶片就是一个完整电路,这样一来,电子线路的体积就可大大缩小,可靠性大幅提高。 这就是初期集成电路的构想,晶体管的发明使这种想法成为了可能,1947年在美国贝尔实验室制造出来了第一个晶体管,而在此之前要实现电流放大功能只能依靠体积大、耗电量大、结构脆弱的电子管。晶体管具有电子管的主要功能,并且克服了电子管的上述缺点,因此在晶体管发明后,很快就出现了基于半导体的集成电路的构想,也就很快发明出来了集成电路。杰克·基尔比(Jack Kilby)和罗伯特·诺伊斯(Robert Noyce)在1958~1959期间分别发明了锗集成电路和硅集成电路。 集成电路又称芯片,是工业生产的“心脏”,其技术水平和发展规模已成为衡量一个国家产业竞争力和综合国力的重要标志之一。 二、集成电路产业分类 集成电路,又称为IC,按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路三大类。 集成电路按制作工艺可分为半导体集成电路和膜集成电路,膜集成电路又分类厚膜集成电路和薄膜集成电路。 集成电路按用途可分为电视机用集成电路、音响用集成电路、影碟机用集成电路、录像机用集成电路、电脑用集成电路、电子琴用集成电路、通信用集成电路、照相机用集成电路、遥控集成电路、语言集成电路、报警器用集成电路及各种专用集成电路。

教师专业发展规划实施方案报告

走创新发展道路做专业成长教师

冯卯镇欧峪学校 2010---2011学年度 百年大计教育为本,教育大计教师为本。教师是素质教育的实施者。课堂教学是素质教育的主渠道。信息化和新课程改革给我们教师带来了前所未有的挑战,新课程使教师的职业角色和职能发生了很大转变,学校、教师在课程执行者的角色上要迅速转换成设计者、开发者、研究者、评价者和执行者。这就要求教师必须自觉实现自身角色的转换,自我设计专业发展,提升自己各方面的素养;而学校应该努力从外部因素和内部因素两方面创设环境和条件,关注和促进教师的专业发展,以适应新形势发展要求。 一、指导思想: 以提高师德修养为抓手,以校本教育教学实践为载体,以校本课程开发、校本教研、校本科研和校本培训一体化建设为重点,以努力提高教师专业素养、建立学习共同体、促进学校全面发展、可持续发展为目的,为推进素质教育,促进教育改革和发展提供教师人力资源保障。 二、现状分析 我校现共有教师14人。职称结构:小学高级教师3人,小学一级教师11人;学历结构:本科学历3人,专科学历10人,中师学历1人;学科人员:语文6人,数学人5,英语1人、综合科2人。作为一所农村小学,中青年教师占绝大多数,全体教师爱岗敬业,专业

发展的后劲和潜力十足;学校有良好的教师专业发展氛围以及多数教师自身专业发展的自主追求;学校课研能力较强的教师不少,虽然学科内教师存在差距,但语、数、英学科各有1-2个专业水平比较过硬且具有辐射能力的教师。 三、分层发展目标 1、总目标:积极推进优秀教师群体建设,努力培育教师专业精神,打造乐于奉献、不断追求、勇于开拓、自强不息的教师团队;遵循“会上课-上好课-有专长”三步走成长历程,分层次有针对性培养教师;以本方案为核心,创设“教师在教学中研究,在研究中成长”的专业成长氛围,打造“冯卯镇欧峪学校教师专业发展文化”。 第一层次目标:通过师德建设讨论、校本课程开发、校本教研、校本培训,构建学习共同体,对教学能力不强的中青年教师,促其较快接受教育新理念,向教学能力强的教师学习好经验,较快地成长为一名合格教师、优秀的教师。 第二层次目标:对教育教学能力较强的老师,通过校本研训使其尽快更新专业知识,熟练掌握信息技术和课堂教学技能,促其成长为山亭区骨干教师或学科带头人。 第三层次目标:山亭区骨干教师和学科带头人、教学能手,通过教学和课题研究实践、专家引领等,提高其课堂教学水平和科研能力,使他们成长为市级名师、学科带头人、教学能手。 2、具体目标:每个教师要通过学习、进修、参加师德建设讨论、专业发展的培训及研讨的参与,实现知识更新、专业道德、专业精神

2018年集成电路行业研究报告

2018年集成电路行业 研究报告 2018年1月

目录 一、集成电路景气持续回升,中国发展速度领跑全球 (7) (一)半导体是信息社会和现代工业的根基 (7) (二)半导体产业在自西向东转移过程中加速升级 (7) 1、设计、制造、封测环节构成半导体核心产业链 (7) 2、半导体产业发展催生新型业务模式 (8) 3、半导体产业已经历两次产业转移 (10) (1)集成电路产业起源于美国 (11) (2)日本凭借DRAM夺得集成电路产业市场份额 (11) (3)韩国把握市场,台湾专注分工 (11) (4)中国正迎来第三次产业转移机遇 (12) (三)行业景气度持续回升,中国市场迅速成长 (12) 1、全球集成电路市场稳定增长 (12) 2、我国集成电路产业快速增长,领跑全球 (14) (四)中国芯亟需中国造,国产化任重道远 (15) 1、关系安全,芯片当自给自足 (15) 2、我国集成电路产业过度依赖进口 (16) (五)政策支持,产业发展迎来新机遇 (17) (六)资金助力,产业发展获新动力 (18) 1、国家成立集成电路产业投资基金 (18) 2、地方政府成立产业投资基金规模已超3000亿 (20) 二、设计环节快速成长,存储及新兴领域是发展重点 (21) (一)全球IC设计发展整体向好 (21) 1、全球IC设计产业销售额呈上升趋势 (21) 2、我国IC设计产业发展状况蒸蒸日上,但仍伴随结构性问题 (24) (二)国家和地方纷纷出台政策,支持IC设计业发展 (27) (三)IC产业发展重创新,大基金未来将更加关注设计环节 (28) (四)存储器需求爆发带动了本轮半导体产业景气回升 (30)

相关主题
文本预览
相关文档 最新文档