当前位置:文档之家› 触摸按键设计指导V1.0.1

触摸按键设计指导V1.0.1

触摸按键设计指导V1.0.1
触摸按键设计指导V1.0.1

触摸按键设计指导V1.0 1.触摸按键原理图设计

1.1 BF6910/11ASXX系列触摸按键芯片应用电路

1.1.1 BF6910AS10 参考应用电路

图表1BF6910AS10 参考应用电路

1.1.2 BF6910AS14 参考应用电路

图2 BF6910AS14 应用电路1.1.3 BF6911AQ22参考应用电路

图3 BF6911AQ22 参考应用电路1.1.4 BF6911AS22参考应用电路

图4 BF6911AS22 参考应用电路

2.PCB Layout设计

2.1 PCB布局

1.触摸通道与触控芯片、其它元件布局在不同的层。

2.触摸通道电阻尽量靠近芯片。

3.芯片大小滤波电容靠近芯片放置。

4.预留测试接口,以方便调试。

2.2 走线:

1. 尽量把触摸通道走线放在底层,触摸通道在顶层。

2. 触摸通道、触摸通道走线与铺地之间的间距至少30mil。

3. 不要把触摸通道走线布置在触摸通道下面。

4. 触摸通道走线间距应当至少是触摸通道走线宽度的两倍。

5. 时钟、数据或周期信号走线都不应该与触摸通道走线相邻平行布设。这些信号线应当尽可能

地与触摸通道走线垂直,或者布设在PCB的其他区域。如果时钟、数据或任何周期信号走线确实需要与触摸的信号走线平行布设,它们应当被布设在不同的层并且不能重叠,而且应当尽可能地缩短信号线平行部分的长度。

6.电源走线,触摸芯片最好用一根独立的走线从板子的供电点取电,不要和其他的电路(如LED

回路)共用电源回路。触摸IC的供电从滤波电路输入,保持VDD与VSS并行,输入路径短而粗(40mil 左右)。

7.采用星形接地,触摸芯片的地线不要和其他电路共用,应该单独连到板子电源输入的接地点,

也就是通常说的采用“星形接地”。

8.单面板走线,如果采用单面PCB板,并用弹簧或其它导电物体做感应通道,感应通道到触控IC

引脚的连线不走或少走跳线。

9.Sensor走线长度:或,这样可以减少来自射频的干扰。

10.Sensor通道电阻:500Ω~2K,起衰减共振作用。

2.3 铺地:

1.空白的地方可以网格铺地(线宽6mil、网格大小为30mil)。

2.触摸通道正对背面稍大些面积不要铺地,如果需要在比较潮湿的环境工作时,触摸通道所在

层不要铺地。

3.为降低串扰,应当尽可能地增大两个触摸通道之间的间距以及触摸通道与触摸通道走线之间

的距离。在可能的情况下,在两个触摸通道之间铺地、触摸通道走线之间加入铺地。

4.铺地被用来填充PCB的空白区域,铺地能够帮助触摸模块屏蔽外部噪声源,还能够稳定触摸线路的固有电容。然而,使用铺地时需要事先要注意,铺地会增加触摸的固有电容,还会增加由于水滴导致的误触的可能性。

5.建议使用网状的铺地,而非实心的铺地,建议使用网状铺地(线宽度为6mil,网格尺寸为30mil),铺地的角度应设置为45度。

6.触摸通道到铺地之间的间距应当至少为0.75mm(30mil)。

8.如果对覆盖板使用部分导电材料(不能整片的覆盖按键),建议不要在顶层布设铺地。

2.4其它:

良好的PCB设计和布局,能够使电容感应应用更加可靠。在PCB设计中,还要考虑其他的重要因素,包括以下几方面:

1.PCB上无浮地,PCB的空白区域可铺地或留空。

2.触摸按键表面要加上阻焊油,以防长时间暴露在空气中被氧化。

3.如果按键的位置靠近PCB边缘,最好在按键周围用地线将按键围住,以防从侧面引入的干扰。

4.触摸通道上方是否有导电材质,如有需要接地,触摸按键部分上方不能有导电材质。

5.在触控IC的 SDA、SCL线路中串联(10~100 )电阻,SDA、SCL接10pF左右的电容到地,以便过滤连接主板和触摸模块的走线所引起的噪声干扰,或来自可能导致IIC信号失真的电源噪声的干扰。

6. PCB layout时一定避免电源或者地线形成闭合环路或回路,此时会引入很大的干扰,系统抗干扰性非常差。

7. 触摸按键覆盖物一般采用ABS、亚克力、玻璃等非导电材料作为面板材料。

8. 触摸按键与触摸按键上方的面板要保证良好的粘合度,不能有空气间隙,建议采3M等不导电胶进行粘合。

2.5PCB Layout 实例:

图表 5 Top Layer

图表 6 Bottom Layer

图表7 Top Layer

图表8 Bottom Layer 3.附录:

3.1芯片型号:

3.2常见材料介电常数:

触摸感应按键设计指南

触摸感应按键设计指南 张伟林 2009-12-09 sales@soujet.com http://www.soujet.com

1. 概述 对触摸屏与触摸按键在手机中的设计与应用进行介绍,对设计的经验数据进行总结。达到设计资料和经验的共享,避免低级错误的重复发生。 2. 触摸按键设计指导 2.1 触摸按键的功能与原理 2.1.1触摸按键的功能 触摸按键起keypad 的作用。与keypad 不同的是,keypad 通过开关或metaldome 的通断发挥作用,触摸按键通过检测电容的变化,经过触摸按键集成芯片处理后,输出开关的通断信号。 2.1.2触摸按键的原理 如下图,是触摸按键的工作原理。在任何两个导电的物体之间都存在电容,电容的大小与介质的导电性质、极板的大小与导电性质、极板周围是否存在导电物质等有关。PCB 板(或者FPC )之间两块露铜区域就是电容的两个极板,等于一个电容器。当人体的手指接近PCB 时,由于人体的导电性,会改变电容的大小。触摸按键芯片检测到电容值大幅升高后,输出开关信号。 在触摸按键PCB 上,存在电容极板、地、走线、隔离区等,组成触摸按键的电容环境,如下图所示。 Finger Time Capacitance C

2.1.3 触摸按键的按键形式 触摸按键可以组成以下几种按键 z单个按键 z条状按键(包括环状按键) z块状按键 单个按键 条状按键块状按键 2.1.4触摸按键的电气原理图如下:

在PCB板上的露铜区域组成电容器,即触摸按键传感器。传感器的信号输入芯片,芯片经过检测并计算后,输出开关信号并控制灯照亮与否。灯构成触摸按键的背光源。 2.2 触摸按键的尺寸设计 按键可以是圆形、矩形、椭圆形或者任何其他的形状。其中以矩形和圆形应用最为普遍,如图所示: 通常在按键的中间挖空,使PCB下方的光线可以通过挖空导到PCB上方,照亮LENS上的字符。根据ADI公司的推荐,按键大小尺寸如下表: 按键的挖空尺寸与按键的大小相关,如下表

电容触摸式按键设计规范及注意事项

电容触摸式按键设计规范及注意事项 技术研发中心查达新 所有电容式触摸传感系统的核心部分都是一组与电场相互作用的导体。在皮肤下面,人体组织中充满了传导电解质(一种有损电介质)。正是手指的这种导电特性,使得电容式触摸式按键应用于电路中,替代传统的机械式按键操作。 关于电容触摸式按键设计,有下列要求: 1.PCB触摸焊盘 ①.感应按键面积,即焊盘接触面积应不小于手指面积的2/3,可大致设计为5*6mm、6*7mm;且按键间的距离不小于5mm,如下图: ②.连接触摸按键的走线,若是双面板尽可能走按键的背面,走在正面的画需保证离其他按键2mm以上间距; ③.感应按键与覆铜的距离不小于2mm,减少地线的影响; 2.感应按键面壳或外壳 ①.面壳材料只要不含有金属都可以,如:塑胶,玻璃,亚克力等。若面壳喷漆,需保证油漆中不含金属,否则会对按键产生较大影响,可用万用表电阻档测量

油漆表面导电程度,正常不含金属油漆的面壳电阻值应为兆欧级别或无穷大。通常面壳厚度设置在0~10mm之间。不同的材料对应着不同的典型厚度,例如亚克力材料一般设置在2mm~4mm之间,普通玻璃材料一般设置在3mm~6mm之间。 ②.可以用3M胶把按键焊盘与面壳感应端黏连、固定,或者通过弹簧片方式焊接在PCB焊盘的过孔上与面壳感应端相连;如下图: ③.触摸按键PCB与触摸面板通过双面胶粘接,双面胶的厚度取0.1~0.15mm 比较合适,推荐采用3M468MP,其厚度0.13mm。要求PCB与面板之间没有空气,因为空气的介电系数为1,与面板的介电系数差异较大。空气会对触摸按键的灵敏度影响很大。所以双面胶与面板,双面胶与PCB粘接,都是触摸按键生产装配中的关键工序,必须保证质量。

电容式触摸按键设计指南

Capacitive Touch Sensor Design Guide October 16, 2008 Copyright ? 2007-2008 Yured International Co., Ltd.1YU-TECH-0002-012-1

(3) (3) (5) (9) (11) (11) (17) (20) Copyright ? 2007-2008 Yured International Co., Ltd.2YU-TECH-0002-012-1

Copyright ? 2007-2008 Yured International Co., Ltd.3 YU-TECH-0002-012-1 1. 2. ( ) 3M 468MP NITTO 500 818

Copyright ? 2007-2008 Yured International Co., Ltd.4 YU-TECH-0002-012-1 3. 4. Front Panel Sensor Pad Sensor Pad Electroplating Or Spray Paint Nothing

Copyright ? 2007-2008 Yured International Co., Ltd.5 YU-TECH-0002-012-1 1. (FPC) ITO (Membrane) ITO ITO ( 10K ) FPC ITO MEMBRANE PCB

Copyright ? 2007-2008 Yured International Co., Ltd.6 YU-TECH-0002-012-1 2.ITO LCD ITO ( 10K ) 3. 1mm 8mm ( 8mm X 8mm ) 1mm 8mm X 8mm 2mm 10mm X 10mm 3mm 12mm X 12mm 4mm 15mm X 15mm 5mm 18mm X 18mm ( ) 196.85 mil (5mm) 0.254mm(10mil) 2mm 5mm 2mm

触摸按键设计参考

由于实际应用中,触摸按键基本都需要覆盖层,该文档默认电路设计中都存在覆盖层。 一、走线 在工艺允许情况下,尽可能细和短,和LED等驱动线若出现交叉,尽可能90度交叉,避免近距离平行。尽可能避免过孔。高速信号线同样尽量远离触摸传感器走线,若出现交叉尽量垂直交叉,使用地线与高速信号线进行耦合,避免高速信号线与触摸传感器走线产生耦合。建议触摸按键的直径(边长)在15mm,最好不低于10mm 二、覆盖层材料 覆盖层的厚薄是影响触摸按键效果的重要因素,过厚的覆盖层会影响电容变化率,建议在条件允许的情况尽可能的薄,建议不应超过3mm,在覆盖层比较厚的情况,可以在触摸按键上方开槽填充导电泡沫和垫片等材料。高介电常数的覆盖材料比低介电常数灵敏度更高,但是高介电常数的覆盖层更容易带来串扰,特别是触摸传感器距离较近的情况下。覆盖层和触摸按键之间尽可能避免存在空气,否则会导致介电常数大幅减小,1mm的气隙会导致灵敏度下降1/4~1/2,有可能的情况,尽可能使用粘合剂把覆盖层和PCB粘合好。如果触摸按键之间距离过近,为避免串扰,可以考虑在相邻触摸按键的中部开气隙槽。一般情况下,不建议使用导电覆盖层。 三、主动屏蔽 主动屏蔽能够减少近距离时各个按键之间串扰、寄生电容和其他走线引发的干扰。主动屏蔽线在按键周围走线建议宽度不小于1mm,屏蔽线与按键的建议间距2~3mm。在按键与芯片引脚之间连接线附近,屏蔽线的宽度可与连接线保持一致,间隔可以缩短至0.5mm。 四、电源处理 PCB接地时,因为和人体形成共地回路,触摸效果要比不接地时好。尽可能采用更高的VDD供电。如果没有覆盖层情况下,需要考虑ESD。 五、软件处理 触摸按键必然会引入抖动和噪声,建议在MCU资源允许情况下引入软件二次处理,软件处理方法较多,有针对工频干扰的工频周期采样平均法,针对毛刺的压摆率限流器滤波等。还有较为复杂的数字滤波器等。 工频周期采样平均——若每个工频周期采样次数设置为10次,则利用定时器每2ms触发一次单个或多个通道采样,把采样结果累加平均。

按键设计经验规范

按键设计经验规范 07.9.2009 in 手机结构设计by admin 按键设计 1,导航键分成4个60度的按键灵敏区域,4个30度的盲区,用手写笔点按键60度灵敏区域与盲区的交界处,检查按键是否出错,具体见附图 2,keypad rubber平均壁厚0.25~0.3,键与键间距离小于2时,rubber必须局部去胶到0.15厚度,以保证弹性壁的弹性

3,keypad rubber导电基高度0.3 ,直径φ2.0(φ5dome),直径φ1.7(φ4dome),加胶拔模3度 4,keypad rubber导电基中心与keypad外形中心距离必须小于keypad对应外形宽度的1/6,尽量在其几何中心 5,keypad rubber除定位孔外不允许有通孔,以防ESD 6,keypad rubber与壳体压PCB的凸筋平面间隙0.3,深度间隙0.1 7,keypad rubber柱与DOME之间间隙为0 8,keypad dome接地设计: (1).DOME两侧或顶部凸出两个接地角,用导电布粘在PCB接地焊盘上 (2).DOME两侧凸起两个接地角,翻到PCB背面,用导电布粘在是shielding或者接地焊盘上(不允许采用接地角折180压接方式,银浆容易断 9,直板机key 位置的rubber比较厚,要求key plastic部分加筋伸入rubber,凸筋距离dome 0.5,凸筋与rubber周圈间隙0.05 10,翻盖机键盘间隙(拔模后最小距离):键与键之间间隙0.2,导航键与壳体间隙0.15,独立键与壳体间隙0.12,导航键中心的圆键与导航键间隙0.1 11,直板机键盘间隙(拔模后最小距离):键与键之间间隙0.2,导航键与壳体间隙0.2,独立键与壳体间隙0.15,导航键中心的圆键与导航键间隙0.1 12, 键盘唇边宽与厚度为0.4X0.4 13,数字键唇边外形与壳体避开0.2,导航键唇边外形与壳体避开0.3 14,keypad键帽裙边到rubber防水边≥0.5 15,键盘上表面距离LENS的距离为≥0.4mm 16,数字键唇边深度方向与壳体间隙0.05,导航键深度方向与壳体间隙0.1 17,按键与按键之间的壳体如果有筋相连,那么这条筋的宽度尽量做到2.5mm以上,以增强按键的手感,并且导航键周围要有筋,以方便导航键做裙边 18,钢琴键,键与键之间的间隙是0.20MM,键与壳体之间的间隙是0.15MM,钢板的厚度是0.20毫米。钢琴键钢板与键帽之间的距离0.40,键帽最薄0.80,钢板不需要粘贴在RUBBER上,否则导致键盘手感不好 19,结构空间允许的情况下,钢琴键也可以不用钢板,用PC支架代替钢板,PC支架的厚度是≥0.50MM]

感应按键原理

电容式触摸感应按键的基本原理 ◆Silicon Labs 现提供一种可侦测因触摸而改变的电容的方法 电容式触摸感应按键的基本原理就是一个不断地充电和放电的张弛振荡器。如果不触摸开关,张弛振荡器有一个固定的充电放电周期,频率是可以测量的。如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。所以,我们测量周期的变化,就可以侦测触摸动作。 具体测量的方式有二种: (一)可以测量频率,计算固定时间内张弛振荡器的周期数。如果在固定时间内测到的周期数较原先校准的为少,则此开关便被视作为被按压。 (二)也可以测量周期,即在固定次数的张弛周期间计算系统时钟周期的总数。如果开关被按压,则张弛振荡器的频率会减少,则在相同次数周期会测量到更多的系统时钟周期。 Silicon Labs推出的C8051F9xx微控制器(MCU)系列,可通过使用芯片上比较器和定时器实现触摸感应按键功能,连接最多23个感应按键。而且无须外部器件,通过PCB走线/开关作为电容部分,由内部触摸感应按键电路进行测量以得知电容值的变化。

◆以Silicon Labs的MCU实现触摸感应按键 利用Silicon Labs其它MCU系列,仅需搭配无源器件,即可实现电容式触摸感应按键方案。与C8051F93x-F92x方案相比,唯一所需的外部器件是(3+N) 电阻器,其中N是开关的数目,以及3个提供反馈的额外端口接点。C8051F93x-F92x 之外,Silicon Labs其它MCU系列可直接连接12个开关,或者通过外部模拟多路复用器连接更多开关。 设计触摸感应按键开关 因为我们要侦测电容值的变化,所以希望变化幅度越大越好。现在,有三个主要因素会影响开关电容及变化幅度。 ?PCB上开关的大小、形状和配置 ?PCB走线和使用者手指间的材料种类 ?连接开关和MCU的走线特性 我们测试了下图中这12种不同开关。目的是为了发现开关的形状尺寸会如何影响开关的空闲和被接触的状态,还可以发现哪一种开关的空闲电容最大,就不容易被PCB上的寄生电容而影响。测试结果表明,在特定区域中的开关越大且走线越多,则此开关的闲置电容便越高。图中的环状开关具有最低的电容,所以当开关动作时,可显现最大的电容相对变化。

触摸按键设计要求教案资料

触摸按键设计要求

触摸按键画板法 (以下所提到的芯片为HT45R34) ●Sensor pad形状: Sensor pad形状可以为圆形,方形,三角形(实心型),抑可以线条构成此类圆形(镂空型),前者用于覆盖板较厚的情况。后者则用于覆盖板较薄的情况下。推荐用圆形,感应效果更佳。 ●Sensor pad尺寸: Sensor pad面积越大灵敏度越大,但超过手指按压范围的部分对增加灵敏度没有作用。以圆形为例,一般设计为10m m~15mm的直径,符合成人手指的大小。 ●Sensor pad与ground plane之间的间隔: 间隔越大,touch swith的基础电容越小,RC震荡的频率越大,灵敏度也越大,但间隔太大,地对电场的约束越小,干扰越大;间隔太小,基础电容太大,灵敏度太小,且地对电场的约束太大,不利于电场穿透覆盖板,使得覆盖板只能较薄。推荐的间隔为0.5m m~ 1.0mm,例如10mm直径的sensor pad配合0.5mm的间隔。 ●布局要求: Sensor pad 要靠近MCU,每一个Sensor Pad到MCU的距离要尽量一致。IN,RREF,CREF引出脚要短,该RC模块要靠近MCU。另外,复位电路,晶振电路要靠近MCU。 布线要求:

由MCU的RC1~RC16PIN到touch swith的连线,要尽量的短,尽量远离其他走线或元件,线宽尽量窄(7~10mil).要避免touch swith的连线临近高频的通信线(例如I2C SPI通信线),在没有办法避免的情况下,请让两者直交布线。尽量将到touch swith的连线布在与S ensor Pad不同的Layer (采用双面板时),使其受到人体的影响降低,且这些线与线之间的也要尽量互相远离,线周围也要铺上地,以保证其尽量少受到其他信号的干扰。 ●覆盖板的材料: 覆盖板为一些坚固,易安装的绝缘材料,介电常数在2.5~10之间,Demo Board 上采用的是压克力板材,还有很多可采用的板材,例如:普通玻璃,徽晶板等,覆盖板的介电常数越小,Sensor Padde的感应范围越小。安装要求覆盖板紧贴Sensor Pad的表面,用粘胶将其贴在Sensor Pad的表面(排掉它们之间的空气)则效果更佳。 ●覆盖板的厚度: 覆盖板的厚度一般为1mm~5mm,厚度越大touch swith的灵敏度越小,信噪比也越低。Sensor Pad的面积越小,覆盖板要越薄。

结构设计规范

结构设计规范 1.PCB LAYOUT规范 1.1.设计输入:PCB厚度、相关器件SPEC、后行为器件排序、 灯数量及种类、天线数量及种类、模具信息 1.2.设计输出:PCB尺寸、定位孔、限位孔、正反面限高、 禁布区域、后行为器件具体LAYOUT、灯位信息、天线位置、相关器件有过孔的必须加上,以方便EDA定位。 1.3.设计规范: 1.3.1.PCB定位孔做到对称并尽量分布在稍靠边一些,已节 省EDA LAYOUT空间 1.3. 2.为组装方便及限位,需要在PCB上增加限位孔,位置 位于靠近灯位一边的定位孔旁边,开孔尺寸为1.6MM,对应底壳定位柱直径为1.5MM 1.3.3.正面限高参考器件SPEC最高高度,通常限高16MM;底 面限高通常3.0MM,极限2.5MM(主要针对单面贴片PCB,双面贴片需要按照器件SPEC定义限高区域) 1.3.4.禁布区域:定位孔周边直径7MM区域、 1.3.5.后行为I/O接口 .外观面与外壳齐平;RESET按键内陷,壳体开孔尺寸统一为 2.4MM;WPS按键外凸,壳体开孔尺寸统一为4.2MM;ON/OFF 按键开孔尺寸按照通用按键(料号:)统一为9.0MM;若WAN+4LAN口,则尽量连在一起,以节省后行为空间;PCB端

面距离器件外表面或后行位外表面距离统一为:3MM 1.3.6.灯分为插件灯及贴片灯,其中插件灯又分为单色及双色灯。常用单色插件灯。插件灯间距统一为:MM;注意双色灯定位孔与双色灯得差异!插件灯距离PCB板边距离统一为:MM。贴片灯可以结合ID或硬件LAYOUT适当调节间距及位置。 1.3.7.天线位置:外置天线1T1R通常放在后行为的右侧(正对灯位看过去);2T2R分立后行为两侧。 内置天线:通常位于PCB两侧,要求距离PCB板边5MM 以上,空间位置位于PCB平面之上,此状态RF功能影响最小。小结及建议:统一标准化设计,针对PCB分为3个尺寸:大、中、小板;不同项目根据功能及后行为器件多少,选取3种中的1款尺寸,节省结构及硬件PCB LAYOUT时间,缩短开发周期。大中小板建议参考尺寸如下: 小板:长X宽X厚=114X104MM;主要接口: 适用机种及场合: 中板:长X宽X厚=148X105MM;主要接口: 适用机种及场合: 大板:长X宽X厚=153X105MM;主要接口: 适用机种及场合: 1.4 PCB LAYOUT标准图档参考--OK

触摸按键设计规范

cx电压从0开始充电,一直到v1 上图右边是一个最基本的触摸按键,中间圆形绿色的为铜(我们可以称之为按键),在这些按键中会引出一根导线与MAU相连,MAU通过这些导线来检测是否有按键按下,外围的绿色也是铜不过这些铜与GND大地相连,在按键和外围铜直接是空隙(空隙d)上图右边是左图的截面图,当没有手指接触时只有一个电容cp,,当有手指接触时,按键通过手指就形成了电容cf 二。硬件连接 电容式触摸按键原理 现阶段,随着电容式触摸按键在外形美观和使用寿命等方面都优于传统的机械按键,电容式触摸按键的应用领域也日益广泛,包括家电、消费电子、工业控制和移动设备等。本文就一种具体的电容式触摸开关芯片SJT5104介绍一下电容式触摸按键的基本工作原理和材料选择。 一工作原理 任何两个导电的物体之间都存在着感应电容,一个按键即一个焊盘与大地也可构成一个感应电容,在周围环境不变的情况下,该感应电容值是固定不变的微小值。当有人体手指靠近触摸按键时,人体手

指与大地构成的感应电容并联焊盘与大地构成的感应电容,会使总感应电容值增加。电容式触摸按键IC在检测到某个按键的感应电容值发生改变后,将输出某个按键被按下的确定信号。电容式触摸按键因为没有机械构造,所有的检测都是电量的微小变化,所以对各种干扰会更加敏感,因此触摸按键设计、触摸面板的设计以及触摸IC的选择都十分关键。 二触摸PAD设计 1. 触摸PAD材料 触摸PAD可以用PCB铜箔、金属片、平顶圆柱弹簧、导电棉、导电油墨、导电橡胶、导电玻璃的ITO层等。不管使用什么材料,按键感应盘必须紧密贴在面板上,中间不能有空气间隙。当用平顶圆柱弹簧时,触摸线和弹簧连接处的PCB,镂空铺地的直径应该稍大于弹簧的直径,保证弹簧即使被压缩到PCB板上,也不会接触到铺地。 2. 触摸PAD形状 原则上可以做成任意形状,中间可留孔或镂空。作者推荐做成边缘圆滑的形状,可以避免尖端放电效应。一般应用圆形和正方形较常见。 3. 触摸PAD面积大小 按键感应盘面积大小:最小4mm×4mm,最大30mm×30mm。实际面积大小根据灵敏度的需求而定,面积大小和灵敏度成正比。一般来说,

电容式触摸感应面板PCB Layout指南

电容式触摸面板PCB Layout 指南 本文旨在为S-Touch T M 电容触摸感应设计所采用的各种PcB(印刷电路板)的结构和布局提供设计布局指导,包括触摸键,滑动条和旋转条。鉴于在多种应用中,两层PCB 板被广泛采用,本文以两层PCB 板为例,介绍PCB 板的设计布局 PCB 设计与布局 在结构为两层的PCB 中,S-Touch 触摸控制器和其他部件被布设在 PCB 的底层,传感器电极被布设在PCB 的顶层。每个传感器通道所需的调谐匹配电容器可以直接布设在该传感器电极的底层。需要指出的是,S-Touch 触摸控制器布设在底层,应该保证其对应的顶层没有布任何传感器电极。顶层和底层的空白区域可填充网状接地铜箔,铜箔距离感应电极需在3mm 以上 PCB 设计规则 第1层(顶层) ?传感器电极位于PCB 的顶层(PCB 的上端与覆层板固定在一起),感应电极一般布置 为一个焊盘,所有感应电极面积尽量保持一致大小,有效面积不得小于25mm 2,但也不能超过15mm 2×15mm 2,若超过这一尺寸,不但会降低灵敏度,而且会增加对噪声的易感性。感应电极大小应根据覆层板(外壳)的材料和厚度来适当布置,对应关系为(仅供参考): 空白区域可填充网状接地铜箔(迹线宽度为6密耳,网格尺寸为30密耳)。 ?顶层可用来布设普通信号迹线(不包括传感器信号迹线)。应当尽可能多地把传感器信 号迹线布设在底层。传感器信号迹线宽度请选用0.15mm~0.2mm ,建议不要超过0.2mm 。 ?感应电极与接地铜箔的距离至少应为2mm ,我公司建议在3mm 以上 感应电极面积亚克力普通玻璃ABS 6mm ×6mm 1.0mm 2.0mm 1.0mm 7mm ×7mm 2.0mm 3.0mm 2.0mm 8mm ×8mm 3.5mm 4.0mm 3.5mm 10mm ×10mm 4.5mm 6.0mm 4.5mm 12mm ×12mm 6.0mm 8.0mm 6.0mm 15mm ×15mm 8.0mm 12mm 8.0mm

AN3236 STM8应用笔记 触摸按键设计(英文)

November 2013DocID17613 Rev 21/15 AN3236 Application note Guidelines to increase the number of touch sensing touchkeys Introduction The touch sensing libraries allow management of the following number of channels depending on the targeted device series : ? up to 24 channels when using devices from the STM32F0 and STM32F3 series.? up to 34 channels when using devices from the STM32L1 series.? up to 6 channels when using devices from the STM8L101 lines.? up to 20 channels when using devices from the STM8L151/152 and the STM8L162 lines.?up to 24 channels when using devices from the STM8S and STM8AF series. The guidelines detailed into this document aim to help designers to overcome channel number limitation. They describe tips and tricks to increase the number of touchkeys and/or to create a touchkey matrix by keeping the same targetted device.Table 1. Applicable products Type Applicable products Microcontrollers STM32F0 series, STM32F3 series, STM32L1 series, STM8L101 lines, STM8L151/152 lines, STM8L162 lines, STM8S series, STM8AF series. https://www.doczj.com/doc/cb15895090.html,

电容式触摸感应按键技术原理及应用

电容式触摸感应按键技术原理及应用 2010-05-26 12:45:02| 分类:维修 | 标签: |字号大中小订阅 市场上的消费电子产品已经开始逐步采用触摸感应按键,以取代传统的机械式按键。针对此趋势,Silicon Labs公司推出了置微控制器(MCU)功能的电容式触摸感应按键(Capacitive Touch Sense)方案。电容式触摸感应按键开关,部是一个以电容器为基础的开关。以传导性物体(例如手指)触摸电容器可改变电容,此改变会被內置于微控制器的电路所侦测。 电容式触摸感应按键的基本原理 ◆Silicon Labs 现提供一种可侦测因触摸而改变的电容的方法 电容式触摸感应按键的基本原理就是一个不断地充电和放电的弛振荡器。如果不触摸开关,弛振荡器有一个固定的充电放电周期,频率是可以测量的。如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。所以,我们测量周期的变化,就可以侦测触摸动作。 具体测量的方式有二种: (一)可以测量频率,计算固定时间弛振荡器的周期数。如果在固定时间测到的周期数较原先校准的为少,则此开关便被视作为被按压。 (二)也可以测量周期,即在固定次数的弛周期间计算系统时钟周期的总数。如果开关被按压,则弛振荡器的频率会减少,则在相同次数周期会测量到更多的系统时钟周期。 Silicon Labs推出的C8051F9xx微控制器(MCU)系列,可通过使用芯片上比较器和定时器实现触摸感应按键功能,连接最多23个感应按键。而且无须外部器件,通过PCB走线/开关作为电容部分,由部触摸感应按键电路进行测量以得知电容值的变化。 ◆以Silicon Labs的MCU实现触摸感应按键 利用Silicon Labs其它MCU系列,仅需搭配无源器件,即可实现电容式触摸感应按键方案。与C8051F93x-F92x方案相比,唯一所需的外部器件是(3+N)电阻器,其中N是开关的数目,以及3个提供反馈的额外端口接点。C8051F93x-F92x之外,Silicon Labs其它MCU系列可直接连接12个开关,或者通过外部模拟多路复用器连接更多开关。 设计触摸感应按键开关 因为我们要侦测电容值的变化,所以希望变化幅度越大越好。现在,有三个主要因素会影响开关电容及变化幅度。 PCB上开关的大小、形状和配置

电容触摸按键设计

在目前市场上可提供的PCB(印刷电路板)基材中,FR4是最常用的一种。FR4是一种玻璃纤维增强型环氧树脂层压板,PCB可以是单层或多层。 在触摸模块的尺寸受限的情况下,使用单层PCB不是总能行得通的,通常使用四层或两层PCB。在本文中,我们将以最常用的两层PCB为例来介绍PCB布局,意在为S-Touch TM电容触摸感应设计所用的各种PCB (如FR4、柔性PCB或ITO面板)的结构和布局提供设计布局指导。 PCB设计与布局 在结构为两层的PCB中,S-Touch TM触摸控制器和其他部件被布设在PCB的底层,传感器电极被布设在PCB的顶层。 每个传感器通道所需的调谐匹配电容器可以直接布设在该传感器电极的底层。需要指出的是,S-Touch TM触摸控制器布设在底层,应该保证其对应的顶层没有布设有任何传感器电极。顶层和底层的空白区域可填充网状接地铜箔。 图 2.1 两层 PCB 板的顶层

图 2.2 两层 PCB 板的底层 设计规则第1 层(顶层) ?传感器电极位于PCB的顶层(PCB的上端与覆层板固定在一起)。为提高灵敏度,建议使用尺寸为10 x 10 毫米的感应电极。可以使用更小尺寸的感应电极,但会降低灵敏度。同时,建议感应电极的尺寸不超过15 x 15 毫米。如果感应电极超过这一尺寸,不但会降低灵敏度,而且会增加对噪声的易感性。 ?空白区域可填充接地铜箔(迹线宽度为6 密耳,网格尺寸为30 密耳)。 ?顶层可用来布设普通信号迹线(不包括传感器信号迹线)。应当尽可能多地把传感器信号迹线布设在底层。 ?感应电极与接地铜箔的间距至少应为0.75 毫米。 第2 层(底层) ?S -Touch TM控制器和其它无源部件应该设计布局在底层。 ?传感器信号迹线将被布设在底层。不要把一个通道的传感器信号迹线布设在其他传感通道的感应电极的下面。 ?空白区域可填充接地铜箔(迹线宽度为6 密耳,网格尺寸为30密耳)。 ?传感器信号迹线与接地铜箔的间距应当至少是传感器信号迹线宽度的两倍。

触摸类开关知识

触摸开关原理 现在市场上有不少的MP3都采用了触摸式的按键,带给消费者“飞”同寻常的操作体验,例如苹果公司的iPod系列,魅族公司的mini系列,台电的C280、新品T39以及微星的8890T。这些触摸式操作的MP3在按键上的最大的区别是有些是只有轻轻点触就有反应并伴着或红或蓝的背光点触式触摸键,有些是要在按键上滑动才可以选择菜单而且没有背光的滑动式触摸键。 这些差别的原因是它们的工作原理不同,触摸式按键可分为两大类:电阻式触摸按键与电容式感应按键,即滑动式按键和点触式按键。 ●电阻式按键 电阻式的触摸按键原理非常类似于触摸屏技术,需要由多块导电薄膜上面按照按键的位置印制成的,因此这种按键需要在设备表面贴一张触摸薄膜。电阻式触摸屏一直由于其低廉的价格而深受厂商的喜爱,但是由于导电薄膜的耐用性较低,并且也会降低透光性,因此已经被越来越多的厂家所抛弃。 ●电容式按键 电容式触摸按键主要是为了克服电阻屏的耐用性所提出的,电容式触摸按键的结构与电阻式的相似,但是其采用电容量为判断标准。简单来说,就是一个IC控制的电路,该电路包括一个能放置在任何介质面板后的简单阻性环形电极组件,因此,按键的操作界面可以是一整块普通绝缘体(如有机玻璃一般材料都可),不需要在界面上挖孔,按键在介质下面,人手接近界面和下面的电极片形成电容,靠侦测电容量的变化来感应。温度,静电,水,灰尘等外界因素一般不会影响,界面没有太多要求,可以加上背光,音效等,靠人手感应,整个界面没有按键的存在,便于清洁,让产品在外观上更加高档美观,由于按键没有接点,使用寿命也是非常的长久,一般来说是半永久性。 根据其原理,该按键对外观工艺方面有一些特别的要求: 1、因为按键和lens是一个整体,而按键又必须透光,所以整个Lens必须是透 明件,所以一般就是用PMMA或PC; 2、Lens上不能有金属件或者带有金属效果的喷漆,以免影响按键的灵敏度; 3、按键必须做的足够的宽大,做小了很容易产生误操作。因为它不像机械式的按键,只要避免联动就可以了,它只要感应到了就产生动作。另外还要考虑到打电话的时候,按键正好贴在人脸上,也会有感应动作,需要相应的方案解决; 4、因为是一大片Lens,所以必须考虑Lens的工艺,一般为正面IML,因为背面 肯定有结构。这就限制了Lens上的一些开孔的大小和Lens的厚度要求。 另外,在按键的结构上还要考虑感应PCB的贴装方式对感应效果、整机装配的影响以及按键符号的透光的解决方案。

电容触摸按键设计

在目前市场上可提供的PCB(印刷电路板)基材中,FR4是最常用的一种。FR4是一种玻璃纤维增强型环氧树脂层压板,PCB可以是单层或多层。 在触摸模块的尺寸受限的情况下,使用单层PCB不是总能行得通的,通常使用四层或两层PCB。在本文中,我们将以最常用的两层PCB为例来介绍PCB布局,意在为S-Touch TM电容触摸感应设计所用的各种PCB (如FR4、柔性PCB或ITO面板)的结构和布局提供设计布局指导。 PCB设计与布局 在结构为两层的PCB中,S-Touch TM触摸控制器和其他部件被布设在PCB的底层,传感器电极被布设在PCB的顶层。 图1 基于两层板的电容式触摸模组的结构 每个传感器通道所需的调谐匹配电容器可以直接布设在该传感器电极的底层。需要指出的是,S-Touch TM触摸控制器布设在底层,应该保证其对应的顶层没有布设有任何传感器电极。顶层和底层的空白区域可填充网状接地铜箔。 图2.1 两层PCB板的顶层

图2.2 两层PCB板的底层 设计规则 第1层(顶层) ● 传感器电极位于PCB的顶层(PCB的上端与覆层板固定在一起)。为提高灵敏度,建议使用尺寸为10 x 10 毫米的感应电极。可以使用更小尺寸的感应电极,但会降低灵敏度。同时,建议感应电极的尺寸不超过15 x 15毫米。如果感应电极超过这一尺寸,不但会降低灵敏度,而且会增加对噪声的易感性。 ● 空白区域可填充接地铜箔(迹线宽度为6密耳,网格尺寸为30密耳)。 ● 顶层可用来布设普通信号迹线(不包括传感器信号迹线)。应当尽可能多地把传感器信号迹线布设在底层。 ● 感应电极与接地铜箔的间距至少应为0.75毫米。 第2层(底层) ● S-Touch TM控制器和其它无源部件应该设计布局在底层。 ● 传感器信号迹线将被布设在底层。不要把一个通道的传感器信号迹线布设在其他传感通道的感应电极的下面。

电容式触摸感应按键专业技术原理及应用

电容式触摸感应按键技术原理及应用

————————————————————————————————作者:————————————————————————————————日期:

电容式触摸感应按键技术原理及应用 2010-05-26 12:45:02| 分类:维修| 标签:|字号大中小订阅 市场上的消费电子产品已经开始逐步采用触摸感应按键,以取代传统的机械式按键。针对此趋势,Silicon Labs公司推出了内置微控制器(MCU)功能的电容式触摸感应按键(Capacitive Touch Sense)方案。电容式触摸感应按键开关,内部是一个以电容器为基础的开关。以传导性物体(例如手指)触摸电容器可改变电容,此改变会被內置于微控制器内的电路所侦测。 电容式触摸感应按键的基本原理 ◆Silicon Labs 现提供一种可侦测因触摸而改变的电容的方法 电容式触摸感应按键的基本原理就是一个不断地充电和放电的张弛振荡器。如果不触摸开关,张弛振荡器有一个固定的充电放电周期,频率是可以测量的。如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。所以,我们测量周期的变化,就可以侦测触摸动作。 具体测量的方式有二种: (一)可以测量频率,计算固定时间内张弛振荡器的周期数。如果在固定时间内测到的周期数较原先校准的为少,则此开关便被视作为被按压。 (二)也可以测量周期,即在固定次数的张弛周期间计算系统时钟周期的总数。如果开关被按压,则张弛振荡器的频率会减少,则在相同次数周期会测量到更多的系统时钟周期。 Silicon Labs推出的C8051F9xx微控制器(MCU)系列,可通过使用芯片上比较器和定时器实现触摸感应按键功能,连接最多23个感应按键。而且无须外部器件,通过PCB走线/开关作为电容部分,由内部触摸感应按键电路进行测量以得知电容值的变化。 ◆以Silicon Labs的MCU实现触摸感应按键 利用Silicon Labs其它MCU系列,仅需搭配无源器件,即可实现电容式触摸感应按键方案。与C8051F93x-F92x方案相比,唯一所需的外部器件是(3+N)电阻器,其中N是开关的数目,以及3个提供反馈的额外端口接点。C8051F93x-F92x之外,Silicon Labs其它MCU系列可直接连接12个开关,或者通过外部模拟多路复用器连接更多开关。 设计触摸感应按键开关 因为我们要侦测电容值的变化,所以希望变化幅度越大越好。现在,有三个主要因素会影响开关电容及变化幅度。

电容触摸按键设计

电容触摸按键设计

————————————————————————————————作者:————————————————————————————————日期:

在目前市场上可提供的PCB(印刷电路板)基材中,FR4是最常用的一种。FR4是一种玻璃纤维增强型环氧树脂层压板,PCB可以是单层或多层。 在触摸模块的尺寸受限的情况下,使用单层PCB不是总能行得通的,通常使用四层或两层PCB。在本文中,我们将以最常用的两层PCB为例来介绍PCB布局,意在为S-Touch TM电容触摸感应设计所用的各种PCB (如FR4、柔性PCB或ITO面板)的结构和布局提供设计布局指导。 PCB设计与布局 在结构为两层的PCB中,S-Touch TM触摸控制器和其他部件被布设在PCB的底层,传感器电极被布设在PCB的顶层。 图1 基于两层板的电容式触摸模组的结构 每个传感器通道所需的调谐匹配电容器可以直接布设在该传感器电极的底层。需要指出的是,S-Touch TM触摸控制器布设在底层,应该保证其对应的顶层没有布设有任何传感器电极。顶层和底层的空白区域可填充网状接地铜箔。

图2.1 两层PCB板的顶层 图2.2 两层PCB板的底层 设计规则 第1层(顶层) ● 传感器电极位于PCB的顶层(PCB的上端与覆层板固定在一起)。为提高灵敏度,建议使用尺寸为10 x 10 毫米的感应电极。可以使用更小尺寸的感应电极,但会降低灵敏度。同时,建议感应电极的尺寸不超过15 x 15毫米。如果感应电极超过这一尺寸,不但会降低灵敏度,而且会增加对噪声的易感性。 ● 空白区域可填充接地铜箔(迹线宽度为6密耳,网格尺寸为30密耳)。 ● 顶层可用来布设普通信号迹线(不包括传感器信号迹线)。应当尽可能多地把传感器信号迹线布设在底层。 ● 感应电极与接地铜箔的间距至少应为0.75毫米。

触摸按键与触摸屏设计指导

触摸按键与触摸屏设计指导 徐国斌 2007-11-05 homerx@https://www.doczj.com/doc/cb15895090.html, https://www.doczj.com/doc/cb15895090.html,/mobilemd 目录: 1.概述 2.触摸按键设计指导 3.触摸屏设计指导 4.Lens Touch Panel设计指导 5.电容式Lens Touch Panel 6.附录:Psoc触摸按键问答

1. 概述 对触摸屏与触摸按键在手机中的设计与应用进行介绍,对设计的经验数据进行总结。达到设计资料和经验的共享,避免低级错误的重复发生。 2. 触摸按键设计指导 2.1 触摸按键的功能与原理 2.1.1触摸按键的功能 触摸按键起keypad 的作用。与keypad 不同的是,keypad 通过开关或metaldome 的通断发挥作用,触摸按键通过检测电容的变化,经过触摸按键集成芯片处理后,输出开关的通断信号。 2.1.2触摸按键的原理 如下图,是触摸按键的工作原理。在任何两个导电的物体之间都存在电容,电容的大小与介质的导电性质、极板的大小与导电性质、极板周围是否存在导电物质等有关。PCB 板(或者FPC )之间两块露铜区域就是电容的两个极板,等于一个电容器。当人体的手指接近PCB 时,由于人体的导电性,会改变电容的大小。触摸按键芯片检测到电容值大幅升高后,输出开关信号。 在触摸按键PCB 上,存在电容极板、地、走线、隔离区等,组成触摸按键的电容环境,如下图所示。 Finger Time Capacitance C

2.1.3 触摸按键的按键形式 触摸按键可以组成以下几种按键 z单个按键 z条状按键(包括环状按键) z块状按键 单个按键 条状按键块状按键 2.1.4触摸按键的电气原理图如下:

触摸按键设计要求

触摸按键画板法 (以下所提到的芯片为HT45R34) ●Sensor pad形状: Sensor pad形状可以为圆形,方形,三角形(实心型),抑可以线条构成此类圆形(镂空型),前者用于覆盖板较厚的情况。后者则用于覆盖板较薄的情况下。推荐用圆形,感应效果更佳。 ●Sensor pad尺寸: Sensor pad面积越大灵敏度越大,但超过手指按压范围的部分对增加灵敏度没有作用。以圆形为例,一般设计为10m m~15mm的直径,符合成人手指的大小。 ●Sensor pad与ground plane之间的间隔: 间隔越大,touch swith的基础电容越小,RC震荡的频率越大,灵敏度也越大,但间隔太大,地对电场的约束越小,干扰越大;间隔太小,基础电容太大,灵敏度太小,且地对电场的约束太大,不利于电场穿透覆盖板,使得覆盖板只能较薄。推荐的间隔为0.5m m~1.0mm,例如10mm直径的sensor pad配合0.5mm的间隔。 ●布局要求: Sensor pad 要靠近MCU,每一个Sensor Pad到MCU的距离要尽量一致。IN,RREF,CREF引出脚要短,该RC模块要靠近MCU。另外,复位电路,晶振电路要靠近MCU。 布线要求: 由MCU的RC1~RC16PIN到touch swith的连线,要尽量的短,尽量

远离其他走线或元件,线宽尽量窄(7~10mil).要避免touch swith 的连线临近高频的通信线(例如I2C SPI通信线),在没有办法避免的情况下,请让两者直交布线。尽量将到touch swith的连线布在与S ensor Pad不同的Layer (采用双面板时),使其受到人体的影响降低,且这些线与线之间的也要尽量互相远离,线周围也要铺上地,以保证其尽量少受到其他信号的干扰。 ●覆盖板的材料: 覆盖板为一些坚固,易安装的绝缘材料,介电常数在2.5~10之间,Demo Board 上采用的是压克力板材,还有很多可采用的板材,例如:普通玻璃,徽晶板等,覆盖板的介电常数越小,Sensor Padde的感应范围越小。安装要求覆盖板紧贴Sensor Pad的表面,用粘胶将其贴在Sensor Pad的表面(排掉它们之间的空气)则效果更佳。 ●覆盖板的厚度: 覆盖板的厚度一般为1mm~5mm,厚度越大touch swith的灵敏度越小,信噪比也越低。Sensor Pad的面积越小,覆盖板要越薄。

触摸按键解决方案

电容式触摸感应开关解决方案介绍 在便携式媒体播放器和移动手持终端等大容量、高可视性产品的应用中,触摸式按键作为一种接口技术已被广泛采用。由于具有方便易用,时尚和低成本的优势,越来越多的电子产品开始从传统的机械按键转向触摸式按键。 微控制器的电容式触摸感应按键方案,采用GPIO 口和两个内部定时器,即可实现多达24个独立按键或滑条式电容触摸按键的应用。本方案采用外围RC 电路加软件检测技术,集成FIR滤波算法,拥有良好的抗干扰性能,可通过EFT (脉冲群抗干扰度测试)4KV的指标,非常适合由交流电驱动的电子设备。 原理概述 电容式触摸感应按键的基本原理如图1所示,当人体(手指)接触金属感应片的时候,由于人体相当于一个接大地的电容,因此会在感应片和大地之间形成一个电容,感应电容量通常有几pF到几十pF。利用这个最基本的原理,在外部搭建相关电路,就可以

根据这个电容量的变化,检测是否有人体接触金属感应片。 a 图1 电容式触摸感应原理 微控制器电容式触摸感应按键原理如图2所示,利用GPIO中断功能加上内部定时器,可很方便的测量外部电容量变化。处理流程如下: 初始化KEY n为GPIO 口,必须关闭内部上拉功能,配置为既不上拉也不下拉的模式; 使能并配置KEY n的高电平中断; 将KEY n设置为输出,并输出低电平,此时电容放电; 开启定时器,将KEY n配置为输入,并开启高电中断,此时电容开始充电,在KEY n的中断服务 函数中读取定时器的时间; 根据这个充电时间的变化量就可以判断出是否有按键按下。

vcc K ________________ 图2 基于LPC1100触摸按键原理 注:图2中只是示意了 2个独立按键连接方案, 利用内部的GPIO 输入可以连接多达24个独立按键 或滑条。 RC 电路充放电在有无人体触摸时的充放电波形 图如图3所示。当使用GPIO 配置为输入时电容Cx 充电,如果没有人体触摸的时候电容的充放电曲线如 图3绿线所示;当有人体触摸的时候,由于人体带来 一个感应电容量,这时Key R 6- GPJO LPC1100 二 Electrode Capacitance (Cx) 32 位 Tiimer 1614 Tinner Key 1 足W n Channels —■产—-■ R

相关主题
文本预览
相关文档 最新文档