当前位置:文档之家› 加速度传感器类型

加速度传感器类型

加速度传感器类型
加速度传感器类型

加速度传感器类型

1. 直流响应加速度传感器的特点

直流响应加速度传感器是指具有直流耦合输出,能够响应低至0赫兹的加速度信号。因此直流响应的加速度传感器适合同时测试静态和动态的加速度,但是也并不是只有需要测试静态加速度时才选择直流响应的加速度传感器。

直流响应加速度传感器主要有两种类别,分别是电容型和压阻型。下面说下就这两类加速度传感器各自的特点。

电容型

电容型加速度传感器在当今是最通用的,在某些领域无可替代,如安全气囊,手机移动设备等。高的产量使得这类传感器成本低廉。但是这种低成本的加速度传感器受制于较低的信噪比,有限的动态范围。所有的电容型加速度传感器都具有内部时钟,它是检测电路必不可少的部分,由于泄漏经常会对输出信号产生干扰。这种噪声的频率远高于测量信号的频率,一般不会对测量结果造成影响,但是它始终和测试信号叠加在一起。由于内置了放大器芯片,其一般具有3线或4线差分输出接口,只要有直流供电便能工作。

压阻型

压阻型加速度传感器是另一种广泛应用的直流响应加速度传感器。不同于电容型加速度传感器通过电容的变化测

量加速度,压阻型加速度传感器通过应变电阻值的变化输出加速度信号,应变电阻是传感器惯性感应系统的一部分。很多工程师熟悉应变片,并知道如何测量其输出。大多数的压阻型传感器对温度变化敏感,因而需要对其输出信号在传感器内部或外部做温度补偿。现代压阻型加速度传感器包含一个专用集成电路做在板信号处理,也包含温度补偿。2. 交流响应加速度传感器的特点作为交流响应的加速度传感器,正如它的名称,它的输出是交流耦合的,这类加速度传感器不能用来测试静态的加速度,仅适合测量动态事件,比如重力加速度和离心加速度。

最常用的交流响应加速度传感器是采用压电元件作为其敏感单元的。当有加速度输入时,传感器中的检测质量块发生移动使压电元件产生正比于输入加速度的

电荷信号。从电学角度来看,压电元件如同一个有源的电容器,其内阻在10x9欧姆级别。由内阻和电容决定了RC时间常数,这也决定了传感器的高频通过特

性。基于这个原因,压电加速度传感器不能用于测量静态事件。压电元件可来自于自然界或者人造。它们有着不同的信号转换效率和线性关系。市场上主要有两类压

电加速度传感器-电荷输出型,电压输出型。

大部分的压电加速度传感器采用锆钛酸盐陶瓷,具有很宽的工作温度范围,动态量程范围大,频率范围宽。电荷输出型

加速度传感器把压电陶瓷封装在具有气

密性的金属外壳中。由于具有抵抗严酷环境的能力,其具有非常好的耐久性。由于其具有很高的阻抗,该传感器需要配合电荷放大器和低噪声屏蔽电缆使用,最好是

同轴电缆。低噪声电缆是指其具有低的摩擦电噪声,这是一种运动产生的来自电缆本身的噪声。很多传感器厂家同时提供这种低噪声电缆。电荷放大器和电荷输出型

加速度传感器连接,从而可以消除电缆电容和传感器电容并联带来的影响。配合先进的电荷放大器,电荷输出型加速度传感器很容易实现宽的动态响应。由于压电陶

瓷的工作温度范围很宽,有些传感器可以用于-200°C到400°C,甚至更宽温度的环境。它们特别适合极限温度下的振动测试,如涡轮引擎的监测。

三轴加速度传感器原理应用及前景分析

三轴加速度传感器原理及应用 2012年09月09日 12:42来源:本站整理作者:胡哥我要评论(0) 三轴加速度传感器原理 MEMS换能器(Transducer)可分为传感器(Sensor)和致动器(Actuator)两类。其中传感器会接受外界的传递的物理性输入,通过感测器转换为电子信号,再最终转换为可用的信息,如加速度传感器、陀螺仪、压力传感器等。其主要感应方式是对一些微小的物理量的变化进行测量,如电阻值、电容值、应力、形变、位移等,再通过电压信号来表示这些变化量。致动器则接受来自控制器的电子信号指令,做出其要求的反应动作,如光敏开关、MEMS显示器等。 目前的加速度传感器有多种实现方式,主要可分为压电式、电容式及热感应式三种,这三种技术各有其优缺点。以电容式3轴加速度计的技术原理为例。电容式加速度计能够感测不同方向的加速度或振动等运动状况。其主要为利用硅的机械性质设计出的可移动机构,机构中主要包括两组硅梳齿(Silicon Fingers),一组固定,另一组随即运动物体移动;前者相当于固定的电极,后者的功能则是可移动电极。当可移动的梳齿产生了位移,就会随之产生与位移成比例电容值的改变。 当运动物体出现变速运动而产生加速度时,其内部的电极位置发生变化,就会反映到电容值的变化(ΔC),该电容差值会传送给一颗接口芯片(InteRFace Chip)并由其输出电压值。因此3轴加速度传感器必然包含一个单纯的机械性MEMS传感器和一枚ASIC接口芯片两部分,前者内部有成群移动的电子,主要测量XY及Z轴的区域,后者则将电容值的变化转换为电压输出。 文中所述的传感器和ASIC接口芯片两部分都可以采用CMOS制程来生产,而在目前的实际生产制造中,由于二者实现技术上的差异,这两部分大都会通过不同的加工流程来生产,再最终封装整合到一起成为系统单封装芯片(SiP)。封装形式可采用堆叠(Stacked)或并排(Side-by-Side)。 手持设备设计的关键之一是尺寸的小巧。目前ST采用先进LGA封装的加速度传感器的尺寸仅有3 X 5 X 1mm,十分适合便携式移动设备的应用。但考虑到用户对尺寸可能提出的进一步需求,加速度传感器的设计要实现更小的尺寸、更高的性能和更低的成本;其检测与混合讯号单元也会朝向晶圆级封装(WLP)发展。 下一代产品的设计永远是ST关注的要点。就加速度传感器的发展而言,单芯片结构自然是

加速度传感器的选择

加速度传感器选型 压电加速度传感器因其频响宽、动态范围大、可靠性高、使用方便,受到广泛应用。在一般通用振动测量时,用户主要关心的技术指标为:灵敏度、频率范围,内部结构、内置电路型与纯压电型的区别,现场环境与后续仪器配置等。 一、灵敏度的选择 制造商在产品介绍或说明书中一般都给出传感器的灵敏度和参考量程范围,目的是让用户在选择不同灵敏度的加速度传感器时能方便地选出合适的产品,最小加速度测量值也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可用值,以确保最佳信噪比。最大测量极限要考虑加速度传感器自身的非线性影响和后续仪器的最大输出电压。 估算方法:最大被测加速度×传感器电荷(电压)灵敏度,其数值是否超过配套仪器的最大输入电荷(电压)值。建议如已知被测加速度范围可在传感器指标中的“参考量程范围”中选择(兼顾频响、重量),同时,在频响、质量允许的情况下,尽量选择高灵敏度的传感器,以提高后续仪器输入信号,提高信噪比。在兼顾频响、质量的同时,可参照以下范围选择传感器灵敏度:以电荷输出型压电加速度传感器为例: 1、土木工程和超大型机械结构的振动在0.1g-10g (1g=9.81m/s2)左右,可选电荷灵敏度在300pC/ms-2~ 30pC/ms-2的压电加速度传感器,属于电荷输出型压电加速度传感器 2、特殊的土木结构(如桩基)和机械设备的振动在100ms-2~1000ms-2,可选择20pC/ms-2~2pC/ms-2的加速度传感器。 3、冲击,碰撞测量量程一般10000ms-2~1000000ms-2,可选则传感器灵敏度是0.2pC/ms-2~ 0.002pC/ms-2的加速度传感器。 二、频率选择 制造商给出的加速度传感器的频响曲线是用螺钉刚性连接安装的。 一般将曲线分成二段:谐振频率和使用频率。使用频率是按灵敏度偏差给出的,有±10%、±5%、±3dB。谐振频率一般是避开不用的,但也有特例,如轴承故障检测。选择加速度传感器的频率范围应高于被测试件的振动频率。有倍频分析要求的加速度传感器频率响应应更高。土木工程一般是低频振动,加速度传感器频率响应范围可选择0.2Hz~1kHz,机械设备一般是中频段,可根据设备转速、设备刚度等因素综合估算振动频率,选择0.5Hz~ 5kHz 的加速度传感器。如发电机转速在3000rms 时,除以60s 此时它的主频率为50Hz。碰撞、冲击测量高频居多。 加速度传感器的安装方式不同也会改变使用频响(对振动值影响不大)。 安装面要平整、光洁,安装选择应根据方便、安全的原则。我们给出同一只AD500S 加速度传感器不同安装方式的使用频率:螺钉刚性连接(±10%误差)10kHz;环氧胶或“502”粘接安装6kHz;磁力吸座安装 2kHz;双面胶安装1kHz。由此可见,安装方式的不同对测试频率的响应影响很大,应注意选择。加速度传感器的质量、灵敏度与使用频率成反比,灵敏度高,质量大,使用频率低,这也是选择的技巧。 三、内部结构 内部结构是指敏感材料晶体片感受振动的方式及安装形式。有压缩和剪切两大类,常见的有中心压缩、平面剪切、三角剪切、环型剪切。 中心压缩型频响高于剪切型,剪切型对环境适应性好于中心压缩型。如配用积分型电荷放大器测量速度、位移时,最好选用剪切型产品,这样所获得的信号波动小,稳定性好。 四、内置电路 内置的概念是将放大电路置于加速度传感器内,成为具有电压输出功能的传感元件。它可分双电源(四线)和单电源(二线、带偏置,又称ICP) 两种,下面所指内装电路专指ICP

三轴角度检测(倾角传感器MMA7455(加速度传感器))

#include #include //要用到_nop_();函数 #define uchar unsigned char #define uint unsigned int /***************************************************************************/ /*********** 单片机引脚定义 ************/ /***************************************************************************/ sbit sda=P1^0; //I2C 数据传送位 sbit scl=P1^1; //I2C 时钟传送位 char x,y,z,num[9]={0,0,0}; /****************************************************************************** / /********** 数据部 分 ***********/ /****************************************************************************** / #define IIC_READ 0x1D //定义读指令 #define IIC_WRITE 0x1D //定义写指令 #define LCD_data P0 //数据口 sbit inter_0=P3^2; sbit LCD_RS = P2^7; //寄存器选择输入 sbit LCD_RW = P2^6; //液晶读/写控制 sbit LCD_EN = P2^5; //液晶使能控制 sbit LCD_PSB = P2^4; //串/并方式控制 void delay_1ms(uint x) { uint i,j; for(j=0;j

加速度传感器主要参数

FEA-加速度传感器系列 FEA-XX-YZZ-M1和M2系列 测量范围:±0.5g,±1g,±2g,±3g,±6g,±18g,±50g。 测量轴数:单轴、双轴和三轴 供电电压:5V,12V,24V,9-32V(可选) 输出信号:0-5V,4-20mA,CANBUS,RS232,RS485,RS422,LED,LCD,开关量 分辨率:10-5-10-7g(根据测量范围和精度等级而定) 非线性:0.05%FS-1%FS(根据测量范围和精度等级而定) 温度漂移:0.1mg-0.5mg/ oC(根据测量范围和精度等级而定) 工作温度范围:-40oC -+80oC 防护等级:IP65-IP68(可选) 频率响应:0.5-20Hz(可选) 外壳:可选,见产品外壳与连接器,铝合金材料。 FEA-XX-YZZ-I1和I2系列 测量范围:±0.5g,±1g,±2g,±3g,±6g,±18g,±50g。 测量轴数:单轴、双轴和三轴 供电电压:5V,12V,24V,9-32V(可选) 输出信号:0-5V,4-20mA,CANBUS,RS232,RS485,RS422,LED,LCD,开关量 分辨率:10-3g-10-5g(根据测量范围和精度等级而定) 非线性:0.5%FS-2%FS(根据测量范围和精度等级而定) 温度漂移:0.5mg-3mg/ oC(根据测量范围和精度等级而定) 工作温度范围:-25oC -+80oC 防护等级:IP65-IP68(可选) 频率响应:0.5-20Hz(可选) 外壳:可选,见产品外壳与连接器,铝合金材料。 FEA-XX-YZZ-C1和C2系列 测量范围:±0.5g,±1g,±2g,±3g,±6g,±18g,±50g。 测量轴数:单轴、双轴和三轴 供电电压:5V,12V,24V,9-32V(可选) 输出信号:0-5V,4-20mA,CANBUS,RS232,RS485,RS422,LED,LCD,开关量 分辨率:10-2-10-4g(根据测量范围和精度等级而定) 非线性:1%FS-3%FS(根据测量范围和精度等级而定) 温度漂移:2 mg-5mg/ oC(根据测量范围和精度等级而定) 工作温度范围:-10oC -+60oC 防护等级:IP65-IP68(可选) 频率响应:0.5-20Hz(可选) 外壳:可选,见产品外壳与连接器,铝合金材料。 特别说明 产品性能、外壳以及连接器都可以根据客户的要求定制。 外壳及尺寸和连接器 加速度传感器所需要的外壳与连接器可参考《产品外壳与连接器》栏目进行选择,或者根据你的要求来定制。

加速度传感器参数讲解(AD)

加速度传感器参数讲解(AD)Accelerometer Specifications - Quick Definitions Measurement range is the level of acceleration supported by the sensor’s output signal specifications, typically specified in ±g. This is the greatest amount of acceleration the part can measure and accurately represent as an output. For example, the output of a ±3g accelerometer is linear with acceleration up to ±3g. If it is accelerated at 4g, the output may rail. Note that the breaking point is specified by the Absolute Maximum Acceleration, NOT by the measurement range. A 4g acceleration will not break a ±3g accelerometer. Sensitivity is the ratio of change in acceleration (input) to change in the output signal. This defines the ideal, straight-line relationship between acceleration and output (Figure 1, gray line). Sensitivity is specified at a particular supply voltage and is typically expressed in units of mV/g for analog-output accelerometers, LSB/g, or mg/LSB for digital-output accelerometers. It is usually specified in a range (min, typ, max) or as a typical figure and % deviation. For analog-output sensors, sensitivity is ratiometric to supply voltage; doubling the supply, for example, doubles the sensitivity. Sensitivity change due to Temperature is generally specified as a % change per °C. Temperature effects are caused by a combination of mechanical stresses and circuit temperature coefficients.

加速度传感器原理与应用简介

加速度传感器原理与应用简介 1、什么是加速度传感器 加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速力可以是个常量,比如g,也可以是变量。 加速度计有两种:一种是角加速度计,是由陀螺仪(角速度传感器)的改进的。另一种就是线加速度计。 2、加速度传感器一般用在哪里 通过测量由于重力引起的加速度,你可以计算出设备相对于水平面的倾斜角度。通过分析动态加速度,你可以分析出设备移动的方式。但是刚开始的时候,你会发现光测量倾角和加速度好像不是很有用。但是,现在工程师们已经想出了很多方法获得更多的有用的信息。 加速度传感器可以帮助你的机器人了解它现在身处的环境。是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。一个好的程序员能够使用加速度传感器来回答所有上述问题。加速度传感器甚至可以用来分析发动机的振动。 目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。 概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。 3、加速度传感器是如何工作的 线加速度计的原理是惯性原理,也就是力的平衡,A(加速度)=F(惯性力)/M(质量)我们只需要测量F就可以了。怎么测量F?用电磁力去平衡这个力就可以了。就可以得到F 对应于电流的关系。只需要用实验去标定这个比例系数就行了。当然中间的信号传输、放大、滤波就是电路的事了。 现代科技要求加速度传感器廉价、性能优越、易于大批量生产。在诸如军工、空间系统、科学测量等领域,需要使用体积小、重量轻、性能稳定的加速度传感器。以传统加工方法制造的加速度传感器难以全面满足这些要求。于是应用新兴的微机械加工技术制作的微加速度传感器应运而生。这种传感器体积小、重量轻、功耗小、启动快、成本低、可靠性高、易于实现数字化和智能化。而且,由于微机械结构制作精确、重复性好、易于集成化、适于大批量生产,它的性能价格比很高。可以预见在不久的将来,它将在加速度传感器市场中占主导地位。 微加速度传感器有压阻式、压电式、电容式等形式。 ·压电式 压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压

三轴加速度传感器

Three-axis acceleration sensor variable in capacitance under application of acceleration United States Patent 5383364 Abstract: An acceleration sensor comprises an upper semiconductor substrate having a rigid frame, four deformable beams connected with the rigid frame, and a weight portion supported by the plurality of deformable beams, a lower semiconductor substrate bonded to the rigid frame, a plurality of movable electrodes attached to the weight portion, and electrically isolated from one another, and a plurality of stationary electrodes attached to the second semiconductor substrate, and opposite to the plurality of movable electrodes for forming a plurality of variable capacitors, and the center of gravity of the weight portion is spaced from a common neutral surface of the four beams for allowing acceleration to produce bending moment exerted on the four beams, thereby causing the variable capacitors to independently change the capacitance. Inventors: Takahashi, Masaji (Tokyo, JP) Kondo, Yuji (Tokyo, JP) Application Number: 07/972537 Publication Date: 01/24/1995 Filing Date: 11/06/1992 Export Citation: Click for automatic bibliography generation Assignee: NEC Corporation (Tokyo, JP) Primary Class: 73/514.32 Other Classes: 73/514.34, 73/514.36, 361/280 International Classes: G01P15/125; G01P15/18; (IPC1-7): G01P15/125 Field of Search: 73/517R, 73/517AV, 73/517B, 361/280 View Patent Images: Download PDF 5383364 PDF help US Patent References: 5243861 Capacitive type semiconductor accelerometer 1993-09-14 Kloeck et al. 735/17R 5134881 Micro-machined accelerometer with composite material springs 1992-08-04

MEMS加速度传感器的原理与构造

微系统设计与应用 加速度传感器的原理与构造 班级:2012机自实验班 指导教师:xxx 小组成员:xxx xx大学机械工程学院 二OO五年十一月

摘要 随着硅微机械加工技术(MEMS)的迅猛发展,各种基于MEMS技术的器件也应运而生,目前已经得到广泛应用的就有压力传感器、加速度传感器、光开关等等,它们有着体积小、质量轻、成本低、功耗低、可靠性高等特点,而且因为其加工工艺一定程度上与传统的集成电路工艺兼容,易于实现数字化、智能化以及批量生产,因而从问世起就引起了广泛关注,并且在汽车、医药、导航和控制、生化分析、工业检测等方面得到了较为迅速的应用。其中加速度传感器就是广泛应用的例子之一。加速度传感器的原理随其应用而不同,有压阻式,电容式,压电式,谐振式等。本文着手于不同加速度传感器的原理、制作工艺及应用展开,能够使之更加全面了解加速度传感器。 关键词:加速度传感器,压阻式,电容式,原理,构造

目录 1 压阻式加速度传感器 (2) 1.1 压阻式加速度传感器的组成 (2) 1.2 压阻式加速度传感器的原理 (2) 1.2.1 敏感原理 (3) 1.2.2 压阻系数 (4) 1.2.3 悬臂梁分析 (5) 1.3 MEMS压阻式加速度传感器制造工艺 (6) 1.3.1结构部分 (6) 1.3.2 硅帽部分 (8) 1.3.3键合、划片 (9) 2电容式加速度传感器 (9) 2.1电容式加速度传感器原理 (9) 2.1.1 电容器加速度传感器力学模型 (9) 2.1.2电容式加速度传感器数学模型 (11) 2.2电容式加速度传感器的构造 (12) 2.2.1机械结构布局的选择与设计 (12) 2.3.2材料的选择 (14) 2.3.3工艺的选择 (15) 2.3.4具体构造及加工工艺 (16) 3 其他加速度传感器 (18) 3.1 光波导加速度计 (18) 3.2微谐振式加速度计 (18) 3.3热对流加速度计 (19) 3.4压电式加速度计 (19) 4 加速度传感器的应用 (20) 4.1原理 (20) 4.2 功能 (20) 参考文献 (22)

三轴加速度传感器MMA7260

MMA7260 三轴加速度传感器使用手册 一、MMA7260QT的简介 MMA7260QT低成本微型电容式加速度传感器,采用了信号调理、单极低通滤波器和温度补偿技术,并且提供4个量程可选,用户可在4个灵敏度中的选择。该器件带有低通滤波并已做零g补偿。本产品还提供休眠模式,因而是电池充电的手持设备产品的理想之选。 二、特性: (1) 可选灵敏度(1.5g/2g/4g/6g) (2) 低功耗:500 μA (3) 休眠模式: 3 μA (4) 低压运行:2.2 V - 3.6 V (5) 6mm x 6mm x 1.45 mm的无引线四方扁平 (QFN) 封装; (6) 高灵敏度(800 mV/g @ 1.5g) (7) 快速开启 (8) 低通滤波器具备内部信号调理 (9) 设计稳定、防震能力强 (10) 无铅焊接 (11) 环保封装 (12) 成本低 三、典型应用: 三轴加速度传感器是一种可以对物体运动过程中的加速度进行测量的电子设备,典型互动应用中的加速度传感器可以用来对物体的姿态或者运动方向进行检测,比 如其中WII和iPhone中的经典应用。Nokia最新推出的手机N95利用内置的加速度传感器,让用户可以通过机身的摆动进行各种操作,包括主菜单操 作、图片浏览、切歌操作甚至进行游戏的控制等,非常全面,甚至超越了苹果 iPhone的动作感应功能的应用范畴。 基于Freescale公司MMA7260的这个三轴加速度传感器,对于普通的互动应用来讲应该是一个不错的选择, 可以用于摩托车和汽车防盗报警器,遥控航模,游戏手柄,跌倒探测,硬盘冲击保护,倾斜角度测量,电梯安全监控等需要测试加速度的地方。

加速度传感器测量信号失真的原因及处理方法

如果加速度传感器大测量信号失真我们从两个大的方面分析:信号输出变小和偏置电压不稳定。其实想偏置电压不稳定这种情况,我们可以直接能判断的是输出信号与高频谐次波叠加,遇到这种情况一般是由加速度传感器的谐振频率造成,我们可以选择谐振频率较高的传感器。 而信号输出变小这种情况我们需要从四个方面去考虑:首先是由于供电电压降低而造成测量量程范围减小,这种表示需要更换电池或更正供电电压。其次是因环境温度与室温不同而导致的偏置电压超出规定的范围,当然这种我们需要采用偏置电压稳定的传感器。再者还有由加速度传感器的非线性造成,我们就需要采用量程大的传感器。最后一种情况就是在长距离信号输送时,恒流电压源的恒电流不够大,这种情况我们需要根据信号频率幅值选择正确的电压源恒电流。以上就是加速度传感器大测量信号失真的几种大的故障分析以及解决办法。 而加速度传感器小测量信号失真,我们需要从三个方面去考虑:信号忽大忽小不稳定,外界环境噪声对测量信号的影响以及测量系统噪声对测量信号的影响。关于信号忽大忽小不稳定一般是由瞬态温度变化以至偏置电压忽大忽小而造成输出信号不稳定,当然这种情况我们还是采用偏置电压稳定的传感器来解决。 接下来我们分析的是测量系统噪声对测量信号的影响:这种我们按照四种情况分析,一是加速度传感器自身的电噪声,我们需要检定传感器噪声,选择信噪比合适的传感器。二是电缆引起的电噪声,往往发生在与电荷输出型传感器配用的低噪声电缆,我们是换用好的低噪声屏蔽电缆。三是传感器供电电源噪声,这种我们肯定是要选用低噪声供电电源或采用电池供电。四是数采系统的量程设置,当然我们需要选择合适的量程才行。 最后我们分析的是外界环境噪声对测量信号的影响:这个又分为接地回路造成的噪声,避免多点接地,传感器采用对地绝缘。电磁波的影响,采用双层屏蔽壳的传感器。强声场的影响,采用双层屏蔽壳的传感器将有助于降低强声场对加速度传感器的影响。瞬态环境温度变化,对用于超低频测量的高灵敏度传感器必须采用隔热护套。和被测点的基座应变影响,我们需要选用基座应变小的剪切型加速度传感器,尽量减小传感器与被测物体间的接触面积。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/cb13833971.html,/

加速度传感器i4迷你型iBeacon加速度传感器

产品规格书 PRODUCT SPECIFICATION 深圳云里物里科技股份有限公司 Version 2.2发布时间 2017-08-04 MODEL NO/DESCRIPTION 产品名称:迷你型加速度传感器iBeacon 产品型号:i4

目录 1.产品简介 (3) 2.产品特点 (4) 3.运用范围 (4) 4.产品物理特性 (4) 5.技术参数 (5) 6.电气特性 (5) 7.LIS2DHTR传感器性能参数 (5) 8.默认参数 (6) 9.支持设备 (6) 10.操作说明 (7) 11.认证信息 (7) 12.包装信息 (7) 13.质量保障 (8)

i4迷你型加速度传感器iBeacon为信号白,能够配合各种装修风格;本产品的极限距离可达80米,能够降低部署成本;采用CR2477电池(1000mAH),支持微信摇一摇接入。中间可丝印或滴胶logo。 立面侧面 内部结构

外形小巧 采用CR2477电池(1000mAH) 支持微信摇一摇接入 增加超低功耗、高性能、3轴线性加速度传感器(LIS2DHTR) 内置温度传感器 传感器可选择的G值范围:±2g、±4g、±8g、±16g 加速度传感器的输出数据频率:1Hz-5.3kHz 传感器具有“睡眠唤醒”与“重返睡眠”功能 并有两个独立的可编程中断入口可用于监测自由跌落以及姿态检测 3.运用范围 传感器ibeacon可配合手机APP显示方向、运动激活、运动记步、移动监测、摇摆控制等;线下顾客广告、优惠券推送,精准营销;商场、机场等大型公众场合室内定位;旅游景点、博物馆等线上讲解;展会、论坛、办公室签到;网址:https://www.doczj.com/doc/cb13833971.html,基于位置的实时消息推送,如现场资料、会议流程分享等;演唱会、大型赛事等观众互动。 4.产品物理特性 型号I4 外壳材质PC 外壳颜色信号白 外型尺寸?37x16.5mm 产品重量21g(含电池) 使用电源CR2477 供电电压 3.0VDC 安装方式双面胶粘贴

常用加速度传感器有哪几种分类

1、常用加速度传感器有哪几种分类各有什么特点 答:加速度传感器按工作原理可分为压电式、压阻式和电容式。 压电式传感器是通过利用某些特殊的敏感芯体受振动加速度作用后会产生与之成正比的电荷信号的特性,来实现振动加速度的测量的,这种传感器一般都具有测量频率范围宽、量程大、体积小、重量轻、结构简单坚固、受外界干扰小以及产生电荷信号不需要任何外界电源等优点,它最大的缺点是不能测量零频率信号。 压阻式传感器的敏感芯体为半导体材料制成电阻测量电桥来实现测量加速度信号,这种传感器的频率测量范围和量程也很大,体积小重量轻,但是缺点也很明显,就是受温度影响较大,一般都需要进行温度补偿。 电容式传感器中一般有个可运动质量块与一个固定电极组成一个电容,当受加速度作用时,质量块与固定电极之间的间隙会发生变化,从而使电容值发生变化。它的优点很突出,灵敏度高、零频响应、受环境(尤其是温度)影响小等,缺点也同样突出,主要是输入输出非线形对应、量程很有限以及本身是高阻抗信号源,需后继电路给予改善。 相比之下,压电式传感器应用更为广泛一些,压阻式也有一定程度的应用,而电容式主要专用于低频测量。 2、压电式传感器又分哪几种 答:压电式传感器有多种分类方式。 按敏感芯体材料分为压电晶体(一般为石英)和压电陶瓷两类。压电陶瓷比压电晶体的压电系数要高,而且各项机电系数随温度时间等外界条件的变化相对较小,因此一般更常用的是压电陶瓷。 按敏感芯体结构形式分为压缩式、剪切式和弯曲变形梁式。压缩式结构最简单,价格便宜,但是不能有效排除各种干扰;剪切式受干扰影响最小,目前最为常用,但是制造工艺要求较高,所以价格偏高;弯曲变形梁式比较少见,其结构能够产生较大的电荷输出信号,但是测量频率范围较低,受温度影响易产生漂移,因此不推荐使用。 按信号输出的方式分为电荷输出式和低阻抗电压输出式(ICP)。电荷输出式直接输出高阻抗电荷信号,必须通过二次仪表转换成低阻抗电压读取,而高阻抗电荷信号较容易受干扰,所以对测试环境、连接线缆等的要求较高; 而ICP型传感器内部安装了前置放大器,直接转换成电压信号输出,所以相对有信号质量好、噪声小、抗干扰能力强、能实现远距离测量等优点,目前正逐步取代电荷输出式传感器。 3、选择压电式加速度传感器时有哪些基本原则 答:选择一般应用场合的压电式加速度传感器时,要从三个方面全面考虑: ①振动量值的大小②信号频率范围③测试现场环境。 作为一般的原则,灵敏度高的传感器量程范围小,反之灵敏度低的量程范围大,而且一般情况下,灵敏度越高,敏感芯体的质量块越大,其谐振频率也越低,如果谐振波叠加在被测信号上,会造成失真输出,因此选择时除

三轴加速度传感器的步态识别系统==

三轴加速度传感器的步态识别系统 近年来随着微机电系统的发展,加速度传感器已经广泛应用于各个领域并拥有良好的发展前景。例如在智能家居、手势识别、步态识别、跌倒检测等领域,都可以通过加速度传感器实时获得行为数据从而判断出用户的行为情况。 目前许多智能手机都内置多种传感器,通过预装软件就能够获得较精确的原始数据。本文提出一种基于三轴加速度传感器,用智能手机采集用户数据,对数据进行处理及特征提取获得特征矩阵并分类识别的方法,有效地识别了站立、走、跑、跳四种动作。 人体动作识别处理过程主要包含数据采集、预处理、特征提取和分类器识别数据采集数据采集和发送模块安装在用户端,另一个数据接收模块接在电脑终端上。 由于我们制作的采集模块很轻、很小,所以方便佩戴。当用户运动时,三轴加速度传感器会将据采集并通过无线方式发送给电脑接收模块,再通过电脑上的软件部分对采集到的数据进行分析处理,将结果输出,显示用户的实时状态。 本文使用的加速度传感器数据来自于共计60个样本。传感器统一佩戴于腰间。本文选取了其中一位采集者的数据用于主要分析研究,其余两位采集者的数据则用于验证由第一位采集者数据研究所得的结论,这样的做法既减小了数据处理的繁杂又能保证最终结果的准确性。预处理应用程序设置的采集时间间隔为0.1s,对每一个动作的采集时间为25s。考虑到用户在采集数据一开始与将要结束时的动作

不平稳可能对数据带来较大影响,前2s2s采集的数据将被舍弃不予分析。因原始加速度信号一般都含有噪声,为了提高数据分析结果的准确性,通常在原始加速度信号进行特征提取前对其进行去躁、归一化、加窗等预处理。通过加窗处理,不仅规整了加速度信号的长度,而且方便研究人员按照需要选择适宜的信号长度,这样有利于后续的特征提取。 许多研究人员使所示。研究人员采集的加速度传感器信号由于采集者的动作力度不同造成加速度信号的幅度差异较大,这会对之后的分类识别造成负面影响,归一化技术可以调整加速度信号的幅度,按照一定的归一化算法可以使加速度信号的幅度限定在某一数值范围内,文献[2]在识别跑、站立、跳和走路这四种动作时对四种动作的加速度信号进行了归一化;文献[3]在进行手势识别时对手势动作的加速度信号进行了归一化处理。特征提取特征提取和选择模块的作用在于从加速度信号中提取出那些表征人体行为的特征向量,处于预处理模块和分类器模块之间,是人体行为识别过程中的一个重要环节,直接影响分类识别的效果。特征的提取方法具有多样性,对于不同的识别目的,研究人员会提取不同的特征,例如为了识别分类站立和跑步,研究人员通常会选取方差和标准差这类能够反映加速度信号变化大小的特征,而为了识别分类走路和跑步,研究人员通常会选取能量和均值这类能够反映加速度信号大小的特征。使用不同的特征表征行为会对分类识别效果产生不同的影响,因此寻找更加有效的特征一直是研宄人员关注的一个课题。通过查阅大量的文献,大致可以把加速度信

工程压电式加速度传感器的功能特点

工程振动量值的物理参数常用位移、速度和加速度来表示。由于一般情况下频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。要想得到加速度的值需要用到测量的仪器是加速度传感器,使用过加速度传感器的人们知道,一般加速度传感器都是用恒流源供电,传感器输出的信号通常也就是电压信号,除了部分传感器有过处理,输出信号有常规的标准电流电压信号。加速度传感器正弦波输出的形式早已是最常见的。 对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。对加速度传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。 最常见的压电式加速度传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。 IEPE型压电加速度计即通常所称的ICP型压电加速度传感器。压电传感器换能器输出的电荷通过装在传感器内部的前置放大器转换成低阻抗的电压输出。IEPE型传感器通常为二线输出形式,即采用恒电流电压源供电。直流供电和信号使用同一根线,通常直流电部分在恒电流电源的输出端通过高通滤波器滤去。IEPE型加速度传感器的最大优点是测量信号质量好、噪声小、抗外界干扰能力强和远距离测量,特别是新型的数采系统很多已配备恒流电压源,因此,IEPE 传感器能与数采系统直接相连而不需要任何其它二次仪表。加速度传感器的性能逐渐变得便捷使用,而且将会越来越受工程振动测量的最佳帮手。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/cb13833971.html,/

加速度传感器

加速度传感器 一、简介 加速度传感器是一种能够测量加速度的传感器。通常由质量块、阻尼器、弹性元件、敏感元件和适调电路等部分组成。传感器在加速过程中,通过对质量块所受惯性力的测量,利用牛顿第二定律获得加速度值。根据传感器敏感元件的不同,常见的加速度传感器包括电容式、电感式、应变式、压阻式、压电式等。 二、分类 压电式 压电式加速度传感器又称压电加速度计。它也属于惯性式传感器。压电式加速度传感器的原理是利用压电陶瓷或石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。 压阻式 基于世界领先的MEMS硅微加工技术,压阻式加速度传感器具有体积小、低功耗等特点,易于集成在各种模拟和数字电路中,广泛应用于汽车碰撞实验、测试仪器、设备振动监测等领域。 电容式 电容式加速度传感器是基于电容原理的极距变化型的电容传感器。电容式加速度传感器/电容式加速度计是对比较通用的加速度传感器。在某些领域无可替代,如安全气囊,手机移动设备等。电容式加速度传感器/电容式加速度计采用了微机电系统(MEMS)工艺,在大量生产时变得经济,从而保证了较低的成本。 伺服式 伺服式加速度传感器是一种闭环测试系统,具有动态性能好、动态范围大和线性度好等特点。其工作原理,传感器的振动系统由"m-k”系统组成,与一般加速度计相同,但质量m上还接着一个电磁线圈,当基座上有加速度输入时,质量块偏离平衡位置,该位移大小

由位移传感器检测出来,经伺服放大器放大后转换为电流输出,该电流流过电磁线圈,在永久磁铁的磁场中产生电磁恢复力,力图使质量块保持在仪表壳体中原来的平衡位置上,所以伺服加速度传感器在闭环状态下工作。由于有反馈作用,增强了抗干扰的能力,提高测量精度,扩大了测量范围,伺服加速度测量技术广泛地应用于惯性导航和惯性制导系统中,在高精度的振动测量和标定中也有应用。 三、应用 1、汽车安全 加速度传感器主要用于汽车安全气囊、防抱死系统、牵引控制系统等安全性能方面。 在安全应用中,加速度计的快速反应非常重要。安全气囊应在什么时候弹出要迅速确定,所以加速度计必须在瞬间做出反应。通过采用可迅速达到稳定状态而不是振动不止的传感器设计可以缩短器件的反应时间。其中,压阻式加速度传感器由于在汽车工业中的广泛应用而发展最快。 2、游戏控制 加速度传感器可以检测上下左右的倾角的变化,因此通过前后倾斜手持设备来实现对游戏中物体的前后左右的方向控制,就变得很简单。 3、图像自动翻转 用加速度传感器检测手持设备的旋转动作及方向,实现所要显示图像的转正。 4、电子指南针倾斜校正 磁传感器是通过测量磁通量的大小来确定方向的。当磁传感器发生倾斜时,通过磁传感器的地磁通量将发生变化,从而使方向指向产生误差。因此,如果不带倾斜校正的电子指南针,需要用户水平放置。而利用加速度传感器可以测量倾角的这一原理,可以对电子指南针的倾斜进行补偿。 5、GPS导航系统死角的补偿 GPS系统是通过接收三颗呈120度分布的卫星信号来最终确定物体的方位的。在一些特殊的场合和地貌,如遂道、高楼林立、丛林地带,GPS信号会变弱甚至完全失去,这也就是所谓的死角。而通过加装加速度传感器及以前我们所通用的惯性导航,便可以进行系统

加速度传感器原理以及选用

加速度传感器原理以及选用 什么是加速度传感器? 加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速力可以是个常量,比如g,也可以是变量。 加速度传感器一般用在哪里? 通过测量由于重力引起的加速度,你可以计算出设备相对于水平面的倾斜角度。通过分析动态加速度,你可以分析出设备移动的方式。但是刚开始的时候,你会发现光测量倾角和加速度好像不是很有用。但是,现在工程师们已经想出了很多方法获得更多的有用的信息。 加速度传感器可以帮助你的机器人了解它现在身处的环境。是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。一个好的程序员能够使用加速度传感器来回答所有上述问题。加速度传感器甚至可以用来分析发动机的振动。 目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。 加速度传感器是如何工作的? 多数加速度传感器是根据压电效应的原理来工作的。 所谓的压电效应就是 "对于不存在对称中心的异极晶体加在晶体上的外力除了使晶体发生形变以外,还将改变晶体的极化状态,在晶体内部建立电场,这种由于机械力作用使介质发生极化的现象称为正压电效应 "。 一般加速度传感器就是利用了其内部的由于加速度造成的晶体变形这个特性。由于这个变形会产生电压,只要计算出产生电压和所施加的加速度之间的关系,就可以将加速度转化成电压输出。当然,还有很多其它方法来制作加速度传感器,比如电容效应,热气泡效应,光效应,但是其最基本的原理都是由于加速度产生某个介质产生变形,通过测量其变形量并用相关电路转化成电压输出。 在选购加速度传感器的时候,需要考虑什么? 模拟输出 vs 数字输出:这个是最先需要考虑的。这个取决于你系统中和加速度传感器之间的接口。一般模拟输出的电压和加速度是成比例的,比如2.5V对应0g的加速度,2.6V对应于0.5g的加速度。数字输出一般使用脉宽调制(PWM)信号。 如果你使用的微控制器只有数字输入,比如BASIC Stamp,那你就只能选择数字输出的加速度传感器了,但是问题是你必须占用额外的一个时钟单元用来处理PWM信号,同时对处理器也是一个不小的负担。 如果你使用的微控制器有模拟输入口,比如PIC/AVR/OOPIC,你可以非常简单的使用模拟接口的加速度传感器,所需要的就是在程序里加入一句类似"acceleration=read_adc()"的指令,而且处理此指令的速度只要几微秒。 测量轴数量: 对于多数项目来说,两轴的加速度传感器已经能满足多数应用了。对于某些特殊的应用,比如UAV,ROV控制,三轴的加速度传感器可能会适合一点。 最大测量值: 如果你只要测量机器人相对于地面的倾角,那一个±1.5g加速度传感器就足够了。

相关主题
文本预览
相关文档 最新文档