当前位置:文档之家› 第1章 天线的基本参数

第1章 天线的基本参数

第1章 天线的基本参数
第1章 天线的基本参数

天线的主要性能指标和相关知识

天线的主要性能指标 1、方向图: 天线方向图是表征天线辐射特性空间角度关系的图形。以发射天线为例,从不同角度方向辐射出去的功率或场强形成的图形。一般地,用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图,分为水平面方向图和垂直面方向图。平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。 描述天线辐射特性的另一重要参数半功率宽度,在天线辐射功率分布在主瓣最大值的两侧,功率强度下降到最大值的一半(场强下降到 最大值的0.707倍,3dB衰耗)的两个方向的夹角,表征了天线在指定方向上辐射功率的集中程度。一般地,GSM定向基站水平面半功 率波瓣宽度为65° 在120°的小区边沿,天线辐射功率要比最大辐射方向上低9-10dB。 2、方向性参数 不同的天线有不同的方向图,为表示它们集中辐射的程度,方向图的尖锐程度,我们引入方向性参数。理想的点源天线辐射没有方向性,在各方向上辐射强度相等,方向是个球体。我们以理想的点源天线作为标准与实际天线进行比较,在相同的辐射功率某天线产生于某点的电场强度平方E2与理想的点源天线在同一点产生的电场强度的平方E02的比值称为该点的方向性参数D=E2/E02? 3、天线增益 增益和方向性系数同是表征辐射功率集中程度的参数,但两者又不尽相同。增益是在同一输出功率条件下加以讨论的,方向性系数是在同一辐射功率条件下加以讨论的。由于天线各方向的辐射强度并不相等,天线的方向性系数和增益随着观察点的不同而变化,但其变化趋势是一致的。一般地,在实际应用中,取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。 另外,表征天线增益的参数有dBd和dBi。DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益 dBi=dBd+2.15。相同的条件下,增益越高,电波传播的距离越远。 4、入阻输入阻抗 输抗是指天线在工作频段的高频阻抗,即馈电点的高频电压与高频电流的比值,可用矢量网络测试分析仪测量,其直流阻抗为0Q。 般移动通信天线的输入阻抗为50 Q。 5、驻波比 由于天线的输入阻抗与馈线的特性阻抗不可能完全一致,会产生部分的信号反射,反射波和入射波在馈线上叠加形成驻波,其相邻的电 压最大值与最小值的比即为电压驻波比VSWR假定天线的输入功率P1,反射功率P2,天线的驻波比VSWR=( +) / (-)。一般地说,移 动通信天线的电压驻波比应小于 1.5,但实际应用中VSWR应小于1.2。 6、极化方式 根据天线在最大辐射(或接收)方向上电场矢量的取向,天线极化方式可分为线极化,圆极化和椭圆极化。线极化又分为水平极化,垂 直极化和土45o极化。发射天线和接收天线应具有相同的极化方式,一般地,移动通信中多采用垂直极化或土45o极化方式。 7、双极化天线隔离度 双极化天线有两个信号输入端口,从一个端口输入功率信号P1dBm,从另一端口接收到同一信号的功率P2dBm之差称为隔离度,即隔 离度=P1-P2。 移动通信基站要求在工作频段内极化隔离度大于28dB。土45o双极化天线利用极化正交原理,将两副天线集成在一起,再通过其他的一 些特殊措施,使天隔离度大于30dB。 天线常识

天线的基本参数

1.1天线得基本参数 从左侧得传输线得角度瞧,天线就是一个阻抗(impedance)为Z得2终端电路单元(2-terminal circuit element),其中Z包含得电阻部分(resistiv eponent)被称为辐射电阻(radiationresistance,Rr);从右侧得自由空间角度来瞧,天线得特征可以用辐射方向图(radiation pattern)或者包含场量得不等于天线材料自己得电阻,而就是天线、天线所处得环境(比如温度)方向图。R r 与天线终端得综合结果。 影响辐射电阻Rr得还包括天线温度(antennatemperature,T A)。对于 与天线材料本身得温度一点都没有关系,而就是与自无损天线来说,天线温度T A 由空间得温度有关。确切地说,天线温度与其说就是天线得固有属性,还不如说就是一个取决于天线“瞧到”得区域得参数。从这个角度瞧,一个接收天线可以被视作能遥感测温设备。 辐射电阻Rr与天线温度T A都就是标量。另一方面,辐射方向图包括场变量或者功率变量(功率变量与场变量得平方成正比),这两个变量都就是球体坐标θ与Φ得函数。 1.2天线得方向性(D,Directivity)与增益(G,Gain) D=4π/ΩA,其中ΩA就是总波束范围(或者波束立体角)、ΩA由主瓣范围(立+副瓣范围(立体角)Ωm。 体角)Ω M 如果就是各向同性得(isotropic)天线,则ΩA=4π,因此D=1。各向同性天线具有最低得方向性,所有实际得天线得方向性都大于1。 如果一个天线只对上半空间辐射,则其波束范围ΩA=2π,因此D=4π/2π=2=3.01dBi、 简单短偶极子具有波束范围ΩA=2.67πsr,与定向性D=1、5(1、76dBi)。 如果一个天线得主瓣在θ平面与Φ平面得半功率波束宽度HPBW都就是20度,则D=4πsr/ΩA sr=41000deg2/(20deg)*(20 deg) ≈103≈20dBi(dB over isotropic)。这意味着,当输入功率相同时,该天线在主瓣方向得辐射功率就是各向同性天线得103倍。 天线增益G既考虑天线得方向性,又考虑天线得效率。G=kD。只要天线不就是100%损耗,那么G就小于D。k就是天线得效率因子(0≤k≤1)。天线效率只与天线得欧姆电阻损耗有关、在发射状态时,这些电阻损耗使得收到得能量没有被

天线-第1章-天线基础微波技术与天线

第一章 基本振子天线 基本振子是最基本的辐射源,是研究和分析各类线天线的基础,它包括基本电振子和基本磁振子。而研究面天线的基本辐射源是惠更斯源。 § 1 基本电振子(Electric Short Dipole ) 1. 定义 一段理想的高频电流直导线,长度λ<

为求其空间的场分布,首先求出其矢量磁位A ,再由A 求出电场E 和磁场H 。 根据电磁场理论,电流分布() z a I z y x I ?,,0' ''= 的电流源, 其矢量磁位A 可以表示为: ()() '''',,,4,,dl r e z y x I z y x A jkr e l -? = π μ (2-1) ()z y x ,,--观察点坐标 ()' ' ' ,,z y x --源点坐标 r --源点到观察点的距离 由于基本电振子的长度l 远小于波长λ和距离r ,因此式(2-1)可以表示成: ()jkr z l l jkr z e r l I a dz e r I a z y x A ---==?πμπμ4?4?,,0'2/2/0 (2-2) 引用直角坐标与球坐标的变换关系,将(2-2)式改写为: θπμθcos 4cos 0r le I A A jkr z r -== θπμθθsin 4sin 0r le I A A jkr z --=-= 0=?A 依据()?? ??????-?? =??=θμμθ?r A rA r r a A H 1?10 ,得到磁场表达式: jkr e r r k j l I H -?? ????+= 2014sin π θ ? (2-3) 0=r H 0=θH

天线的几个重要参数介绍

一、天线的几个重要参数介绍 1.天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。 xx: 它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于 1.5。回波损耗: 它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于 14dB。 2.天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能

天线技术基础第1章天线基础概要

第一章天线基础 内容提要 本章首先说明天线的作用和本质,接着简述单位制和电磁场方程, 最后着重讲述电磁辐射的基础——电流元的辐射、磁流元的辐射和面元 的辐射。 1.1 天线的作用和分类 1.1.1 天线的作用和本质 当今社会已进入信息社会。随时随地、快速方便的进行信息交换,已成为社会生活的一大需求。利用无线方式即空间电磁波传送信息(语音、图像、数据等),已为人们广泛接受。而要进行这种传送,发方必须有一个把包含传送信息的高频信号变换为空间电磁波辐射出去的设备,收方则要有一个接收空间电磁波并把它变换成电路中的高频电信号的设备。这种能有效地辐射或接收电磁波的设备,称为天线。其中辐射电磁波的,称为发射天线;接收电磁波的,称为接收天线。因此,天线本质上是一个换能器。它完成电路中的高频电流(或导波)能量与空间电滋波能量的相互转换。 1.1.2 天线的分类及其分析方法 天线种类繁多。分类方法也不少。其中有按工作波段(或频段)分的,如长波天线、中波天线、短波天线、超短波天线、微波天线等。有按用途分的,如电视接收天线、电视发射天线、通信天线、雷达天线等。有按几何形状分的,如螺旋天线、环形天线、喇叭天线、蝙蝠翼天线等。有按性能分的,如按增益分的高增益天线、低增益天线,按方向特性分的定向天线、全向天线,按极化特性分的园极化天线、线极化天线,按带宽分的宽带天线、窄带天线等等。 我们这里从分析研究方便出发,将天线分成两类。一类称为线天线,它是指由直径远小于工作波长的金属导线组成的天线。另一类称为面天线,它是指由尺寸远大于工作波长的金属面或介质面组成的天线。两者基本辐射原理相同,但分析方法不一样。 对于线天线,我们可以把它分成许多小段。只要分得足够小,每一小段都可看成一个电流元。这样,整个天线的辐射场,就可认为是所有电流元产生的辐射场的迭

天线性能的主要参数

天线性能的主要参数 有方向图,增益,输入阻抗,驻波比,极化方式等。 1 天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。一般移动通信天线的输入阻抗为50Q。 xx: 它是行波系数的倒数,其值在 1 到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。 回波损耗: 它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在OdB的到无 穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。 0 表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。 2 天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而 使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅

天线基本参数说明

天线有五个基本参数:方向性系数、天线效率、增益系数、辐射电阻和天线有效高度。这些参数是衡量天线质量好坏的重要指标。 【天线的方向性】是指天线向一定方向辐射电磁波的能力。它的这种能力可采用方向图,方向图主瓣的宽度,方向性系数等参数进行描述。所以方向性是衡量天线优劣的重要因素之一。天线有了方向性,就能在某种程度上相当于提高发射机或接收机的效率,并使之具有一定的性和抗干扰性。 【方向性图】方向性图是表示天线方向性的特性曲线,即天线在各个方向上所具有的发射或接收电磁波能力的图形。 实用天线处在三度几何空间中,所以,它的方向性图应该是个立体图。在这个立体图中,由于所取的截面不同而有不同的方向性图。最常用的是水平面的方向性图(即和平行的平面的方向性图)和垂直面的方向性图(即垂直于的平面的方向性图)。有的专业书籍上也称赤道面方向性图或子午面方向性图。 【波瓣宽度】有时也称波束宽度。系指方向性图的主瓣宽度。一般是指半功率波瓣宽度。当 L/λ数值不同时,其波瓣宽度也不同。L/λ比值增加时,方向图越尖锐,但当(L/λ)>0.5时,除了与振子轴垂直的方向有最大的主瓣外,还可能出现付瓣。因此,波瓣宽度越小,其方向性越强,性也强,干扰邻台的可能性小。所以,对于超短波,微波等所用的天线,登记主瓣宽度这一指标,是十分重要的。

【方向性系数】方向性系数是用来表示天线向某一个方向集中辐射电磁波程度(即方向性图的尖锐程度)的一个参数。为了确定定向天线的方向性系数,通常以理想的非定向天线作为比较的标准。 任一定向天线的方向性系数是指在接收点产生相等电场强度的条件下,非定向天线的总辐射功率对该定向天线的总辐射功率之比。 按照上面的定义,由于定向天线在各个方向上的辐射强度不等,故天线的方向性系数也随着观察点的位置而不同,在辐射电场最大的方向,方向性系数也最大。通常如果不特别指出,就以最大辐射方向的方向性系数作为定向天线的方向性系数。 在中波和短波波段,方向性系数约为几到几十;在米波围,约为几十到几百;而在厘米波波段,则可高达几千,甚至几万。 【辐射电阻】发射天线的辐射功率与馈电点的有效电流平方之比,称为天线的辐射电阻。 辐射电阻是一个等效电阻,如果用它来代替天线,就能消耗天线实际辐射的功率。因此,采用辐射电阻这个概念,可以简化天线的有关计算。 辐射电阻的大小取决于天线的尺寸、形状以及馈电电流的波长。因为发射天线的任务是辐射电磁波,所以在装置天线时总是适当地选择其尺寸和形状,使辐射电阻尽可能大一些。

天线的基本参数

1.1天线的基本参数 从左侧的传输线的角度看,天线是一个阻抗(impedance)为Z的2终端电路单元(2-terminal circuit element),其中Z包含的电阻部分(resistive component)被称为辐射电阻(radiation resistance,R r);从右侧的自由空间角度来看,天线的特征可以用辐射方向图(radiation pattern)或者包含场量的方向图。R r不等于天线材料自己的电阻,而是天线、天线所处的环境(比如温度)和天线终端的综合结果。 影响辐射电阻R r的还包括天线温度(antenna temperature,T A)。对于无损天线来说,天线温度T A和天线材料本身的温度一点都没有关系,而是与自由空间的温度有关。确切地说,天线温度与其说是天线的固有属性,还不如说是一个取决于天线“看到”的区域的参数。从这个角度看,一个接收天线可以被视作能遥感测温设备。 辐射电阻R r和天线温度T A都是标量。另一方面,辐射方向图包括场变量或者功率变量(功率变量与场变量的平方成正比),这两个变量都是球体坐标θ和Φ的函数。 1.2天线的方向性(D,Directivity)和增益(G,Gain) D=4π/ΩA,其中ΩA是总波束范围(或者波束立体角)。ΩA由主瓣范围(立体角)ΩM+副瓣范围(立体角)Ωm。 如果是各向同性的(isotropic)天线,则ΩA=4π,因此D=1。各向同性天线具有最低的方向性,所有实际的天线的方向性都大于1。 如果一个天线只对上半空间辐射,则其波束范围ΩA=2π,因此D=4π/2π=2=3.01dBi。 简单短偶极子具有波束范围ΩA=2.67πsr,和定向性D=1.5(1.76dBi)。 如果一个天线的主瓣在θ平面和Φ平面的半功率波束宽度HPBW都是20度,则D=4πsr/ΩA sr=41000 deg2/(20 deg)*(20 deg) ≈103≈20dBi(dB over isotropic)。这意味着,当输入功率相同时,该天线在主瓣方向的辐射功率是各向同性天线的103倍。 天线增益G既考虑天线的方向性,又考虑天线的效率。G=kD。只要天线不是100%损耗,那么G就小于D。k是天线的效率因子(0≤k≤1)。天线效率只

微波技术与天线[王新稳][习题解答]第一章

1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线 1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===?<< 此传输线为短线 1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略 的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其 为分布参数。用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。 1-4 解: 特性阻抗 050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cm B 1=ω C 1=2π×50×0.666×10×10-12=2.09×10-9 S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()220 1 j z j z i r I z U e U e Z ββ''-'= - 将 22233 20,2,42 i r U V U V z πβλπλ'===?= 代入 332 2 3 4 20220218j j z U e e j j j V ππλ-'==+=-+=- ()34 1 2020.11200 z I j j j A λ'== --=- ()()()34,18cos 2j t e z u z t R U z e t V ωλπω'=??''??==- ????? ()()()34 ,0.11cos 2j t e z i z t R I z e t A ωλπω'=??''??==- ????? 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''== ()()()2 123 2 1 100j j z z U z e U z e πβ''-''== ()() ()() 6 1 1100,100cos 6j U z e V u z t t V ππω'=? ?=+ ?? ?

现代天线技术试题

现代天线技术试题四 一、简要回答问题 1、何谓方向性函数和归一化方向性函数?何谓场强方向图和功率方向图? 答:辐射场的表达式中,振幅中与空间角度有关的函数(),f θ?称为天线的方向性函数。 相同r 的球面上(),θ?点的场强与最大场强之比,即 ()()()max max ,,,E f F E f θ?θ?θ?= = 称为归一化方向性函数。 方向图是方向性函数的图形表示,它可以形象描绘天线辐射特性随着空间方向坐标的变化关系。通常讨论在远场半径为常数的大球面上,天线辐射(或接收)的功率或者场强随位置方向坐标的变化规律,并分别称为功率方向图和场强方向图。 2、写出方向性系数的通用表达式;简述方向性系数与增益间的关系。 答:方向性系数定义为辐射功率相同的条件下,定向天线在主向远区某点的功率密度与理想的无方向性天线在该点的功率密度之比,即 2 max max 2 = P r P r E S D S E = 相同,相同 相同,相同 ,也可定义为定向天线在主向远区 r 处得到相同电场强度E 的条件下,理想天线的辐射功率与被研究天线的辐射功率之比,即0r r P D P = E 相同,相同 。 根据上述定义,可以导出天线方向系数的计算公式 ()22 4,sin D F d d ππ π θ?θθ? = ??

天线增益定义为在输入功率相同的条件下,定向天线在主向远区某点的功率密度与理想的无方向性天线在该点的功率密度之比,即 max 00 = in in P r E r S P G S P = 相同,相同 相同,相同 天线效率定义为天线的辐射功率与输入功率之比,即r A in P P η= 综上所述,方向性系数与增益的关系为A G D η= 3、说明正交对称振子天线的极化形式。 答:正交振子天线在振子所在平面的辐射场为线极化;在该平面法线方向为圆极化;在其他方向为椭圆极化,极化椭圆的轴比随方向不同而变化。 4、简述抛物面天线的特点。 答:抛物面天线由辐射器和抛物反射面构成。辐射器位于抛物面的焦点上,本身为弱方向性。经过反射之后则可成为主瓣很窄,副瓣很小的强方向性天线。抛物面天线结构简单,方向性强,工作频带宽,具有良好的辐射特性,具有多种形式。 馈源放在抛物面焦点F 上,从焦点F 出发的射线,经抛物面反射后平行于OF轴,从而在口面上可得到近似均匀的平面波。 5、简述天线的常用测试方法和主要参数。 答;方向图测试方法主要有:固定天线法、旋转天线法。 增益测量方法主要有:比较法、双天线法、镜像法。 二、由半波对称振子构成的三元直线阵如图所示。相邻阵元间距为 4 λ 、馈电相位差为0,馈电幅度为1:2:1。 (1) 用方向性乘积原理分别写出E 面(xoz 平面)和H 面(xoy 平面) 的归一化方向性函数; (2) 用方向性乘积原理分别定性绘出E 面和H 面方向图;

天线工作原理与主要参数

天线工作原理与主要参数 、天线工作原理与主要参数<BR天线是任何一个无线电通信系统都不可 缺少的重要组成部分。合理慎重地选用天线,可以取得较远的通信距离和良好的通信效果。 (一)天线的作用<BR^类无线电设备所要执行的任务虽然不同,但天线在设备中的作用却是基本相同的。任何无线电设备都是通过无线电波来传递信息,因此就必须有能辐射或接收电磁波的装置。所以,天线的第一个作用就是辐射和接收电磁波。当然能辐射或接收电磁波的东西不一定都能用来作为天线。例如任何高频电路,只要不是完全屏蔽起来的,都可以向周围空间或多或少地辐射电磁波,或者从周围空间或多或少地接收到电磁波。但是,任意一个高频电路并不一定能作天线,因为它辐射和接收电磁波的效率很低。只有能够有效地辐射和接收电磁波的设备才有可能作为天线使用。天线的另一个作用是”能量转换”。大家知道,发信机通过馈线送入天线的并不是无线电波,收信天线也不能直接把无线电波送入收信机,这里有一个能量的转换过程,即把发信机所产生的高频振荡电流经馈线送入天线输入端,天线要把高频电流转换为空间高频电磁波,以波的形式向周围空间辐射。 反之在接收时,也是通过收信天线把截获的高频电磁波的能量转换成高频电流的能量后,再送给收信机。显然这里有一个转换效率问题。 天线增益越高,则转换效率就越高。 (二)天线的分类<BR沃线的形式繁多,按其用途可以分为发信天线和收信天线;按使用波段可以分为长、中、短、超短波天线和微波天线、微带天线等。此外,我们还可按其工作原理和结构来进行分类。 <BR>^便于分析和研究天线的性能,一般把天线按其结构形式分为两大类: 一类是半径远小于波长的金属导线构成的线状天线,另一类是用尺寸大于波长的金属或介质面构成的面状天线。线状天线主要用于长、中、短波频段,面状天线主要用于厘米或毫米波频段;甚高频段一般以线状天线为主,而特高频段则线、面状天线兼用。线状天线和面状天线的基本工作原理是相同的。 (三)天线的工作原理

天线的主要性能指标

天线的主要性能指标 表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化,双极化天线的隔离度,及三阶交调等。 1、方向图 天线方向图是表征天线辐射特性空间角度关系的图形。以发射天线为例,从不同角度方向辐射出去的功率或场强形成的图形。一般地,用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图,分为水平面方向图和垂直面方向图。平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。 描述天线辐射特性的另一重要参数半功率宽度,在天线辐射功率分布在主瓣最大值的两侧,功率强度下降到最大值的一半(场强下降到最大值的0.707倍,3dB衰耗)的两个方向的夹角,表征了天线在指定方向上辐射功率的集中程度。一般地,GSM定向基站水平面半功率波瓣宽度为65o,在120o 的小区边沿,天线辐射功率要比最大辐射方向上低9-10dB。2、方向性参数 不同的天线有不同的方向图,为表示它们集中辐射的程度,方向图的尖锐程度,我们引入方向性参数。理想的点源天线辐射没有方向性,在各方向上辐射强度相等,方向是个球体。我们以理想的点源天线作为标准与实际天线进行比较,在相

同的辐射功率某天线产生于某点的电场强度平方E2与理想的点源天线在同一点产生的电场强度的平方E02的比值称为该点的方向性参数D=E2/E02 3、天线增益 增益和方向性系数同是表征辐射功率集中程度的参数,但两者又不尽相同。增益是在同一输出功率条件下加以讨论的,方向性系数是在同一辐射功率条件下加以讨论的。由于天线各方向的辐射强度并不相等,天线的方向性系数和增益随着观察点的不同而变化,但其变化趋势是一致的。一般地,在实际应用中,取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。 另外,表征天线增益的参数有dBd和dBi。DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。相同的条件下,增益越高,电波传播的距离越远。 4、入阻输入阻抗 输抗是指天线在工作频段的高频阻抗,即馈电点的高频电压与高频电流的比值,可用矢量网络测试分析仪测量,其直流阻抗为0Ω。一般移动通信天线的输入阻抗为50Ω。 5、驻波比 由于天线的输入阻抗与馈线的特性阻抗不可能完全一致,会产生部分的信号反射,反射波和入射波在馈线上叠加形

现代通信原理与技术课后答案完整版-张辉第一章

第一章 1-1 e 的信息量 ==)(1log 2e P I e 3.25bit v 的信息量 ==) (1l o g 2v P I v 6.96bit 1-2 因为全概率1)1()0(=+P P ,所以P(1)=3/4,其信息量为 ==) 1(1log 2P I 0.412(bit) 1-3平均信息量(熵) ∑=-=n i i i x P x P x H 12)(l o g )()(=2.375(bit/符号) 1-4 (1)一个字母对应两个二进制脉冲,属于四进制符号,故一个字母的持续时间为10ms 。传送字母的符号速率为)(100105213 B R B =??= - 等概率时的平均信息速率 )/(200log 2s bit M R R B b == (2) 平均信息量为 ∑=-=n i i i x P x P x H 12)(l o g )()(=1.985(bit/符号) 则平均信息量为)/(5.198s b H R R B b =?= 1-5 (1) )/(2400s bit R R B b == (2) )/(96004240016log 2s bit R R B b =?== 1-6 (1) 先求信息源的熵,∑=-=n i i i x P x P x H 12)(log )()(=2.23(bit/符号) 则平均信息速率 )/(1023.23s b H R R B b ?=?= 故传送1小时的信息量)(10028.81023.2360063bit R T I b ?=??=?= (2)等概率时有最大信息熵,)/(33.25log 2max 符号bit H == 此时平均信息速率最大,故有最大信息量)(10352.86max bit H R T I B ?=??= 1-7 因为各符号的概率之和等于1,所以第四个符号的概率为1/2,则该符号集的平均信息量为)/(75.12 1log 2181log 81241log 41222符号bit H =-?--= 1-8 若信息速率保持不变,则传码率为 )(1200log 2B M R R b B ==

天线主要参数

天线方向图、增益、波瓣宽度就是表征天线性能得主要参数, 天线得输入阻抗就是天线馈电端输入电压与输入电流得比值。天线与馈线得连接,最佳情形就是天线输入阻抗就是纯电阻且等于馈线得特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线得输入阻抗随频率得变化比较平缓。天线得匹配工作就就是消除天线输入阻抗中得电抗分量,使电阻分量尽可能地接近馈线得特性阻抗。匹配得优劣一般用四个参数来衡量即反射系数,行波系数,驻波比与回波损耗,四个参数之间有固定得数值关系,使用那一个纯出于习惯。在我们日常维护中,用得较多得就是驻波比与回波损耗。一般移动通信天线得输入阻抗为50Ω。 驻波比:它就是行波系数得倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1、5,但实际应用中VSWR应小于1、2。过大得驻波比会减小基站得覆盖并造成系统内干扰加大,影响基站得服务性能。 回波损耗:它就是反射系数绝对值得倒数,以分贝值表示。回波损耗得值在0dB得到无穷大之间,回波损耗越小表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。 1、2 天线得极化方式 所谓天线得极化,就就是指天线辐射时形成得电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波得特性,决定了水平极化传播得信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量得大幅衰减,保证了信号得有效传播。 因此,在移动通信系统中,一般均采用垂直极化得传播方式。另外,随着新技术得发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化与±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用得就是±45°极化方式。双极化天线组合了+45°与-45°两副极化方向相互正交得天线,并同时工作在收发双工模式下,大大节省了每个小区得天线数量;同时由于±45°为正交极化,有效保证了分集接收得良好效果。(其极化分集增益约为5dB,比单极化天线提高约2dB。) 1、3 天线得增益 天线增益就是用来衡量天线朝一个特定方向收发信号得能力,它就是选择基站天线最重要得参数之一。 一般来说,增益得提高主要依靠减小垂直面向辐射得波瓣宽度,而在水平面上保持全向得辐射性能。天线增益对移动通信系统得运行质量极为重要,因为它决定蜂窝边缘得信号电平。增加增益就可以在一确定方向上增大网络得覆盖范围,或者在确定范围内增大增益余量。任何蜂窝系统都就是一个双向过程,增加天线得增益能同时减少双向系统增益预算余量。另外,表征天线增益得参数有dBd与dBi。DBi就是相对于点源天线得增益,在各方向

微波技术与天线[王新稳][习题解答]第一章

微波技术与天线[王新 稳][习题解答]第一章-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线 1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===?<< 此传输线为短线 1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略 的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其 为分布参数。用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。 1-4 解: 特性阻抗 050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cm B 1=ω C 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()220 1 j z j z i r I z U e U e Z ββ''-'= - 将 22233 20,2,42 i r U V U V z πβλπλ'===?= 代入 3 32 2 3 4 20220218j j z U e e j j j V ππλ-'==+=-+=- ()34 1 2020.11200 z I j j j A λ'== --=- ()()()34 ,18cos 2j t e z u z t R U z e t V ωλπω'=??''??==- ????? ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=??''??==- ????? 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''== ()()()2123 2 1 100j j z z U z e U z e πβ' ' -''== ()() ()() 6 1 1100,100cos 6j U z e V u z t t V ππω'=? ?=+ ?? ?

天线主要参数

天线方向图、增益、波瓣宽度是表征天线性能的主要参数, 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。一般移动通信天线的输入阻抗为50Ω。 驻波比:它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。 回波损耗:它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越小表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。 1.2 天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。 因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。双极化天线组合了+45°和-45°两副极化方向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。(其极化分集增益约为5dB,比单极化天线提高约2dB。) 1.3 天线的增益 天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。 一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。天线增益对移动通信系统的运行质量极为重要,因为它决定蜂窝边缘的信号电平。增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。任何蜂窝系统都是一个双向过程,增加天线的增益能同时减少双向系统增益预算余量。另外,表征天线增益的参数有dBd和dBi。DBi是相对于点源天线的增益,在各方向的

微波技术与天线[王新稳][习题解答]第一章学习资料

微波技术与天线[王新稳][习题解答]第一 章

1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线 1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===?<< 此传输线为短线 1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略 的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。 1-4 解: 特性阻抗 050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cm B 1=ω C 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()220 1 j z j z i r I z U e U e Z ββ''-'= - 将 22233 20,2,42 i r U V U V z πβλπλ'===?= 代入 3 32 2 3 4 20220218j j z U e e j j j V ππλ-'==+=-+=- ()34 1 2020.11200 z I j j j A λ'== --=- ()()()34 ,18cos 2j t e z u z t R U z e t V ωλπω'=??''??==- ????? ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=??''??==- ????? 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==

微波与天线第一章 习题

第一章习题 一、名词解释与简述题 1.什么是微波?微波有什么特点? 2.试解释传输线各工作特性参数(特性阻抗、传播常数、相速和波长) 3.传输线输入阻抗、反射系数、驻波比的定义、特点及其间关系 4.什么是行波状态,说明其特点 5.什么是驻波状态,说明其特点 6.简述传输功率、回波损耗、插入损耗 7.阻抗匹配的意义,阻抗匹配有哪三种类型,并且如何实现? 二、填空题 1.传输线上电压或电流的分布变换特性对应长度为,分布重复特性对应长度为。 2.负载或最大输出功率时,负载与源阻抗间关系为。 3.阻抗圆图上半部分呈性,下半部分呈性。 4.Smith圆图与实轴左边交点为点,与实轴右边交点为点,原点为点。 5.阻抗圆图左半轴上点对应电压点,右半轴上的点为电压点。 6.在传输线上负载向电源方向移动,对应圆图为旋转,反之,向电源方向移动时为旋转。 三、计算题

1、 在一均匀无耗传输线上传输频率为3GH z 的信号,已知其特性阻抗Z 0=100Ω,终端接Z L =75+j100Ω的负载,试求: (1) 传输线上的驻波系数; (2) 离终端10cm 处的反射系数; (3) 离终端2.5cm 处的输入阻抗。 2、 有一特性阻抗为0 500Ω=Z 的无耗均匀传输线,导体间的媒质参数为25.2=r ε,1=r μ,终端接负载Z L =50Ω。当z MH f 100=时,其线长度为4/λ。试求:(1)传输线实际长度;(2)负载终端反射系数;(3)输入端反射系数; (4)输入端阻抗。 3、某一均匀无耗传输线特性阻抗为Ω=500Z ,终端接有未知负载1Z ,现在传输线上测得电压最大值和最小值分别为100mV 和20mV ,第一个电压波节的位置离负载1min l 3/λ=,试求该负载阻抗Z L 。

天线性能的主要参数

天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化方式等。 1 天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。一般移动通信天线的输入阻抗为50Ω。 驻波比:它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。 回波损耗:它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在 0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。 2 天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。 因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。双极化天线组合了+45°和-45°两副极化方向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。(其极化分集增益约为5dB,比单极化天线提高约2dB。) 3 天线的增益 天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。 一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。天线增益对移动通信系统的运行质量极为重要,因为它决定蜂窝边缘的信号电平。增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。任何蜂窝系统都是一个双向过程,增加天

相关主题
文本预览
相关文档 最新文档