用逆滤波和维纳滤波进行图像复原
- 格式:doc
- 大小:245.50 KB
- 文档页数:5
数字图像处理课程论文图像复原算法研究学院:信息科学与工程学院专业:通信工程姓名:学号:任课教师:2017年5月摘要数字图像恢复是数字图像处理的一个基本的和重要的课题,它是后期图像处理的前提。
图像在获取、上传、保存的过程中不可避免地引起图像退化和图像质量的下降,图像恢复就是试图利用退化过程的先验知识使已退化的图像恢复本来面貌。
本论文主要研究引起退化的环境因素,建立相应的数学模型,并沿着使图像降质的逆过程恢复图像。
本文首先对测试图像进行模糊及加噪处理,在已知系统退化模型的情况下,对观测图像分别使用逆滤波、维纳滤波、有约束的最小二乘方滤波算法进行复原,并比较它们的处理效果。
在这几种算法的参数选取上得到了丰富的经验数据,并对实验结果进行了分析总结。
发现维纳滤波较约束最小二乘法滤波效果要好,这是因为前者利用了原图像的统计信息,采用了真实的PSF函数来恢复。
无论何种算法,它们都要依据获取的相关信息才能有效地实施,算法利用的信息越多,信息的准确性越高,复原图像的质量也就越高。
关键词:图像复原;逆滤波;维纳滤波;有约束的最小二乘方滤波一、引言MATLAB 语言是由美国MathWorks公司推出的计算机软件,经过多年的逐步发展与不断完善,现已成为国际公认的最优秀的科学计算与数学应用软件之一,是近几年来在国内外广泛流行的一种可视化科学计算软件。
它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,而且还具有可扩展性特征。
MathWorks 公司针对不同领域的应用,推出了信号处理、控制系统、神经网络、图像处理、小波分析、鲁棒控制、非线性系统控制设计、系统辨识、优化设计、统计分析、财政金融、样条、通信等30 多个具有专门功能的工具箱,这些工具箱是由该领域内的学术水平较高的专家编写的,无需用户自己编写所用的专业基础程序,可直接对工具箱进行运用。
同时,工具箱内的函数源程序也是开放性的,多为M 文件,用户可以查看这些文件的代码并进行更改,MALAB 支持用户对其函数进行二次开发,用户的应用程序也可以作为新的函数添加到相应的工具箱中。
用维纳滤波进行图像复原摘要在图像的获取、传输以及记录保存过程中,由于各种因素,如成像设备与目标物体的相对运动,大气的湍流效应,光学系统的相差,成像系统的非线性畸变,环境的随机噪声等原因都会使图像产生一定程度的退化,图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。
由于图像的退化,使得最终获取的图像不再是原始图像,图像效果明显变差。
为此,要较好地显示原始图像,必须对退化后的图像进行处理,恢复出真实的原始图像,这一过程就称为图像复原。
图像复原技术是图像处理领域一类非常重要的处理技术,主要目的就是消除或减轻在图像获取及传输过程中造成的图像质量下降即退化现象,恢复图像的本来面目。
图像复原的过程是首先利用退化现象的某种先验知识,建立退化现象的数学模型,然后再根据退化模型进行反向的推演运算,以恢复原来的景物图像。
本文利用维纳滤波进行图像的复原,效果明显。
一、 实验原理维纳滤波复原:维纳滤波就是最小二乘滤波,它是使原始图像(),f x y 与其恢复图像()ˆ,f x y 之间的均方误差最小的复原方法。
对图像进行维纳滤波主要是为了消除图像中存在的噪声,对于线性空间不变系统,获得的信号为()()()(),,,,g x y f h x y d d n x y αβαβαβ+∞+∞-∞-∞=--+⎰⎰(12-29)为了去掉(),g x y 中的噪声,设计一个滤波器(),m x y ,其滤波器输出为()ˆ,f x y ,即()()()ˆ,,,fx y g m x y d d αβαβαβ+∞+∞-∞-∞=--⎰⎰(12-30)使得均方误差式()(){}{}22ˆm in ,,e E fx y f x y ⎡⎤=-⎣⎦(12-31)成立,其中()ˆ,f x y 称为给定(),g x y 时(),f x y 的最小二乘估计值。
设(),f S u v 为(),f x y 的相关函数(),f R x y 的傅立叶变换,(),n S u v 分别为(),n x y 的相关函数(),n R x y 的傅立叶变换,(),H u v 为冲激响应函数(),h x y 的傅立叶变换,有时也把(),f S u v 和(),n S u v 分别称为(),f x y 和(),n x y 的功率谱密度,则滤波器(),m x y 的频域表达式为()()()()()()22,1,,,,,n f H u v M u v S u v H u v H u v S u v =+(12-32)于是,维纳滤波复原的原理可表示为()()()()()()()22,1ˆ,,,,,,n f H u v F u v G u v S u v H u v H u v S u v ⎡⎤⎢⎥⎢⎥=⎢⎥+⎢⎥⎣⎦(12-33)对于维纳滤波,由上式可知,当(),0H u v =时,由于存在()(),,n f S u v S u v 项,所以(),H u v 不会出现被0除的情形,同时分子中含有(),H u v 项,在(),0H u v =处,(),0H u v ≡。
图像复原方法综述1、摘要图像是人类视觉的基础,给人具体而直观的作用。
图像的数字化包括取样和量化两个步骤。
数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。
图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。
解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。
本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR 算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。
关键词:图像退化、图像复原、维纳滤波、正则滤波、LR 算法、盲区卷积、2、图像复原概述在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。
通常,称由于这些因素引起的质量下降为图像退化。
图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。
由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。
为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1] 。
图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。
简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。
由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。
用逆滤波和维娜滤波分别对运动模糊图像进行复原0809302-28 赵琴一、实验原理:逆滤波当退化图像的噪声较小,即轻度降质时,采用逆滤波复原的方法可以获得较好的结果.维纳滤波器实现维纳滤波方法的系统或装置称为维纳滤波器。
通过合理的设计可使其对噪声()具有良好的过滤特性当观测信号()=()+()输入滤波器时,它的输出就是信号()的最优估值()。
二、实验内容:构造维纳滤波器的步骤假设维纳滤波器的单位脉冲响应函数是(),则最优估值()的关系式为[470-01]如用R()表示()和()的互相关函数,R()表示()的自相关函数,那么业已证明它们之间具有类似于上式的关系式[470-02]这个关系式称为维纳-霍夫方程。
如果所讨论的各随机过程均具有各态历经性,则式中的R()和R()均是已知的。
设计维纳滤波器的问题,可归结为从维纳-霍夫积分方程中解出未知函数()。
()的拉普拉斯变换就是所要决定的维纳滤波器的传递函数H()。
对于一般问题,维纳-霍夫方程往往不易求解。
但当给定问题的随机过程的功率谱密度是有理分式函数时,H()的显式解就可比较容易地定出。
根据求得的H()即可构造所需的维纳滤波器,而信号的最优估值()则可由相应关系式定出。
三、实验目的:从噪声中提取信号波形的各种估计方法中,维纳(Wiener)滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号(波形),而不只是它的几个参量。
设维纳滤波器的输入为含噪声的随机信号。
期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。
因此均方误差越小,噪声滤除效果就越好。
为使均方误差最小,关键在于求冲激响应。
如果能够满足维纳-霍夫方程,就可使维纳滤波器达到最佳。
根据维纳-霍夫方程,最佳维纳滤波器的冲激响应,完全由输入自相关函数以及输入与期望输出的互相关函数所决定。
实现维纳滤波的要求是: 1.输入过程是广义平稳的 2.输入过程的统计特性是已知的。
根据其他最佳准则的滤波器亦有同样要求.然而,由于输入过程取决于外界的信号、干扰环境,这种环境的统计特性常常是未知的、变化的,因而难以满足上述两个要求。
一、概述Python是一种功能强大的编程语言,可以用于各种领域的科学计算和数据处理。
在信号处理领域,频域逆滤波和维纳滤波是两种常用的技术,用于处理受损信号和去噪。
本文将介绍如何使用Python实现频域逆滤波和维纳滤波,并探讨它们在信号处理中的应用。
二、频域逆滤波1. 概念介绍频域逆滤波是一种用于复原受损信号的技术,它利用信号的频谱信息进行处理。
当信号经过损坏或失真后,可以使用频域逆滤波来尝试恢复原始信号。
2. Python实现在Python中,可以使用`numpy`和`scipy`等库来实现频域逆滤波。
需要获取受损信号的频谱信息,然后根据损坏的模型和系统响应函数,进行逆滤波操作。
通过反变换将处理后的频谱信息还原为时域信号。
3. 应用案例频域逆滤波在医学图像处理、通信系统恢复和地震信号处理等领域有广泛的应用。
通过Python实现频域逆滤波,可以方便地应用于各种实际问题的处理和解决。
三、维纳滤波1. 概念介绍维纳滤波是一种统计信号处理方法,用于在有噪声的环境中对信号进行处理。
它结合了信号的频谱信息和噪声的统计特性,可以实现对受噪声干扰的信号进行有效的去噪处理。
2. Python实现在Python中,可以利用`numpy`和`scipy`等库来实现维纳滤波。
需要获取受噪声信号的频谱信息和噪声的统计特性,然后根据维纳滤波器的设计原理进行滤波处理。
通过反变换将处理后的频谱信息还原为时域信号,以实现信号的去噪处理。
3. 应用案例维纳滤波在语音信号处理、图像去噪和雷达信号处理等领域有着广泛的应用。
通过Python实现维纳滤波,可以实现对受噪声干扰的信号进行有效的去噪处理,提高信号的质量和可靠性。
四、总结频域逆滤波和维纳滤波是两种常用的信号处理技术,在处理受损信号和去噪处理中具有重要的应用价值。
通过Python实现这两种滤波方法,可以方便地进行信号处理实验和应用,为信号处理领域的研究和应用提供了新的工具和方法。
维纳维纳滤波实现模糊图像恢复维纳滤波实现模糊图像恢复摘要维纳滤波器是最小均方差准则下的最佳线性滤波器,它在图像处理中有着重要的应用。
本文主要通过介绍维纳滤波的结构原理,以及应用此方法通过MATLAB函数来完成图像的复原。
关键词:维纳函数、图像复原一、引言在人们的日常生活中,常常会接触很多的图像画面,而在景物成像的过程中有可能出现模糊,失真,混入噪声等现象,最终导致图像的质量下降,我们现在把它还原成本来的面目,这就叫做图像还原。
引起图像的模糊的原因有很多,举例来说有运动引起的,高斯噪声引起的,斑点噪声引起的,椒盐噪声引起的等等,而图像的复原也有很多,常见的例如逆滤波复原法,维纳滤波复原法,约束最小二乘滤波复原法等等。
它们算法的基本原理是,在一定的准则下,采用数学最优化的方法从退化的图像去推测图像的估计问题。
因此在不同的准则下及不同的数学最优方法下便形成了各种各样的算法。
而我接下来要介绍的算法是一种很典型的算法,维纳滤波复原法。
它假定输入信号为有用信号与噪声信号的合成,并且它们都是广义平稳过程和它们的二阶统计特性都已知。
维纳根据最小均方准则,求得了最佳线性滤波器的的参数,这种滤波器被称为维纳滤波。
二、维纳滤波器的结构维纳滤波自身为一个FIR或IIR滤波器,对于一个线性系统,如果其冲击响应为()n h,则当输入某个随机信号)(nx时,Y(n)=∑-n )()(mnxmh式(1)这里的输入)()()(n v n s n x += 式(2)式中s(n)代表信号,v(n)代表噪声。
我们希望这种线性系统的输出是尽可能地逼近s(n)的某种估计,并用s^(n)表示,即)(ˆ)(y n sn = 式(3) 因而该系统实际上也就是s(n)的一种估计器。
这种估计器的主要功能是利用当前的观测值x(n)以及一系列过去的观测值x(n-1),x(n-2),……来完成对当前信号值的某种估计。
维纳滤波属于一种最佳线性滤波或线性最优估计,是一最小均方误差作为计算准则的一种滤波。
南京工程学院通信工程学院实验报告课程名称数字图像处理C实验项目名称实验三图像的复原实验班级算通111 学生姓名夏婷学号 208110408 实验时间 2014年5月5日实验地点信息楼C322实验成绩评定指导教师签名年月日实验三、图像的恢复一、实验类型:验证性实验二、实验目的1. 掌握退化模型的建立方法。
2. 掌握图像恢复的基本原理。
三、实验设备:安装有MATLAB 软件的计算机四、实验原理一幅退化的图像可以近似地用方程g=Hf+n 表示,其中g 为图像,H为变形算子,又称为点扩散函数(PSF ),f 为原始的真实图像,n 为附加噪声,它在图像捕获过程中产生并且使图像质量变坏。
其中,PSF 是一个很重要的因素,它的值直接影响到恢复后图像的质量。
I=imread(‘peppers.png’);I=I(60+[1:256],222+[1:256],:);figure;imshow(I);LEN=31;THETA=11;PSF=fspecial(‘motion’,LEN,THETA);Blurred=imfilter(I,PSF,’circular’,’conv’);figure;imshow(Blurred);MATLAB 工具箱中有4 个图像恢复函数,如表3-1 所示。
这4 个函数都以一个PSF 和模糊图像作为主要变量。
deconvwnr 函数使用维纳滤波对图像恢复,求取最小二乘解,deconvreg 函数实现约束去卷积,求取有约束的最小二乘解,可以设置对输出图像的约束。
deconvlucy 函数实现了一个加速衰减的Lucy-Richardson 算法。
该函数采用优化技术和泊松统计量进行多次迭代。
使用该函数,不需要提供有关模糊图像中附加噪声的信息。
deconvblind 函数使用的是盲去卷积算法,它在不知道PSF 的情况下进行恢复。
调用deconvblind 函数时,将PSF 的初值作为一个变量进行传递。
基于维纳滤波的图像复原基于维纳滤波的图像复原设计与实现摄影设备拍摄的图像,由于其硬件设备的限制往往造成图像的模糊、失真以及图像混杂噪声等问题。
于是,对于此类图像的复原技术就变得具有重要的实现意义。
本文将主要介绍退化模型,并分析逆滤波复原算法与维纳滤波复原算法,通过使用Matlab平台基于维纳滤波研究模糊图像的复原方法,并设计出合适的维纳滤波器进行复原仿真,对“含噪”图像进行复原。
标签:维纳滤波;逆滤波;图像复原;图像退化模型Image restoration design and implementation based on Wiener FilteringAbstract:The image taken by photographic equipment is often caused by the limitation of hardware equipment,such as image blur,distortion and image hybrid noise. Therefore,the restoration method of fuzzy images becomes of great significance. In this paper,it will mainly introduce the degradation model ,to analyze the inverse filtering algorithm and wiener filtering algorithm. The restoration method of fuzzy images is studied by using Matlab platform based on wiener filtering,and an appropriate wiener filter is designed for the restoration simulation,so as to restore these “noisy” images.Key words:Wiener filtering;inverse filtering;Image restoration;degradation model1.緒论1.1前言从摄影设备开始,图像在其形成、存储、处理和传输过程中,由于摄影设备、传输方式的不完善,例如监视器像素低等,造成的图像质量低下,称这种现象为“图像退化”。
实验5 图像复原一、实验目的:掌握实现逆滤波复原和维纳滤波复原的方法二、实验原理1.逆滤波复原设模糊图像为(6-1)这里是原始图像,是模糊系统的冲激响应。
对上式作Fourier变换,可得(6-2)因此,逆滤波的频域表达式为(6-3)式中称为逆滤波器的传输函数,即(6-4)复原后的图像为(6-5)实现逆滤波复原的算法有:(1)利用DFT和IDFT,其步骤为:① 对降质图像作Fourier变换,求得;② 按(3)式求;③ 对作Fourier反变换,求得复原图像。
(2)迭代算法图像复原的迭代算法可描述如下:λ>0 (6-6)(6-7)若,(H是的Fourier变换),当时,此迭代算法相当于逆滤波算法,即(6-8)证明:对(6-6)式作Fourier变换,得(6-9)令(6-7)式中的k = 0,则有对上式作Fourier变换,并将(6-9)式代入此变换式,则(6-10)令,重复上述步骤,可得(6-11)(6-12)若,对上式求极限可得即证毕2.维纳滤波复原维纳滤波复原的框图如下图所示:图中为维纳滤波器的冲激响应(或点扩展函数),为待复原的输入图像,滤波器的输出图像为复原的均方误差为:维纳滤波复原的准则是:寻找一个估计,使均方误差最小。
故维纳滤波是一种最优估计。
设维纳滤波器的传输函数为,它是的Fourier变换。
其表达式可写成(6-13)式中是降质模型中模糊函数的Fourier变换,分别为噪声和原始真实图像的功率谱密度。
当时,上式简化为逆滤波器的传输函数,与(6-4)式相一致。
在MATLAB中,维纳滤波复原的函数是deconvwnr,其调用格式是:J=deconvwnr(I,PSF)J=deconvwnr(I,PSF,NSR)J=deconvwnr(I,PSF,NCORR,ICORR)该函数的功能是对由点扩展函数PSF所模糊和加性噪声所降质的图像I进行维纳滤波复原。
此算法利用了噪声的自相关函数NCORR和原始图像的自相关函数ICORR,参数SNR是噪声与信号的功率比,缺省值为零。
图像复原——逆滤波复原与维纳滤波复原方法及比较鲁东大学信息与电气工程学院学年第-----1----学期逆滤波复原与维纳滤波复原方法及比较《》课程论文课程号:摘要任课教师成绩图像复原,即利用退化过程的先验知识,去恢复已被退化图像的本来面目。
对遥论文题目:逆滤波复原与维纳滤波复原方法及比较感图像资料进行大气影响的校正、几何校正以及对由于设备原因造成的扫描线漏失、根据课程介绍的相关内容,从图像复原、分割、修复等方面,对目错位等的改正,将降质图像重建成接近于或完全无退化的原始理想图像的过程。
图像在形成,记录,处理和传输的过程中,因为成像系统,记录设备,传输介质和处理方前采用的前沿的方法理论及技术进行总结分析,题目自拟。
法的不完备导致图像质量的下降,也就是常说的图像退化。
图像复原是对发生退化的论文要求:(对论文题目、内容、行文、字数等作出判分规定。
) 图像进行补偿,某种意义上对图像进行改进,改善输入图像的质量。
我的这篇论文主要求论文结构合理,逻辑性强,重复率不能超过40%,内容具有一要介绍逆滤波图像复原,维纳滤波图像复原等方法,以及对他们之间进行比较。
学号_________________姓名__________________ 本专关键词:图像复原、逆滤波复原、维纳滤波复原定的前沿性。
对于全文抄袭、逻辑混乱等情况均判0分。
题目字体黑体,小二。
正文,宋体,小四,段落间距1.2倍行距。
一(图像复原的意义字数不少于3000字。
论文结尾应附至少5篇相关参考文献。
复原是图像处理的一个重要内容,它的主要目的是改善给定的图像质量并尽可能教师评语: 恢复原图像。
图像在形成、传输和记录过程中,受各种因素的影响,图像的质量都会有所下降,典型表现有图像模糊、失真、有噪声等。
这一质量下降的过程称为图像的退化。
图像复原的目的就是尽可能恢复退化图像本来面目。
二(维纳滤波的介绍密封线学生须将文字写在此线以下图像复原是图像处理中的一个重要问题。
湖南大学课程报告课程:光信息处理题目:光学图像复原院系:物理与微电子科学学院班级:电科三班姓名:李军学号:20081120306摘要:照片的复原可以说是空间滤波的第一个应用,图像复原是图象处理的一个重要课题。
图像复原也称图象恢复,是图象处理中的一大类技术。
它的主要目的是改善给定的图像质量。
当给定了一幅退化了的或者受到噪声污染了的图像后,利用退化现象的某种先验知识来重建或恢复原有图像是复原处理的基本过程。
可能的退化有光学系统中的衍射,传感器非线性畸变,光学系统的像差,摄影胶片的非线性,大气湍流的扰动效应,图像运动造成的模糊及几何畸变等等。
噪声干扰可以由电子成像系统传感器、信号传输过程或者胶片颗粒性造成。
各种退化图像的复原都可归结为一种过程,具体地说就是把退化模型化,并且采用相反的过程进行处理,以便恢复出原图像。
本课程报告介绍了图象退化的原因,逆滤波和维纳滤波两种图像滤波复原技术。
关键词:图像复原;退化模型;噪声干扰;图像滤波一.图像复原的概念1.图像复原的定义图像复原也称图象恢复,是图象处理中的一大类技术。
图像复原就是要尽可能恢复退化图像的本来面目,它是沿图像退化的逆过程进行处理。
成像过程的每一个环节(透镜,感光片,数字化等等)都会引起退化。
图像复原就是去除或减轻在获取数字图像过程中发生的图像质量下降,在进行图像复原时,既可以用连续数学,也可以用离散数学进行处理。
其次,处理既可在空间域,也可在频域进行。
2.图象恢复与图象增强的异同相同点:改进输入图像的视觉质量。
图像复原和图像增强的区别:图像增强不考虑图像是如何退化的,而是试图采用各种技术来增强图像的视觉效果。
因此,图像增强可以不顾增强后的图像是否失真,只要看得舒服就行。
而图像复原就完全不同,需知道图像退化的机制和过程等先验知识,据此找出一种相应的逆处理方法,从而得到复原的图像。
如果图像已退化,应先作复原处理,再作增强处理。
二者的目的都是为了改善图像的质量。
基于逆滤波法的图像复原1、项目的背景与内容介绍运动模糊图像的复原是处理图像的重要内容,图像复原主要是为了改善图像的画质,尽可能的从已退化的图像中复原出真实的图像。
解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。
本文主要采用的是逆滤波法对运动模糊图像进行恢复。
2、项目所用方法与已有使用的方法进行比较模糊图像复原的方法有:维纳滤波法、逆滤波法、有约束的最小二乘法等。
维纳滤波法是由Wiener首先提出的,应用于一维信号处理,取得了很好的效果。
之后,维纳滤波法被用于二维信号处理,也取得了不错的效果,尤其在图像复原领域,由于维纳滤波计算量小,复原效果好,从而得到了广泛的应用和发展。
有约束的最小二乘法容易通过计算机的简单程序实现但是不能得到无理数根的这种的确定解。
对于逆滤波而言对图像进行逆滤波来实现反卷积,这类方法方便快捷,无需循环或迭代,直接可以得到反卷积结果。
3.1、项目的意义与特点模糊图像复原的目的是为了提高图像的质量,如去除噪声、提高图像的清晰度等。
可使图像中物体轮廓清晰,细节明显。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立降质模型,在采用逆滤波法,来恢复或建立原来的图像。
3.2、项目实施的原理弄清退化原因、建立退化模型、反向推演、恢复图像。
退化模型的输入和输出具有的关系:g(x,y)=H[f(x,y)]+n(x,y) 其中:H为已退化函数;f(x,y)为输入图像;n(x,y)为噪声干扰;g(x,y)是退化图像。
退化的原因:此实验只考虑高斯噪声和运动模糊图像高斯(Gauss)降质Gauss降质函数是许多光学测量系统和成像系统最常见的降质函数。
对于这些系统,决定系统点扩展函数的因素比较多。
众多因素综合的结果总是使点扩展函数趋于Gauss型。
典型的系统可以举出光学相机和CCD摄像机、 相机、CT相机、成像雷达、显微光学系统等。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。