当前位置:文档之家› 化工原理实验思考题 1流体流动阻力测定

化工原理实验思考题 1流体流动阻力测定

化工原理实验思考题 1流体流动阻力测定
化工原理实验思考题 1流体流动阻力测定

化工原理实验思考题 1流体流动阻力测定

1流体流动阻力测定

(1)启动离心泵前,为什么必须关闭泵的出口阀门

答:由离心泵特性曲线知,流量为零时,轴功率最小,电动机负荷最小,不会过载烧毁线圈。

(2)作离心泵特性曲线测定时,先要把泵体灌满水以防止气缚现象发生,而阻力实验对泵灌水却无要求,为什么

答:阻力实验水箱中的水位远高于离心泵,由于静压强较大使水泵泵体始终充满水,所以不需要灌水。

(3)流量为零时,U形管两支管液位水平吗为什么

答:水平,当u=0时柏努利方程就变成流体静力学基本方程:

(4)怎样排除管路系统中的空气如何检验系统内的空气已经被排除干净

答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U形管顶部的阀门,利用空气压强使U形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。

(5)为什么本实验数据须在双对数坐标纸上标绘

答:因为对数可以把乘、除变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。

(6)你在本实验中掌握了哪些测试流量、压强的方法它们各有什么特点

答:测流量用转子流量计、测压强用U形管压差计,差压变送器。转子流量计,随流量的大小,转子可以上、下浮动。U形管压差计结构简单,使用方便、经济。差压变送器,将压差转换成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测大流量下的压强差。

(7)读转子流量计时应注意什么为什么

答:读时,眼睛平视转子最大端面处的流量刻度。如果仰视或俯视,则刻度不准,流量就全有误差。

(8)两个转子能同时开启吗为什么

答:不能同时开启。因为大流量会把U形管压差计中的指示液冲走。

(9)开启阀门要逆时针旋转、关闭阀门要顺时针旋转,为什么工厂操作会形成这种习惯

答:顺时针旋转方便顺手,工厂遇到紧急情况时,要在最短的时间,迅速关闭阀门,久而久之就形成习惯。当然阀门制造商也满足客户的要求,阀门制做成顺关逆开。

(10)使用直流数字电压表时应注意些什么

答:使用前先通电预热15分钟,另外,调好零点(旧设备),新设备,不需要调零点。如果有波动,取平均值。

(11)假设将本实验中的工作介质水换为理想流体,各测压点的压强有何变化为什么

答:压强相等,理想流体u=0,磨擦阻力F=0,没有能量消耗,当然不存在压强差。

∵d

1=d

2

∴u

1

=u

2

又∵z

1

=z

2

(水平管)∴P

1

=P

2

(12)离心泵送液能力,为什么可以通过出口阀调节改变往复泵的送液能力是否也可采用同样的调节方法为什么

答:离心泵送液能力可以通过调节出口阀开度来改变管路特性曲线,从而使工作点改变。往复泵是正往移泵流量与扬程无关。若把出口堵死,泵内压强会急剧升高,造成泵体,管路和电机的损坏。

(13)本实验用水为工作介质做出的λ-Re曲线,对其它流体能否使用为什么

答:能用,因为雷诺准数是一个无因次数群,它允许d、u、、变化。

(14)本实验是测定等径水平直管的流动阻力,若将水平管改为流体自下而上流

的计算过程和动的垂直管,从测量两取压点间压差的倒置U型管读数R到ΔP

f

公式是否与水平管完全相同为什么

答:过程一样,公式(通式)相同,R值的计算结果不同。

通式:

水平放置: z=0

垂直放置: z=L(管长)

(15)测试时为什么要取同一时刻下的瞬时数据

答:流体流动时,由于诸种原因,各参数的值是波动的,为了减少误差,应取瞬时值、即同时读数。

(16)作λ-Re图时,依点画线用什么工具点在线的一侧还是两侧怎样提高做图的精确度做图最忌讳什么

答:用曲线板或曲线尺画曲线,直尺画直线。点应在线的两侧,以离线的距离最近为原则。最忌讳徒手描。

(17)实验结果讨论中,应讨论什么

答:(1)讨论异常现象发生的原因;(2)你做出来的结果(包括整理后的数据、画的图等)与讲义中理论值产生误差的原因。(3)本实验应如何改进。

(18)影响流动型态的因素有哪些用Re判断流动型态的意义何在

答:影响流动类型的因素有:内因:流动密度、粘度;外因:管径d、流速u,即。用它判断流动类型,什么样的流体、什么样的管子,流速等均适用,这样,就把复杂问题简单化了,规律化了,易学、易用易于推广。

(19)直管摩擦阻力的来源是什么

答:来源于流体的粘性流体在流动时的内摩擦,是流体阻力的内因或依据。其外因或内部条件可表示为:内摩擦力F与两流体层的速度差Δ 成正比;与两层之间的垂直距离Δy成反比;与两层间的接触面积A与成正比。

(20)影响直管阻力的因素是什么如何影响

答:根据直管助力与管长、管经d、速度u、磨擦系数有关系。它与、、u2成正比,与d成反比。

流体流动阻力的测定化工原理实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2008.10.29 班 级: 化工0602 姓 名:许兵兵 学 号: 200611048 同 组 人 :汤全鑫 阮大江 阳笑天 流体流动阻力的测定 摘要 ● 测定层流状态下直管段的摩擦阻力系数(光滑管、粗糙管和层流管)。 ● 测定湍流状态不同(ε/d)条件下直管段的摩擦阻力系数(突然扩大管)。 ● 测定湍流状态下管道局部的阻力系数的局部阻力损失。 ● 本次实验数据的处理与图形的拟合利用Matlab 完成。 关键词 流体流动阻力 雷诺数 阻力系数 实验数据 Matlab 一、实验目的 1、掌握直管摩擦阻力系数的测量的一般方法; 2、测定直管的摩擦阻力系数λ以及突扩管的局部阻力系数ζ; 3、测定层流管的摩擦阻力 4、验证湍流区内λ、Re 和相对粗糙度的函数关系 5、将所得光滑管的Re -λ方程与Blasius 方程相比较。 二、实验原理 不可压缩流体(如水),在圆形直管中作稳定流动时,由于粘性和涡流的作用产生摩擦阻力;流体在流过突然扩大和弯头等管件时,由于流体运动的速度和方向突然发生变化,产生局部阻力。影响流体流动阻力的因素较多,在工程研究中,利用因次分析法简化实验,引入无因此数群 雷 诺 数: μρ du = Re 相对粗糙度: d ε 管路长径比: d l 可导出: 2)(Re,2u d d l p ??=?εφρ 这样,可通过实验方法直接测定直管摩擦阻力系数与压头损失之间的关系: 22u d l p H f ? ?=?=λρ

因此,通过改变流体的流速可测定出不同Re 下的摩擦阻力系数,即可得出一定相对粗糙度的管子的λ—Re 关系。 在湍流区内,λ = f(Re ,ε/ d ),对于光滑管大量实验证明,当Re 在3×103至105的范围内,λ与Re 的关系遵循Blasius 关系式,即: 25 .0Re 3163.0=λ 对于层流时的摩擦阻力系数,由哈根—泊谡叶公式和范宁公式,对比可得: Re 64=λ 局部阻力: f H =2 2 u ?ξ [J/kg] 三、装置和流程 四、操作步骤 1、启动水泵,打开光滑管路的开关阀及压降的切换阀,关闭其它管路的开关阀和切换阀; 2、排尽体系空气,使流体在管中连续流动。检验空气是否排尽的方法是看当流量为零时候U 形压差计的两液面是否水平; 3、调节倒U 型压差计阀门1、2、3、 4、5的开关,使引压管线内流体连续、液柱等高; 4、打开流量调节阀,由大到小改变10次流量(Re min >4000),记录光滑管压降、孔板压降数据; 5、完成10组数据测量后,验证其中两组数据,确保无误后,关闭该组阀门; 6、测量粗糙管(10组)、突然扩大管(6组)数据时,方法及操作同上; 7、测量层流管压降时,首先连通阀门6、7、8、9、10所在任意一条回流管线,其次打开进入高位水灌的上水阀门11,关闭出口流量调节阀16; 8、当高位水灌有溢流时,打开层流管的压降切换阀,对引压管线进行排气操作; 9、打开倒U 型压差计阀门5,使液柱上升到n 型压差计示数为0的位置附近,然后关闭该阀门,检 图1 流体阻力实验装置流程图 1. 水箱 2.离心泵 3.孔板流量计 4.管路切换阀 5.测量管路 6.稳流罐 7.流量调节阀

流体阻力实验报告

. 北京化工大学化工原理实验报告 实验名称:流体阻力实验 班级:化工11 姓名: 学号:2011011 序号: 同组人: 设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第套实验日期:2013-11-4

一、实验摘要 本实验使用104实验室UPRS Ⅲ型第7套实验设备,测量了水流经不锈钢管、镀锌管、突扩管、阀门、层流管的阻力损失。确定了摩擦系数和局部阻力系数的变化规律和影响因素。该实验提供了一种测量实际管路阻力系数的方法,其结果可为管路实际应用和工艺设计提供重要的参考。 关键词:流量,压降,雷诺数,摩擦系数,局部阻力系数 二、实验目的 1、测量湍流直管道的阻力,确定摩擦阻力系数。 2、测量湍流局部管道的阻力,确定局部阻力系数。 3、测量层流直管道的阻力,确定摩擦阻力系数。 三、实验原理 1、直管道和局部管道阻力损失e f h u p gZ u p gZ h +++-++=)2()2(2 2 22211 1ρρ (1) 其中h e =0,z 1=z 2,所以测出管道上下游截面的静压能、动能,代入方程即可求得阻力。 2、根据因次分析法可得: (1)直管道阻力损失2 2 u d l h f ?=λ……(2)。其中,l 为管道长度,d 为管道内 径,u 为管内平均流速。只要测定l ,d ,u ,和λ,代入方程即可求得阻力h f 。

其中,λ的理论值计算方法为:25 .0Re 3163.0=湍流λ ; Re 64 = 层流λ。 对于水平无变径直管道,根据式(1)、(2)可得到摩擦系数的计算方法 为221) (2u l p p d ??-=ρλ测量。 (2)管道局部阻力损失2 2 1 u h f ?=ζ……(3)。其中,ζ为管道局部阻力系数, u 为平均流速(突扩管对应细管流速u 1)。将ζ和u 代入方程即可求得局部阻力h f 。 其中,ζ的理论值计算方法为:2 2 1)1(A A - =突扩管ζ ;常数截止阀=ζ;常数球阀=ζ。 对于水平放置的管件,根据式(1)、(3)可得到局部阻力系数的计算方 法为2 21) 2u p p ?-=ρζ(阀门;2 1 122 2) (2-1u p p u ρ ζ-+ =突扩管。 四、实验流程和设备

化工原理试验试题集

化工原理实验试题3 1、干燥实验进行到试样重量不再变化时,此时试样中所含的水分是什么水分?实验过程中除去的又是什么水分?二者与哪些因素有关。 答:当干燥实验进行到试样重量不再变化时,此时试样中所含的水分为该干燥条件下的平衡水分,实验过程中除去的是自由水分。二者与干燥介质的温度,湿度及物料的种类有关。 2、在一实际精馏塔内,已知理论板数为5块,F=1kmol/h,xf=0.5,泡点进料,在某一回流比下得到D =0.2kmol/h,xD=0.9,xW=0.4,现下达生产指标,要求在料液不变及xD 不小于0.9的条件下,增加馏出液产量,有人认为,由于本塔的冷凝器和塔釜能力均较富裕,因此,完全可以采取操作措施,提高馏出物的产量,并有可能达到D =0.56kmol/h ,你认为: (1) 此种说法有无根据?可采取的操作措施是什么? (2) 提高馏出液量在实际上受到的限制因素有哪些? 答:在一定的范围内,提高回流比,相当于提高了提馏段蒸汽回流量,可以降低xW ,从而提高了馏出液的产量;由于xD 不变,故进料位置上移,也可提高馏出液的产量,这两种措施均能增加提馏段的分离能力。 D 的极限值由 DxD

化工原理实验

《化工原理实验》 讲稿 二0一四年二月

1.雷诺实验 一、实验目的 1.观察层流、湍流的流态及其转化特征; 2.测定临街雷诺准数,掌握圆管流动形态的判别准则; 3.观察紊流(或湍流)产生过程,理解紊流产生机理。 二、实验原理 1. 液体在运动时,存在着两种根本不同的流动状态。当液体流速较小时,惯性力较小,粘滞力对质点起控制作用,使各流层的液体质点互不混杂,液流呈层流运动。当液体流速逐渐增大,质点惯性力也逐渐增大,粘滞力对质点的控制逐渐减弱,当流速达到一定程度时,各流层的液体形成涡体并能脱离原流层,液流质点即互相混杂,液流呈紊流运动。这种从层流到紊流的运动状态,反应了液流内部结构从量变到质变的一个变化过程。 2.当初始状态流速较大时,从紊流到层流的过渡流速为下临界流速,对应的雷诺准数为下临界雷诺数,反之为上临界流速和上临界雷诺数。 μ ρu d = Re (1) 式中 d ——导管直径,m ; ρ——流体密度,kg ·m 3-; μ——流体粘度,Pa ·s ; u ——流体流速,m ·s 1-; 大量实验测得:当雷诺准数小于某一下临界值时,流体流动型态恒为层流;当雷诺数大于某一上临界值时,流体流型恒为湍流。在上临界值与下临界值之间,则为不稳定的过渡区域。对于圆形导管,下临界雷诺数为2000,上临界雷诺数为10000。一般情况下,上临界雷诺数为4000时,即可形成湍流。 应当指出,层流与湍流之间并非是突然的转变,而是两者之间相隔一个不稳定过渡区域,因此,临界雷诺数测定值和流型的转变,在一定程度上受一些不稳定的其他因素的影响。 三、实验装置 (雷诺实验仪CEA —F01型) 雷诺试验装置主要由稳压溢流水槽、试验导管和转子流量计等部分组成,如图1所示。自来水不断注入并稳压溢流水槽。稳压溢流水槽的水流经试验导管和流量计,最后排入下水道。稳压溢流水槽的溢流水,也直接排入下水道。

流体流动阻力测定实验

实验报告 项目名称:流体流动阻力测定实验 学院: 专业年级: 学号: 姓名: 指导老师: 实验组员: 一、实验目的 1、学习管路阻力损失h f和直管摩擦系数λ的测定方法。 2、掌握不同流量下摩擦系数λ与雷诺数Re之间的关系及其变化规律。 3、学习压差测量、流量测量的方法。了解压差传感器和各种流量计的结构、使用方法 及性能。 4、掌握对数坐标系的使用方法。

二、实验原理 流体在管道内流动时,由于黏性剪应力和涡流的存在,会产生摩擦阻力。这种阻力包括流体流经直管的沿程阻力以及因流体运动方向改变或管子大小形状改变所引起的局部阻力。 流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系: h f = ρf P ?=2 2 u d l λ (4-1) 式中: -f h 直管阻力,J/kg ; -d 直管管径,m ; -?p 直管阻力引起的压强降,Pa ; -l 直管管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -λ摩擦系数。 滞流时,λ= Re 64 ;湍流时,λ与Re 的关系受管壁相对粗糙度d ε?的影响,即λ= )(Re,d f ε。 当相对粗糙度一定时,λ仅与Re 有关,即λ=(Re)f ,由实验可求得。 由式(4—1),得 λ= 2 2u P l d f ???ρ (4-2) 雷诺数 Re =μ ρ ??u d (4-3) 式中-μ流体的黏度,Pa*s 测量直管两端的压力差p ?和流体在管内的流速u ,查出流体的物理性质,即可分别计算出对应的λ和Re 。 三、实验装置 1、本实验共有两套装置,实验装置用图4-2所示的实验装置流程图。每套装置中被测光滑直管段为管内径d=8mm ,管长L=1.6m 的不锈钢管;被测粗糙直管段为管内径d=10mm ,管长L=1.6m 的不锈钢管 2、 流量测量:在图1-2中由大小两个转子流量计测量。 3、 直管段压强降的测量:差压变送器或倒置U 形管直接测取压差值。

沿程阻力 中国石油大学(华东)流体力学实验报告

实验七、沿程阻力实验 一、实验目的填空 1.掌握测定镀锌铁管管道沿程阻力系数的方法; 2.在双对数坐标纸上绘制λ-Re的关系曲线; 3.进一步理解沿程阻力系数随雷诺数的变化规律。 二、实验装置 在图1-7-1下方的横线上正确填写实验装置各部分的名称 本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。 另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。 F1——文秋利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-7-1 管流综合实验装置流程图 三、实验原理在横线正确写出以下公式 本实验所用的管路是水平放置且等直径,因此利用能量方程式可推得管路两点间的沿程水头

损失计算公式: 2 2f L v h D g λ = (1-7-1) 式中: λ——沿程阻力系数; L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ; h f ——沿程水头损失,由压差计测定。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 2 2f h D g L v λ= (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,而在紊流时则与雷诺数、管壁粗糙度有关。 当实验管路粗糙度保持不变时,可得出该管的λ-Re 的关系曲线。 四、实验要求 填空 1.有关常数 实验装置编号:No. 7 管路直径:D = 1.58 cm ; 水的温度:T = 13.4 ℃; 水的密度:ρ= 0.999348g/cm 3; 动力粘度系数:μ= 1.19004 mPa ?s ; 运动粘度系数:ν= 0.011908 cm 2/s ; 两测点之间的距离:L = 500 cm

流体流动阻力实验

实验一 流体流动阻力实验 一、实验目的 1、学习直管摩擦阻力f P ?、直管摩擦系数λ的实验方法; 2、掌握不同流量下摩擦系数λ与雷诺数Re 之间的关系及其变化规律; 3、学习局部阻力的测定方法; 4、学习压强差的几种测量方法和技巧; 5、掌握坐标系的选用方法和对数坐标系的使用方法。 二、实验原理 1. 直管摩擦系数 与雷诺数Re 的测定 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρ ρf f P P P h ?=-= 2 1 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) 2 2 u d l P h f f λρ=?= (2) 整理(1)(2)两式得 2 2u P l d f ???=ρλ (3) μ ρ ??= u d Re (4) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ;

-ρ流体的密度,kg / m 3 ; -μ流体的粘度,N ·s / m 2。 在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降 f P ?与流速u (流量V )之间的关系。 测得一系列流量下的f P ?后,根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ;用式(4)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 2. 局部阻力系数ζ的测定 2 2 'u P h f f ζρ =?= ' (5) 2'2u P f ?????? ??=ρζ (6) 式中:-ζ局部阻力系数,无因次; -?'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。 图3 局部阻力测量取压口布置图 局部阻力引起的压强降'f P ? 可用下面的方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在其上、下游开两对测压口a-a ’和b-b ',见图3,使 ab =bc ; a 'b '=b 'c ' 则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c '

化工原理实验答案

实验四 1.实验中冷流体和蒸汽的流向,对传热效果有何影响? 无影响。因为Q=αA△t m,不论冷流体和蒸汽是迸流还是逆流流动,由 于蒸汽的温度不变,故△t m不变,而α和A不受冷流体和蒸汽的流向的影响, 所以传热效果不变。 2.蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响、应采取什么 措施? 不冷凝气体的存在相当于增加了一项热阻,降低了传热速率。冷凝器 必须设置排气口,以排除不冷凝气体。 3.实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷 凝水? 冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速 率。在外管最低处设置排水口,及时排走冷凝水。 4.实验中,所测定的壁温是靠近蒸汽侧还是冷流体侧温度?为什么?传热系数k 接近于哪种流体的 壁温是靠近蒸汽侧温度。因为蒸汽的给热系数远大于冷流体的给热系 数,而壁温接近于给热系数大的一侧流体的温度,所以壁温是靠近蒸汽侧温度。而总传热系数K接近于空气侧的对流传热系数 5.如果采用不同压强的蒸汽进行实验,对α关联式有何影响? 基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强 对α关联式无影响。

实验五固体流态化实验 1.从观察到的现象,判断属于何种流化? 2.实际流化时,p为什么会波动? 3.由小到大改变流量与由大到小改变流量测定的流化曲线是否重合,为什么? 4流体分布板的作用是什么? 实验六精馏 1.精馏塔操作中,塔釜压力为什么是一个重要操作参数,塔釜压力与哪些因素有关? 答(1)因为塔釜压力与塔板压力降有关。塔板压力降由气体通过板上孔口或通道时为克服局部阻力和通过板上液层时为克服该液层的静压力而引起,因而塔板压力降与气体流量(即塔内蒸汽量)有很大关系。气体流量过大时,会造成过量液沫夹带以致产生液泛,这时塔板压力降会急剧加大,塔釜压力随之升高,因此本实验中塔釜压力可作为调节塔釜加热状况的重要参考依据。(2)塔釜温度、流体的粘度、进料组成、回流量。 2.板式塔气液两相的流动特点是什么? 答:液相为连续相,气相为分散相。 3.操作中增加回流比的方法是什么,能否采用减少塔顶出料量D的方法? 答:(1)减少成品酒精的采出量或增大进料量,以增大回流比;(2)加大蒸气量,增加塔顶冷凝水量,以提高凝液量,增大回流比。 5.本实验中进料状态为冷态进料,当进料量太大时,为什么会出现精馏段干板,甚至出现塔顶既没有回流也没有出料的现象,应如何调节?

流体阻力实验报告

北京化工大学化工原理实验报告 实验名称:流体流动阻力测定 班级:化工10 学号:2010 姓名: 同组人: 实验日期:2012.10.10

流体阻力实验 一、摘要 通过测定不同阀门开度下的流体流量v q ,以及测定已知长度l 和管径d 的光滑直管和粗糙直管间的压差p ?,根据公式2 2u l p d ρλ?=,其中ρ为实验温度下流体的密度;流体流速 24d q u v π= ,以及雷诺数μ ρdu =Re (μ为实验温度下流体粘度),得出湍流区光滑直管和粗糙直管在不同Re 下的λ值,通过作Re -λ双对数坐标图,可以得出两者的关系曲线,以及和光滑管遵循的Blasius 关系式比较关系,并验证了湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数。由公式2 22 1 21p u u ρζ?+ =- 可求出突然扩大管的局部阻力系数,以及由 Re 64= λ求出层流时的摩擦阻力系数λ,再和雷诺数Re 作图得出层流管Re -λ关系曲线。 关键词:摩擦阻力系数 局部阻力系数 雷诺数Re 相对粗糙度ε/d 二、实验目的 1、掌握测定流体流动阻力实验的一般试验方法; 2、测定直管的摩擦阻力系数λ及突然扩大管的局部阻力系数ζ; 3、测定层流管的摩擦阻力系数λ; 4、验证湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数; 5、将所得光滑管的λ-Re 方程与Blasius 方程相比较。 三、实验原理 1、直管阻力损失函数:f (h f ,ρ,μ, l ,d ,ε, u )=0 应用量纲分析法寻找hf (ΔP /ρ)与各影响因素间的关系 1)影响因素 物性:ρ,μ 设备:l ,d ,ε 操作:u (p,Z )

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1. 关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对流向),观测并记录各测 压管中的液柱高度H 并回答以下问题: (1) 各测压管旋转时,液柱高度H 有无变化这一现象说明了什么这一高度的物理意义是 什么 答:在关闭出口阀情况下,各测压管无论如何旋转液柱高度H 无任何变化。这一现象可通过柏努利方程得到解释:当管内流速u =0时动压头02 2 ==u H 动 ,流体没有运动就不存在阻力,即Σh f =0,由于流体保持静止状态也就无外功加入,既W e =0,此时该式反映流体静止状态 见(P31)。这一液位高度的物理意义是总能量(总压头)。 (2) A 、B 、C 、D 、E 测压管内的液位是否同一高度为什么 答:A 、B 、C 、D 、E 测压管内的液位在同一高度(排除测量基准和人为误差)。这一现象说明各测压管总能量相等。 2. 当流量计阀门半开时,将测压管小孔转到垂直或正对流向,观察其的液位高度H /并回 答以下问题: (1) 各H /值的物理意义是什么 答:当测压管小孔转到正对流向时H /值指该测压点的冲压头H /冲;当测压管小孔转到垂直流向时H /值指该测压点的静压头H /静;两者之间的差值为动压头H /动=H /冲-H /静。

(2) 对同一测压点比较H 与H /各值之差,并分析其原因。 答:对同一测压点H >H /值,而上游的测压点H /值均大于下游相邻测压点H /值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H /差值越大 (4) 答:离水槽越远流体阻力损失Σh f 就越大,就直管阻力公式可以看出2 2 u d l H f ??=λ与 管长l 呈正比。 3. 当流量计阀门全开时,将测压管小孔转到垂直或正对流向,观察其的液位高度 H 2222d c u u =22 ab u ρcd p ρab p 2 2 u d l H f ??=λ计算流量计阀门半开和全开A 点以及C 点所处截面流速大小。 答:注:A 点处的管径d=(m) ;C 点处的管径d=(m) A 点半开时的流速: 135.00145.036004 08.0360042 2=???=???= ππd Vs u A 半 (m/s ) A 点全开时的流速: 269.00145 .036004 16.0360042 2=???=???=ππd Vs u A 全 (m/s ) C 点半开时的流速: 1965.0012 .036004 08.0360042 2=???=???= ππd Vs u c 半 (m/s )

化工原理实验三单相流体阻力测定实验

实验三 单相流体阻力测定实验 一、实验目的 ⒈ 学习直管摩擦阻力△P f 、直管摩擦系数的测定方法。 ⒉ 掌握不同流量下摩擦系数 与雷诺数Re 之间关系及其变化规律。 ⒊ 学习压差传感器测量压差,流量计测量流量的方法。 ⒋ 掌握对数坐标系的使用方法。 二、实验内容 ⒈ 测定既定管路内流体流动的摩擦阻力和直管摩擦系数。 ⒉ 测定既定管路内流体流动的直管摩擦系数与雷诺数Re 之间关系曲线和关系式。 三、实验原理 流体在圆直管内流动时,由于流体的具有粘性和涡流的影响会产生摩擦阻力。流体在管内流动阻力的大小与管长、管径、流体流速和摩擦系数有关,它们之间存在如下关系。 h f = ρf P ?=2 2 u d l λ (3-1) λ= 22u P l d f ?? ?ρ (3-2) Re = μ ρ ??u d (3-3) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 管内平均流速,m / s ; -ρ流体的密度,kg / m 3 ; -μ流体的粘度,N ·s / m 2 。 摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式3-2可以计算出不同流速(流量V )下的直管摩擦系数λ,用式3-3计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。

四、实验流程及主要设备参数: 1.实验流程图:见图1 水泵8将储水槽9中的水抽出,送入实验系统,首先经玻璃转子流量计2测量流量,然后送入被测直管段5或6测量流体流动的光滑管或粗糙管的阻力,或经7测量局部阻力后回到储水槽, 水循环使用。被测直管段流体流动阻力△p可根据其数值大小分别采用变送器18或空气—水倒置∪型管10来测量。

化工原理实验模拟试题

流体流动阻力实验 一、在本实验中必须保证高位水槽中始终有溢流,其原因是: A、只有这样才能保证有充足的供水量。 B、只有这样才能保证位压头的恒定。 C、只要如此,就可以保证流体流动的连续性。 二、本实验中首先排除管路系统中的空气,是因为: A、空气的存在,使管路中的水成为不连续的水。 B、测压管中存有空气,使空气数据不准确。 C、管路中存有空气,则其中水的流动不在是单相的流动。 三、在不同条件下测定的直管摩擦阻力系数…雷诺数的数据能否关联在同一条曲线上 A、一定能。 B、一定不能。 C、只要温度相同就能。 D、只有管壁的相对粗糙度相等就能。 E、必须温度与管壁的相对粗糙度都相等才能。 四、以水作工作流体所测得的直管阻力系数与雷诺数的关系能否适用于其它流体 A、无论什么流体都能直接应用。 B、除水外什么流体都不能适用。 C、适用于牛顿型流体。 五、当管子放置角度或水流方向改变而流速不变时,其能量的损失是否相同。 A、相同。 B、只有放置角度相同,才相同。 C、放置角度虽然相同,流动方向不同,能量损失也不同。 D、放置角度不同,能量损失就不同。 六、本实验中测直管摩擦阻力系数时,倒U型压差计所测出的是: A、两测压点之间静压头的差。 B、两测压点之间位压头的差。 C、两测压点之间静压头与位压头之和的差。 D、两测压点之间总压头的差。 E、两测压点之间速度头的差。 七、什么是光滑管 A、光滑管是绝对粗糙度为零的管子。 B、光滑管是摩擦阻力系数为零的管子。 C、光滑管是水力学光滑的管子(即如果进一步减小粗糙度,则摩擦阻力不再减小的管 子)。 八、本实验中当水流过测突然扩大管时,其各项能量的变化情况是: A、水流过突然扩大处后静压头增大了。 B、水流过突然扩大处后静压头与位压头的和增大了。 C、水流过突然扩大处后总压头增大了。 D、水流过突然扩大处后速度头增大了。 E、水流过突然扩大处后位压头增大了 BCECAAAA

化工原理实验思考题答案汇总

流体流动阻力的测定 1.在测量前为什么要将设备中的空气排尽?怎样才能迅速地排尽?为什么?如何检验管路中的空气已经被排除干净? 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U 形管顶部的阀门,利用空气压强使U 形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 2.以水为介质所测得的?~Re关系能否适用于其他流体? 答:能用,因为雷诺准数是一个无因次数群,它允许d、u、、变化 3?在不同的设备上(包括不同管径),不同水温下测定的?~Re数据能否关联在同一条曲线上? 答:不能,因为Re二du p仏与管的直径有关 离心泵特性曲线的测定 1.试从所测实验数据分析,离心泵在启动时为什么要关闭出口阀门?本实验中,为了得到较好的实验效果,实验流量范围下限应小到零,上限应到最大,为什么? 答:关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机 (2)启动离心泵之前为什么要引水灌泵?如果灌泵后依然启动不起来,你认为可能的原因是什么? 答:离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 (3)泵启动后,出口阀如果不开,压力表读数是否会逐渐上升?随着流量的增大,泵进、出口压力表分别有什么变化?为什么? 答:当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受

外网特性曲线影响造成的 恒压过滤常数的测定 1.为什么过滤开始时,滤液常常有混浊,而过段时间后才变清? 答:开始过滤时,滤饼还未形成,空隙较大的滤布使较小的颗粒得以漏过,使滤液浑浊,但当形成较密的滤饼后,颗粒无法通过,滤液变清。? 2.实验数据中第一点有无偏低或偏高现象?怎样解释?如何对待第一点数据? 答:一般来说,第一组实验的第一点△ A A q会偏高。因为我们是从看到计量桶出现第一滴滤液时开始计时,在计量桶上升1cm 时停止计时,但是在有液体流出前管道里还会产生少量滤液,而试验中管道里的液体体积产生所需要的时间并没有进入计算,从而造成所得曲线第一点往往有较大偏差。 3?当操作压力增加一倍,其K值是否也增加一倍?要得到同样重量的过滤液,其过滤时间是否缩短了一半? 答:影响过滤速率的主要因素有过滤压差、过滤介质的性质、构成滤饼的 颗粒特性,滤饼的厚度。由公式K=2I A P1-s, T=qe/K可知,当过滤压强提高一倍时,K增大,T减小,qe是由介质决定,与压强无关。 传热膜系数的测定 1.将实验得到的半经验特征数关联式和公认式进行比较,分析造成偏差的原因。 答:答:壁温接近于蒸气的温度。 可推出此次实验中总的传热系数方程为 其中K是总的传热系数,a是空气的传热系数,02是水蒸气的传热系数,3是铜管的厚度,入是铜的导热系数,R1、R2为污垢热阻。因R1、R2和金属壁的热阻较小,可忽略不计,则Tw- tw,于是可推导出,显然,壁温Tw接近于给热系数较大一侧的流体温度,对于此实验,可知壁温接近于水蒸气的温度。

化工原理实验~流体流动阻力系数的测定实验报告

流体流动阻力系数的测定实验报告 一、实验目的: 1、掌握测定流体流动阻力实验的一般实验方法。 2、测定直管的摩擦阻力系数λ及突然扩大管与阀门的局部阻力系数ξ。 3、验证湍流区内摩擦阻力系数λ为雷诺系数Re与相对粗糙度的函数。 4、将所得光滑管的λ—Re方程与Blasius方程相比较。 二、实验器材: 流体阻力实验装置一套 三、实验原理: 1、直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性与涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度与方向突然变化,产 生局部阻力。影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得 到在一定条件下具有普遍意义的结果,其方法如下。 流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为 △P=f (d, l, u,ρ,μ,ε) 引入下列无量纲数群。 雷诺数Re=duρ/μ 相对粗糙度ε/ d 管子长径比l / d 从而得到 △P/(ρu2)=ψ(duρ/μ,ε/ d, l / d) 令λ=φ(Re,ε/ d) △P/ρ=(l / d)φ(Re,ε/ d)u2/2 可得摩擦阻力系数与压头损失之间的关系,这种关系可用试验方法直接测定。 h f=△P/ρ=λ(l / d)u2/2 ——直管阻力,J/kg 式中,h f l——被测管长,m d——被测管内径,m u——平均流速,m/s λ——摩擦阻力系数。 当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。根据伯努利方程找出静压强差 与摩擦阻力系数的关系式,即可求出摩擦阻力系数。改变流速可测出不同Re下的摩擦 阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。 (1)、湍流区的摩擦阻力系数 在湍流区内λ=f(Re,ε/d)。对于光滑管,大量实验证明,当Re在3×103~105范围内,λ与Re的关系遵循Blasius关系式,即λ=0、3163 / Re0、25 对于粗糙管,λ与Re的关系均以图来表示。 2、局部阻力

化工原理实验试卷

1 化工原理实验试卷 注意事项:1.考前请将密封线内填写清楚; 2. 所有答案请直接答在试卷上; 3 ?考试形式:闭卷; 4. 本试卷共四大题,满分100分,考试时间90分钟。 一、填空题 1. 在阻力实验中,两截面上静压强的差采用倒U形压差计测定。 2. 实验数据中各变量的关系可表示为表格,图形和公式. 3. 影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等 4. 用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加空 气流速(2)在空气一侧加装翅片(3)定期排放不 凝气体。 5. 用皮托管放在管中心处测量时,其U形管压差计的读数R反映管中心处的静压头。 6. 吸收实验中尾气浓度采用尾气分析装置测定,吸收剂为稀硫酸,指示剂为甲基红。 7. 在精馏实验数据处理中需要确定进料的热状况参数q值,实验中需要测定进料量、进料温度、进料浓度等。 8. 干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。

9. 在本实验室中的精馏实验中应密切注意釜压,正常操作维持在,如果达到?, 可能出现液泛,应减 少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 10. 吸收实验中尾气浓度采用尾气分析装置测定,它主要由取样管、吸收盒和湿式体积流量计组成的,吸收剂为稀硫酸,指示 剂为甲基红。 11. 流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。 12. 在柏努利方程实验中,当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管内液柱高度(从测压孔算起) 为静压头,它反映测压点处液体的压强大小;当测压孔由上述方位转为正对水流方向时,测压管内液位将因此上升,所增加的液 位高度,即为测压孔处液体的动压头,它反映出该点水流动能的大小。 13. 测量流体体积流量的流量计有转子流量计、孔板流量计和涡轮流量计。 14. 在精馏实验中,确定进料状态参数q需要测定进料温度,进料浓度参数。 15. 在本实验室的传热实验中,采用套管式换热器加热冷空气,加热介质为饱和水蒸汽,可通过增加空气流量达到提高传热系 数的目的。 16. 在干燥实验中,要先开风机,而后再打开加热以免烧坏加热丝。 17. 在流体流动形态的观察实验中,改变雷诺数最简单的方法是改变流量。 18. (1)离心泵最常用的调节方法是出口阀门调节;(2)容积式泵常用的调节方法是旁路调节。 19. 在填料塔流体力学特性测试中,压强降与空塔气速之间的函数关系应绘在双对

实验一 流体流动阻力测定实验

4.1 流体流动阻力测定实验 一、实验目的 ⒈学习直管摩擦阻力△P f 、直管摩擦系数λ的测定方法。 ⒉掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。 ⒊掌握局部阻力的测量方法。 ⒋学习压强差的几种测量方法和技巧。 ⒌掌握双对数坐标系的使用方法。 二、实验内容 ⒈测定实验管路(光滑管和粗糙管)内流体流动的阻力和直管摩擦系数λ。 ⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。 ⒊在本实验压差测量范围内,测量阀门的局部阻力系数。 三、实验原理 ⒈直管摩擦系数λ与雷诺数Re 的测定 流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。流体在直管内 流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系: h f = ρf P ?=22 u d l λ (4-1) λ=22u P l d f ???ρ (4-2) Re = μρ??u d (4-3) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。 直管摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式(1-2)可计算出不同流速下的直管摩擦系数λ,用式(1-3)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 ⒉局部阻力系数ζ的测定 22 'u P h f f ζρ=?=' (4-4)

流体阻力实验报告(借鉴材料)

化工原理实验报告 实验名称:流体流动阻力测定 班级: 学号: 姓名: 同组人: 实验日期:

流体阻力实验 一、摘要 通过测定不同阀门开度下的流体流量v q ,以及测定已知长度l 和管径d 的光滑直管和粗糙直管间的压差p ?,根据公式22u l p d ρλ?=,其中ρ为实验温度下流体的密度;流 体流速24d q u v π= ,以及雷诺数μ ρdu =Re (μ为实验温度下流体粘度),得出湍流区光滑直管和粗糙直管在不同Re 下的λ值,通过作Re -λ双对数坐标图,可以得出两者的关系曲线,以及和光滑管遵循的Blasius 关系式比较关系,并验证了湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数。由公式2 22 1 21p u u ρζ ?+ =- 可求出突然扩大管的局 部阻力系数,以及由Re 64=λ求出层流时的摩擦阻力系数λ,再和雷诺数Re 作图得出层 流管Re -λ关系曲线。 关键词:摩擦阻力系数 局部阻力系数 雷诺数Re 相对粗糙度ε/d 二、实验目的 1、掌握测定流体流动阻力实验的一般试验方法; 2、测定直管的摩擦阻力系数λ及突然扩大管的局部阻力系数ζ; 3、测定层流管的摩擦阻力系数λ; 4、验证湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数; 5、将所得光滑管的λ-Re 方程与Blasius 方程相比较。 三、实验原理 1、直管阻力损失函数:f (h f ,ρ,μ, l ,d ,ε, u )=0 应用量纲分析法寻找hf (ΔP /ρ)与各影响因素间的关系 1)影响因素 物性:ρ,μ 设备:l ,d ,ε 操作:u (p,Z ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1], l [L] ,d [L],ε[L],u [LT -1], h f [L 2 T -2] 3)选基本变量(独立,含M ,L ,T ) d ,u ,ρ(l ,u ,ρ等组合也可以) 4)无量纲化非基本变量 μ:π1=μρa u b d c [M 0L 0T 0] =[ML -1 T -1][ML -3]a [LT -1]b [L]c ? a=-1,b=-1,c=-1

化工原理实验流体流动阻力系数的测定实验报告

化工原理实验-流体流动阻力系数的测定实验报告

————————————————————————————————作者: ————————————————————————————————日期:

流体流动阻力系数的测定实验报告 一、实验目的: 1、掌握测定流体流动阻力实验的一般实验方法。 2、测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。 3、验证湍流区内摩擦阻力系数λ为雷诺系数Re和相对粗糙度的函数。 4、将所得光滑管的λ—Re方程与Blasius方程相比较。 二、实验器材: 流体阻力实验装置一套 三、实验原理: 1、直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流 的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运 动的速度和方向突然变化,产生局部阻力。影响流体阻力的因素较多,在 工程上通常采用量纲分析方法简化实验,得到在一定条件下具有普遍意 义的结果,其方法如下。 流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为 △P=f (d, l, u,ρ,μ,ε) 引入下列无量纲数群。 雷诺数Re=duρ/μ 相对粗糙度ε/ d 管子长径比l / d 从而得到 △P/(ρu2)=ψ(duρ/μ,ε/d, l / d) 令λ=φ(Re,ε/ d) △P/ρ=(l/ d)φ(Re,ε/ d)u2/2 可得摩擦阻力系数与压头损失之间的关系,这种关系可用试验方法 =△P/ρ=λ(l /d)u2/2 直接测定。h f ——直管阻力,J/kg 式中,h f l——被测管长,m d——被测管内径,m u——平均流速,m/s λ——摩擦阻力系数。 当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差 计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。根 据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻 力系数。改变流速可测出不同Re下的摩擦阻力系数,这样就可得出某一 相对粗糙度下管子的λ—Re关系。 (1)、湍流区的摩擦阻力系数

流体阻力测定实验

流体阻力测定实验实验指导书 环境与市政工程学院 2015年11月

一、实验目的: 1.学习直管摩擦阻力f P ?,直管摩擦系数λ的测定方法。 2.掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。 3.掌握局部摩擦阻力f P ?,局部阻力系数ζ的测定方法。 4.学习压强差的几种测量方法和提高其测量精确度的一些技巧。 二、实验内容: 1.测定实验管路内流体流动的阻力和直管摩擦系数λ。 2.测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。 3.测定管路部件局部摩擦阻力f P ?和局部阻力系数ζ。 三、实验原理: 1.直管摩擦系数λ与雷诺数Re 的测定: 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρρf f P P P h ?=-=21 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) 2 2u d l h f P f λρ==? (2) 整理(1)(2)两式得 2 2u P l d f ???=ρλ (3) μρ ??=u d Re (4) 式中: -d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。

在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ,用式(4)计算对应的Re ,整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 2.局部阻力系数ζ的测定 22'u P h f f ζρ=?=' 2'2u P f ?????? ??=ρζ 式中: -ζ局部阻力系数,无因次; -?'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。 图-1 局部阻力测量取压口布置图 局部阻力引起的压强降'f P ? 可用下面方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在上、下游各开两对测压口a-a'和b-b '如图-1,使 ab =bc ; a 'b '=b 'c ',则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c ' 在a ~a '之间列柏努利方程式 P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f (5) 在b ~b '之间列柏努利方程式: P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f = △P f ,a b +△P f ,a 'b '+△P 'f (6) 联立式(5)和(6),则:'f P ?=2(P b -P b ')-(P a -P a ') 为了实验方便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。其数值用差压 传感器来测量。 四、实验装置的基本情况: 1.实验装置流程示意图:

相关主题
文本预览
相关文档 最新文档