当前位置:文档之家› 2.八大行星运动特征

2.八大行星运动特征

2.八大行星运动特征

地球科学的发展史

地球科学的发展史 谭亲平 地球化学研究所 201028006514006 1、中国地学发展历程 我国历史上出现过不少走遍祖国深山大川。最早的要算北魏的郦道元,他著述的《水经注》是很有名的。这是我国北魏以前最全面的最系统的综合性地理著作。远在西方出现航海热以前的几十年,我国明朝航海家郑和已“七下西洋”,走了30多个国家,路程为10万多公里。他沿途记载了各国方位和海上暗礁、浅滩,成为研究十六世纪以前西方交通历史的重要资料。 明代徐霞客经过30多年的地理考察,走遍了大半个中国。他不仅考察了名山大川,还专门调查了研究我国石灰岩地貌的分布及发育规律。他对石灰岩溶洞的解释和今天的科学原理是一致的。《徐霞客游记》是后人根据他的日记整理而成,书中对他所到之处的地理,水文,地质,植物等现象都有详细的记载。 清代康熙年间,于公元1708-1718年在全国进行了空前规模的大地测量,测定了630个经纬点,绘制了著名的全地图《皇舆全览图》。 1755年,清代汪锋辰著《银川小志》,记载了地震发生前井水浑浊、群犬狂吠等前兆,是有关以动物异常预报地震的科学史料。李榕《自流井记》记载,清代四川地区工人已初步掌握了地下岩层的分布规律,并找到了绿豆岩和黄姜岩两个标准层,表明我国已建立起最早的地下地质学。徐松《西域水道记》把新疆分成111个受水体(湖泊),以水道为纲,详细记载了各流域的地质、地貌、新构造运动、矿产、城市等,是我国历史上比较全面地叙述新疆地理的著作。19世纪后半叶至20世纪初,中国正处在从闭关自守到被迫向西方开放的时期,当时出版少量地质文献都是西方地学教材的译本。一些西方学者在中国进行了地质调查和探险,出版了关于中国地质的著作。如美国庞佩利著有《中国、蒙古与日本之地质研究》(1866);德国的李希霍芬著有《中国》,这是第一部较为系统的有关中国地质的著作;美国的威利斯著有《中国的研究》。李希霍芬和威利斯的工作为以后中国地质的研究奠定了初步基础。此外,还有匈牙利洛茨、瑞典的斯文·海定、俄国的奥布鲁切夫都曾考察研究过中国一些区域的地质情况。在1910年以前,中国学者编写的地质文

八大行星图文资料

水星 水星最接近太阳,是太阳系中最小最轻的行星。常和太阳同时出没,中国古代称它为“辰星”。 金星 八大行星之一,为太阳系中第六大行星,中国古代称之为太白或太白金星。它有时是晨星,黎明出现在东方天空,被称为“启明”;有时又是昏星,黄昏后出现在西方天空,被称为“长庚”。 地球 有阳光,水,氧气,和合适的温度 地球是距太阳第三颗,也是第五大行星。 地球是唯一一个不是从希腊或罗马神话中得到的名字。Earth 一词来自于古英语及日耳曼语。这里当然有许多其他语言的命名。在罗马神话中,地球女神叫Tellus-肥沃的土地(希腊语:Gaia,大地母亲) 直到16世纪哥白尼时代人们才明白地球只是一颗行星。

地球,当然不需要飞行器即可被观测,然而我们直到二十世纪才有了整个行星的地图。由空间拍到的图片应具有合理的重要性;举例来说,它们大大帮助了气象预报及暴风雨跟踪预报。 火星 火星为距太阳第四近,也是太阳系中第七大行星;中国古代称“荧惑星”。 火星(希腊语:阿瑞斯)被称为战神。这或许是由于它鲜红的颜色而得来的;火星有时被称为“红色行星”。(趣记:在罗马人之前,古希腊人曾把火星作为农耕之神来供奉。而好侵略扩张的罗马人却把火星作为战争的象征)而“三月”的名字也是得自于火星。 木星 木星是离太阳第五颗行星,而且是最大的一颗,是所有其他的7颗行星的总和质量的2.5倍,是地球的318倍,体积为地球的1316倍。被称为“行星之王”。 木星Jupiter(为朱庇特,罗马神话中的众神之王,即希腊神话中的宙斯)

土星 土星是离太阳第六远的行星,也是八大行星中第二大的行星,中国古代称为“镇星”,是太阳系密度最小的行星,可以浮在水上。 在罗马神话中,土星(Saturn)是农神的名称。希腊神话中的农神Cronus是Uranus(天王星)和盖亚的儿子,也是宙斯(木星)的父亲。土星也是英语中“星期六”(Saturday)的词根。天王星 天王星是太阳系中离太阳第七远行星,从直径来看,是太阳系中第三大行星。天王星的体积比海王星大,质量却比其小。 读天王星的英文名字,发音时要小心,否则可能会使人陷于窘迫的境地。Uranus应读成"YOOR a nus" ,不要读成"your anus" (你的肛门)或是"urine us"(对着我们撒尿)。 乌拉诺斯是古希腊神话中的宇宙之神,是最早的至高无上的神。他是盖亚的儿子兼配偶,是Cronus(农神土星)、独眼巨人和泰坦(奥林匹斯山神的前辈)的父亲。 海王星 海王星是环绕太阳运行的第八颗行星,也是太阳系中第四大天体(直径上)。海王星在直径上小于天王星,但质量比它大。古罗马神话中的海神尼普顿。

1太阳系和地球系统元素的丰度详解

第一章 太阳系和地球系统的元素丰度 元素丰度是每一个地球化学体系的基本数据,可在同一或不同体系中用元素的含量值来进行比较,通过纵向(时间)、横向(空间)上的比较,了解元素动态情况,从而建立起元素集中、分散、迁移活动等一系列地球化学概念。从某种意义上来说,也就是在探索和了解丰度这一课题的过程中,逐渐建立起近代地球化学。 研究元素丰度是研究地球化学基础理论问题的重要素材之一。宇宙天 体是怎样起源的?地球又是如何形成的?地壳中主要元素为什么与地幔中的不一样?生命是怎么产生和演化的?这些研究都离不开地球化学体系中元素丰度分布特征和规律。 1.1 基本概念 1.地球化学体系 按照地球化学的观点,我们把所要研究的对象看作是一个地球化学体系。每个地球化学体系都有一定的空间,都处于特定的物理化学状态(C 、T 、P 等),并且有一定的时间连续。 这个体系可大可小。某个矿物包裹体,某矿物、某岩石可看作一个地球化学体系,某个地层、岩体、矿床(某个流域、某个城市)也是一个地球化学体系,从更大范围来讲,某一个区域、地壳、地球直至太阳系、整个宇宙都可看作为一

地球化学的基本问题之一就是研究元素在地球化学体系中的分布(丰度)、分配问题,也就是地球化学体系中元素“量”的研究。 2.分布与丰度 所谓元素在体系中的分布,一般认为是元素在这个体系中的相对含量(以元素的平均含量表示),即元素的“丰度”。其实“分布”比“丰度”具有更广泛的涵义: 体系中元素的丰度值实际上只是对这个体系里元素真实含量的一种估计,它只反映了元素分布特征的一个方面,即元素在一个体系中分布的一种集中(平均)倾向。但是,元素在一个体系中,特别是在较大体系中的分布决不是均一的,还包含着元素在体系中的离散(不均一)特征,因此,元素的分布包括: ①元素的相对含量(平均含量=元素的“丰度”);②元素含量的不均一性(分布离散特征数、分布所服从的统计模型)。 需要指出的是,从目前的情况来看,地球化学对元素特征所积累的资料(包括太阳系、地球、地壳)都仅限于丰度的资料,关于元素分布的离散程度及元素分布统计特征研究,仅限于在少量范围不大的地球化学体系内做了一些工作。 3.分布与分配 元素的分布指的是元素在一个化学体系中(太阳、陨石、地球、地壳、某地区等)的整体总含量; 元素的分配指的是元素在各地球化学体系内各个区域或区段中的含量; 分布是整体,分配是局部,两者是一个相对的概念,既有联系又有区别。 例如,地球作为整体,元素在地壳中的分布,也就是元素在地球中分配的表现,把某岩石作为一个整体,元素在某组成矿物中的分布,也就是元素在岩石中分配的表现。 4.绝对含量和相对含量 各地球体系中常用的含量单位有两类,绝对含量和相对含量。 1.2太阳系的组成和元素丰度

八大行星详细资料

水星: 水星基本参数: 轨道半长径:5791万千米(0.38 天文单位) 公转周期:87.70 日 平均轨道速度:47.89 千米/每秒 轨道偏心率:0.206 轨道倾角:7.0 度 行星赤道半径:2440 千米 质量(地球质量=1):0.0553 密度:5.43 克/立方厘米 自转周期:58.65 日 卫星数:无 水星是最靠近太阳的行星,它与太阳的角距从不超过28°。古代中国称水星为辰星,西方人则称它为墨丘利(Mercury)。墨丘利(赫尔莫斯)是罗马神话中专为众神传递信息的使者,神通广大,行走如飞。水星确实象墨丘利那样,行动迅速,是太阳系中运动最快的行星。水星的密度较大,在九大行星中仅次于地球。它可能有一个含铁丰富的致密内核。水星地貌酷似月球,大小不一的环形山星罗棋布,还有辐射纹、平原、裂谷、盆地等地形。水星大气非常稀薄,昼夜温差很大,阳光直射处温度高达427℃,夜晚降低到-173℃。 直到20世纪60年代以前,人们一直认为, 水星自转一周与公转一周的时间是相同的, 从而使面对太阳的那一面恒定不变。这与月球总是以相同的半面朝向地球很相似。但在1965 年,借助美国阿雷西博天文台世界最大的射电望远镜,测量了水星两个边缘反射波间的频率差,成功地测量了水星的自转周期为58.65日,恰好是公转周期的2/3。 II 金星: 金星基本参数: 轨道半长径:1082万千米(0.72 天文单位) 公转周期:224.70 日 平均轨道速度:35.03 千米/每秒 轨道偏心率:0.007 轨道倾角:3.4 度 行星赤道半径:6052千米 质量(地球质量=1):0.8150 密度:5.24 克/立方厘米 自转周期:243.01 日 卫星数:无 金星是天空中除了太阳和月亮外最亮的星,亮度最大时比全天最亮的恒星天狼星亮14倍,我国古代称它为“太白”,罗马人则称它为维纳斯(Venus)-爱与美的女神。 在地球上看金星和太阳的最大视角不超过48度,因此金星不会整夜出现在夜空中,我国民间称黎明时分的金星为启明星,傍晚时分的金星为长庚星。金星自转一周比公转一周还慢,

地质学发展简史(精简版)

地质发展简史 1.地质知识积累和地质学的萌芽时期(远古~1450) 岩石和矿物知识的积累 对地质作用的认识 对地球的启蒙认识 中世纪的地质学 2.地质学的奠基时期(1450~1750) 地质哲学思想的初步发展 对化石和地层的认识 岩石学、矿物学和矿床学的发展 3.地质学的形成时期(1750~1840) 地质考察旅行的兴起 水成论和火成论 地质学体系的形成 灾变论和均变论 4.地质学的发展时期(1840~1910) 地层学和古生物学 岩石学、矿物学和矿床学 动力地质学 地槽地台学说和全球地质构造的理论综合 5.20世纪地质学的发展(1910~) 地质学各分支学科的发展 大陆漂移说 地质学的新阶段及板块构造学说 地质学发展史是人类在生产和探索地球奥秘的过程中,逐步认识地球的组成和结构,地球及其生物界演变的规律,特别是地壳和岩石圈运动规律,并为人类合理开发、利用和保护矿产资源保护环境服务的历史。 人们对地球的认识源远流长。在曲折的历史发展过程中,原始朴素的地质知识逐渐形成了地质科学的知识体系。根据地质知识发展的程度,并参照其社会文化背景,可将地质学发展史划分为5个时期。①地质知识积累和地质学萌芽时期(远古~1450),以认识的直观和解释的猜测性为主要特征。②地质学奠基时期(1450~1750),其特征是随着自然科学的诞生,地质知识趋向系统化。对地质现象试作理性解释,并逐步建立了观察和推理方法。③地质学形成时期(1750~1840),一方面地质知识得到较全面的概括和总结,另一方面,人们将地质作用、过程和结果联系起来加以思考,给予解释。地质思想、理论和学说十分活跃,由此初步形成了地质学体系。④地质学发展时期(1840~1910),其特征是地质知识和理论的发展,逐步形成了综合分析方法,初步提出了全球性地质发展史的认识。 ⑤20世纪的地质学(1910~),这一时期特点是科学技术的发展使新的地质学说、地质学理论不断涌现,地质学分支学科之间日益相互渗透,地质学与地球科学的其他学科相互沟通,形成了全球性地质学体系。

人教版高中地理选修1《第三章 地球的演化和地表形态的变化 第一节 地球的早期演化和地质年代》_4

《地球的演化历史》教学设计 【课程标准】:运用地质年代表,描述地球的演化过程 【课标解读】:要让学生能够通过阅读地质年代表,能够形成一种观念:地球有自身的演化规律,并在不同的演化阶段,有不同的生物进化特点。 【教学目标】:能运用地质年代表,描述前寒武纪、古生代、中生代、新生代的地球的演变和生物的进化现象。培养学生地理计算能力,搜集整理归纳资料的能力,培养学生唯物的、辩证的观点。 【内容分析】本节教材首先让学生了解研究地球历史的方法——地层和化石,然后通过对地层和化石的研究,科学家把地球的历史按照宙、代、纪进行了编年,就形成了地质年代表。然后逐一介绍的前寒武纪、古生代、中生代、新生代的地壳运动、生物(动物和植物)演化、矿产和气候。地球的演化历史是本节课的重点。 【学情分析】本节内容是在学习了必修一“宇宙中的地球”,“太阳对地球的影响”等内容后出现的,学生对地球在宇宙中的位置,地球作为一颗行星,具有普通性也具有特殊性已经有了一定的了解。本节课用《流浪地球》的片段引入,很容易激发学生的学习兴趣,学生思维活跃,有利于教学活动的开展。 【教法】实物展示法、图片演示法、讲解法、归纳法、讨论法 【学法】讨论法、比较法、归纳法 【教学过程】 导入新课:同学们看过《流浪地球》这部电影没有?大家有没有想过地球的未来地理环境会发生什么变化?下面我们一起来观看《流浪地球》的片段。 播放视频 教师:通过这段视频,我们了解到在未来,人类的地理环境——地形、气候、水源、河流、城市、工业、农业、交通、生态环境都会发生巨大的变化。其实地球的地理环境一直都在不断变化之中,从地球诞生那一刻起。那么地球是从哪儿来的?它一开始就是现在这个模样吗?地球从诞生到现在地理环境发生了那些变化?今天我们就一起来学习《地球的历史》。 提问:首先,我们来思考人类在地球上存在只有200-300万年,如何知道地球的年龄? 学生:略 总结:地层和化石。展示地层和化石的图片。 问题探究:A、B两地是否具有同一时代的地层?将同时代的地层用虚线连接起来,猜想两地地层产生差异的原因。 播放视频:《化石的形成过程》 提问:请同学总结化石形成的过程和条件。 学生:略 学生活动:若将地球46亿年的历史压缩为是24小时,地球诞生于0点,你能算出图中的时间分别对应一天中的什么时刻吗? 学生计算古生代始于距今5.41亿年、中生代始于距今2.52亿年、新生代始于距今6600万年,分别对应24小时中的什么时刻? 教师点评: 古生代始于5.41亿年 46亿÷24小时(即1天)=5.41亿÷(24—X)

教科版-科学-六年级下册-《太阳系》教学设计

5.太阳系 【教材分析】 太阳系是一个以太阳为中心,包括受太阳引力作用而环绕其运动的其他天体在内的天体系统。太阳位于该系统的中心,并以其绝对优势的质量(占该系统总质量的99.800,其它一切天体只占0.200)所产生的巨大引力,像原子核对周围电子一样,控制着整个系统。同时太阳还是整个太阳系中唯一能够自身发光的天体。它所发出的光和热,照亮和温暖着整个太阳系。当然,作为一个系统,其他天体成员也都有自己的相应的位置,地球就是其中很具特色的成员。在太阳系中,除了中心天体一太阳以外,还包括八大行星、矮行星(冥王星等)、小天体(,J、行星、彗星、流星和其他星际物质等)。其中行星和行星的卫星是太阳系的重要组成成员。太阳系的基本结构,主要是由八大行星的运动和分布状况决定的,按它们距离太阳由近到远的顺序,依次是水星、金星、地球、火星、木星、土星、天王星、海王星。【学情分析】 本课教材共两页,分为两个部分。第一部分“认识太阳系”;第二部分“建太阳系模型”。学生在研究了日食和月食之后,这一课将扩展到对太阳系这一个天体系统的认识。当然,有关太阳系中的其他天体是学生平时难以直接观察到的,用直接观察的方法来完成对太阳系的认识不再是有效的途径。利用一些资料来帮助学生认识太阳系,让学生在活动中建立太阳系的模型将是更有效的策略。 让学生根据八大行星距太阳的平均距离及各行星赤道直径数据表建立太阳系模型是本课的重要活动。学生根据处理后的数据建立的太阳系模型,可以清晰地认识到:八大行星在太阳系的空间分布不是均匀的;八大行星的大小差异很大;在太阳系中,八大行星是十分渺小的。这一活动,不仅含加深太阳和太阳系中的和组成天体在学生头脑中的印象,更重要的是可以培养学生的空间想象力和理解力,对建立有关宇宙空间的概念十分有益。 【教学目标】 科学概念: 太阳和围绕它运动的行星、矮行星和小天体组成了太阳系。太阳系是一个较大的天体系统。 过程与方法: 1、收集资料认识和了解太阳系。 2、按一定比例对数据进行处理,并在此基础上用一定的材料建立太阳系的模型。

八大行星基本资料

八大行星基本资料 水星 水星最接近太阳,是太阳系中最小最轻的行星。常和太阳同时出没,中国古代称它为“辰星”。水星在直径上小于木卫三和土卫六。 基本参数 轨道半长径:5791万千米(0.38 天文单位)公转周期:87.70 天 自转方向:自西向东逆时针旋转 平均轨道速度:47.89 千米/每秒 轨道偏心率:0.206% 轨道倾角:7.0 度 行星赤道半径:2440 千米 质量(地球质量=1):0.0553 密度:5.43 克/立方厘米 自转周期:58.653485 日 卫星数:无 公转轨道:距太阳 57,910,000 千米 (0.38 天文单位) 金星 基本参数 自转方向:自东向西 公转周期:224.701天 平均轨道速度:35.03 千米/每秒 轨道偏心率:0.007 轨道倾角:3.4 度

赤道直径:12,103.6千米 直径:12105千米 质量(地球质量=1):0.8150 密度:5.24 克/立方厘米 卫星数量:0 公转半径:108,208,930 km(0.72 天文单位) 表面面积:4.6亿平方千米 自转时间:243.02天 逃逸速度:10.4 千米/秒 地球 基本参数 轨道半径:149,600,000 千米(离太阳1.00 天文单位)行星直径:12,756.3 千米 平均轨道速度:29.79千米/每秒 轨道偏心率:0.08 轨道倾角:21° 质量: 5.9736e24 千克 赤道引力(地球=1) : 1.00 逃逸速度(公里/秒):11.2 自转周期(日):0.9973 卫星数: 1 公转周期(日):365.2422 黄赤交角(度):23.26

太阳系_八大行星资料表

太阳系八大行星资料表 (20110903) 名称 直径 (千米)与太阳的平均距离 (万千米 自转周期 (天) 公转周期 (天) 卫星数量 (个) 其他 水星4,880 5,791 59 88 0 自西向东自转金星12,104 10,820 243 225 0 自东向西自转地球12,756 14,960 1 365 1 自西向东自转火星6,796 22,794 1 687 2 自西向东自转木星142,984 77,833 0.41 4333 62 自西向东自转土星120,536 142,940 0.43 10760 34 自西向东自转天王星51,800 287,668 0.65 30799 27 自东向西自转海王星49,532 450,400 0.67 60188 13 自西向东自转 1

八大行星资料表 最後更新:2007/2/6 与太阳距离(百万公里)赤道半 径 (公里) 体积 (地球=1) 重量 (地球=1) 密度 (g/cm3) 赤道重力 (m/s2) 自转周期 (日) 公转周期轨道 离心率 表面温 度 (度) 自转方向卫星最亮星等 最大 视直径 57.9091752439.7 0.0540.055 5.427 3.758.64687.97日0.2056306 9 -173~427顺时针0-1.9等11秒 108.208936051.80.880.815 5.248.87243224.7日0.0068420~485逆时针0-4.4等61秒 149.597896378.1411 5.5159.7660.9972696 8 365.24日 0.0167102 2 -88~58顺时针1-- 227.9366433970.1500.10744 3.94 3.693 1.0260686.93日0.0934-87~-5顺时针2-2.8等18秒778.41202714921316317.82 1.3320.870.4135411.8565年00.04839-148顺时针 63-2.8等47秒 1426.725460268763.695.160.7010.40.4440129.448年0.0541506-178顺时针 56+0.4等43秒(环) 2870.97222555963.114.371 1.308.430.71884.02年0.047168-216顺时针27 5.6等4秒4498.25292476457.717.147 1.7610.710.67125164.79年0.00859-214顺时针137.9等0秒5906.381151±200.00590.0022 2.000.81 6.387247.92年0.2488-233顺时针313.7等0秒 2

太阳系教学设计

5、太阳系 【教学目标】 科学概念: 太阳和围绕它运动的行星、矮行星和小天体组成了太阳系。太阳系是一个较大的天体系统。 过程与方法: 1、收集资料认识和了解太阳系。 2、按一定比例对数据进行处理,并在此基础上用一定的材料建立太阳系的模型。情感态度与价值观: 1、认识到收集和整理资料,并进行交流,是科学学习的一种方式。 2、学会与他人合作,并能在合作中发挥自己的作用。 3、意识到太阳系中天体的运动是有规律的,并可以逐渐被人们认识的。 【教学重点】太阳和围绕它运动的行星、矮行星和小天体组成了太阳系。 【教学难点】根据八大行星距太阳的平均距离及各行星赤道直径数据表建立太阳系的模型。 【教学准备】 教师准备:太阳系图片、多媒体资料、八大行星数据表、八个铁丝制成的支架、橡皮泥、小皮球、直尺等;教师事先考察制作太阳系模型的室外场地。 学生准备:课前收集有关太阳系的资料,小组内先进行交流。 【教学过程】 一、认识太阳系。 1、提出问题:地球在不停的围绕太阳运动,那么还有哪些天体也在不停地围绕着太阳运动呢? 2、课前同学们都进行了有关太阳系资料的收集,现在让我们来开个有关太阳系的交流会,请各组派代表进行全班交流,资料可以是文字的,也可以用图片的形式展示。说说: (1)哪些天体在围绕着太阳运动? (2)这些天体有哪些特点? (3)它们之间是如何排列的? 3、教师展示自己收集的资料做补充。(最好是有关太阳系的科普录像资料) 4、小结:太阳系是以太阳为中心,包括围绕它转动的八大行星(及围绕行星转动的卫星)、矮行星、小天体(包括小行星、流星、彗星等)组成的天体系统。 二、建立太阳系模型。 1、谈话:我们已经对太阳系有了初步的了解,为了能更好地认识太阳系,让我们用橡皮泥捏成球表示八大行星,按照一定的顺序和比例,试着建一个太阳系的模型。 2、讨论:怎样才能建好模型?需要哪些相关数据才能保证我们建的模型相对准确? 3、阅读课本56页有关八大行星的数据资料。 4、尝试根据八大行星与太阳的距离来建模型,思考: (1)如何在桌面上将八大行星摆列出来? (预设:把表中行星与太阳的距离按相同比例缩小,将“太阳”及“八大行星”在桌子上排开。) (2)如果要对八大行星与太阳距离的数据进行处理,该如何处理?

宇宙的基本结构

宇宙的基本结构 一、星系 1.星系是由宇宙中一大群运动着的恒星、大量的气体和尘埃组成的物质系统。银河系以外的星系统称为河外星系。 2.太阳系是银河系中的一小部分,地球是太阳系中的一颗行星,月球是地球的卫星。 二、太阳系 1.太阳系由太阳和八大行星组成,这八大行星在太阳引力作用下,几乎在同一平面内绕太阳公转,距离太阳越近的行星,公转速度越大。

宇宙银河系河外星系太阳系其它恒星系地月系其它行星 2.太阳 太阳是恒星,是一颗自己能发光发热的气体星球。直径约为1.4×106Km,体积是地球的130万倍,质量的为2×1030Kg是地球的33万倍。 太阳源源不断地以电磁波的形式向四周放射能量,称太阳辐射(光),太阳每秒辐射的能量达到4×1026J,太阳的能量来自内部的核聚变。 3.八大行星 水星、金星、地球、火星、木星、土星、天王星、海王星。其中水星、金星、地球、火星离太阳较近称内行星,木星、土星、天王星、海王星离太阳较远称外行星。内行星有坚硬的外壳,外行星无坚硬的外壳,体积巨大。 八大行星的运动特征: 共面性:轨道面之间的倾角小于4°,几乎在同一平面上。 同向性:都是自西向东运动。

近圆性:轨道的偏心率接近0,近似圆轨道。 三、地月系 1. 地球与月球组成一个双星系统称地月 系。 2.地球 地球是一颗直径约为12756Km、质量约 为6.0×1024Kg的行星,以约30Km/s的平均 速率绕太阳公转,它自转周期为24小时。 地球上生命存在的条件: 地球与太阳的距离适中,平均温度15度,大部风地区分布着液态水,非常适合生物的生长。 体积、质量适中,吸引住较多的大气和水。经过漫长的演化形成的大气,非常适合生物的呼吸。 地球自转和公转周期适中,地球上昼夜更替和季节轮回适中,适合生物的生存。

《太阳系》教学设计案例

《13、太阳系》教学设计 鄂教版六年级科学下册 学习目标 1.知道组成太阳系的星体以及八大行星的排列顺序。 2.会收集资料,能对数据进行处理,从而认识了解太阳系。 3.学会与他人合作,并能在合作中发挥自己的作用。 学习重难点:知道组成太阳系的星体以及八大行星的排列顺序;会收集资料,能对数据进行处理,从而认识了解太阳系。 学习方法:收集资料、讨论、交流等。 教学与学生分析:本课为鄂教版科学教材六年级下册《太阳和太阳系》单元中的第六课。本单元由《太阳》《太阳和动植物》《太阳与地球物质变化》《太阳和人类》《太阳能热水器》《太阳系》《做太阳系模型》七课组成。从知识层面上看,是从太阳到太阳与动植物以及人类的关系,再到太阳系,引导学生由近及远地认识;从思维发展来看,是从具体到抽象;从探究的难度来看,从观察太阳到认识太阳与动植物和人类的关系,再到太阳系,由易到难。学生在六年级上册和本册第二单元学习了有关地球、月球的相关内容,为本课的学习打下了基础。 太阳系中的多数天体是学生平时难以直接观察到的,教材提供了一定量的阅读材料和相关图片,由学生查阅、收集、整理有关太阳系的资料,教师指导学生阅读、想象、讨论,通过ppt展示的太阳系有关图片,帮助学生认识了解太阳系的情况。通过建

立模型了解太阳系中八颗行星的排序,以及离太阳的距离远近,从而形成正确的空间概念,认识科学的进步和人类智慧的潜力,激起学生的求知欲,同时培养、训练学生通过阅读获取信息的能力和空间想象力。 大部分学生课外阅读面较广,对太阳系八颗行星的名称有所了解,对太阳系中的某些天体是有一定认知的,知道一些天体的名称和相关信息。但对这些行星的具体情况,如质量、体积大小、与太阳的距离远近等基本特征并不十分清楚,对太阳系这一概念也比较模糊。 教学准备:太阳系图片,多媒体资料,八大行星数据表。 导学过程: 第一课时 一、认识太阳系中围绕太阳转动的行星情况。 (PPT课件出示太阳系图片,学生观察) 1.师(提问):同学们看了太阳系的图片,太阳周围除了地球和月球之外,还有什么天体? 2.学生:讨论并自由回答。 3.师(谈话):看来同学们对太阳系已经有了一定的了解,太阳周围除了地球以外,还有许许多多大大小小的天体围着它转动,这些天体都像地球一样,本身不发光,靠反射太阳光我们才能看到它们。人们把以太阳为中心,包括环绕太阳运动的八颗行星、卫星、矮行星以及太阳系小天体组成的天体系统称为太阳系。

柳江盆地地质发展史中国石油大学

版本一:从区域性地质背景来看,本区前中元古代处于地槽发展阶段。地壳大幅度下降,堆积了巨厚的沉积物,经历了五台运动和吕梁运动。特别是早元古代的吕梁运动,地槽回返,产生了漫长而复杂的褶皱运动,并伴有区域变质作用,混合岩化和花岗岩化作用,逐渐形成了一套巨厚的变质岩,混合岩和混合花岗岩,构成了华北地台结晶基底。结束了前中元古代地槽发展阶段。 之后在元古代末期,柳江地区进入了裂陷槽沉积阶段,沉积了诸如长龙山组石英砂岩。本区晚元古代晚期震旦纪再度成为古陆剥削区。? 从古生代起,本区再度下降,海水由北方侵入,接受沉积,随后海侵扩大,有大量的碳酸岩盐沉积。早奥陶世冶里期海进再度扩大,沉积环境逐渐变为正常浅海较深水环境,以大量的碳酸岩出现为特征。早奥陶世末发生太康运动,华北地台大面积抬升,海水退出。中石炭世早期,本区地壳又开始下降,海水侵入,本区处于滨海沼泽相沉积,形成一套富铝铁质碎屑沉积物。地壳升降频繁,滨海沼泽中有大量植物繁衍,以厥类为主,海洋中则以珊瑚,腕足和双壳类动物最多;晚石炭世地壳略趋稳定,海水时进时退,但以陆相沼泽为主,气候适宜大量植物生长,死后形成巨厚堆积,形成本区含煤地层。二叠纪本区以河流相,湖泊相和沼泽想沉积为主,气候温暖湿润,植物生长繁茂,气候转为干旱时形成一些红色碎屑岩沉积,这个时期也有海水侵入。 本区在二叠系石千峰组地层沉积之后,曾发生过两次大的构造变动。 从晚震旦纪至二叠系末,柳江地区总体以相对稳定沉降为主,沉

积了近3000m的沉积岩系,成为燕山期区域构造运动和火山作用双重控制而形成的柳江火山一构造盆地的基底岩系。古生代末期,由于海西-印支运动的影响,基底岩系遭受南北向的挤压,形成近南北向展布的开阔型柳江向斜构造。从三叠纪末到早侏罗世,受燕山运动的影响,柳江向斜再次遭受近东西向的挤压而进一步褶皱,并在其西翼形成纵向逆掩断裂带.同时,位于其向斜南缘和北缘的近东西向区域断裂带活化,从而形成北、西、南分别由断裂围限的箕形断块,断块沉陷形成断陷盆地.在断陷盆地中的柳江向斜近南北轴线方向的断裂破碎带,是本区早、中侏罗世火山喷发的通道,是由多个岩浆喷发中心构成的裂隙一中心式火山喷发带。本区早、中侏罗世形成的火山岩系则分布于此裂隙一 版本二: 第一节地层发展简史 实习区属于华北克拉通的典型区域,在二十多亿年的地质历史发展进程中、多次构造运动,最终形成了如今的构造格局。在发展进程中,经历过五台运动,吕梁运动,蓟县运动,海西—印支运动,燕山运动以及喜马拉雅运动。有几个阶段:太古代结晶基地形成阶段;新元古代裂陷槽发育阶段;古生代稳定地台盖层发育阶段;中生代燕山期挤压褶皱、断裂和岩浆作用阶段;以及新生代的差异隆升作用阶段。 一、太古代地层发展史 这一阶段地槽处于发展阶段,地壳大幅度下降,堆积了巨厚的沉积物,经历了五台运动和吕梁运动后,地槽回返,产生复杂的褶皱运动,并伴有区域变质作用、形成了绥中花岗片麻岩岩,构成结晶基底。

地质学史上的15大地质理论

地质学史上的15大地质理论! 地质学发展至今,产生了一系列假说和理论。随着技术的发展和实验手段的进步,一些逐渐被验证被广泛接受,一些则被淘汰。小桔梳理了地质学史上的15大地质理论,欢迎大家留言讨论。01水成论18世纪到19世纪之交,地学史上爆发了一场水成论与火成论的激烈争论。水成派认为地质变化的原因是水的作用,所有的岩石都是水成岩。火成派认为地质变化的原因是火山的作用,所有的岩石都是火成岩。水成论学派以德国地质学家魏尔纳(A G.Werner,1749一1817)为代表。魏尔纳认为,所有地层是地球在原始洪水期沉积而成,水是地壳形成与变化的唯一动力,而地下火的作用是次要的、局部的。纪元前,古罗马人已发现尼罗河两岸周期性地被洪水淹没、尼罗河在三角洲不断增大。另外,陆地上存在海相介壳动物化石等这些都是证据。水成岩1787年,魏纳发表著作《岩层的简明分类和描述》,将萨克逊地区地层从老到新划分为:原生岩,含花岗岩、片麻岩、云母板岩、蛇纹岩、玄武岩、斑岩、正长岩。过渡岩,含硬砂岩、砂质板岩、灰岩。盖层岩,含砂岩、灰岩、石膏、岩盐、煤。冲积岩,含现代粉砂、粘土、沙、砾石、泉华、泥炭。魏尔纳由此推论,这个层序适合于全球,称之为“万有建造”(Universal Fornrations)。02火成论火成论学派以英国地质学

家郝顿(J.Hutton,1726-1797)为代表。赫顿认为:花岗岩是熔融岩浆冷却的产物,岩浆充满了地球内部,岩桨上涌形成山脉,而流水长期剥蚀又使高山夷为平地,地面下沉到水面以下接受新的沉积。1795年,赫顿发表了著作《地球的理论,证据和说明》。他认为被水成论学派列为第一类岩石的花岗岩、片麻岩等不可能在洪水中形成。火成论并不认为火是地质变化的唯一动力因素,而认为水与火都起作用,这一点与水成论认为水是唯一的动力因素有所不同。花岗岩样品赫顿还发现了泥盆系红砂岩与其下志留系的不整合接触,从而推论地球历史上曾有多次这种造山-夷平-沉积的旋回。因此,他提出自然界过程均一不变,自然现象所表现的事件发生过程在历史时期也曾发生,即著名的均变理论。不整合接触赫顿的朋友霍尔从熔融的玻璃慢慢冷却形成不透明的结晶体 而迅速冷却形成透明玻璃的现象中得到启发,他从意大利的维苏威火山取来一些典型的火山岩,将它熔化后慢慢冷却得到了类似于玄武岩的结晶体,证实了玄武岩是岩浆慢慢冷却形成的。这对火成论学派是极有力的支持,从而也开创了实验岩石学,“岩石火成论”也由此形成。火成岩结果呢,它们之间的争论持续了约200年,最终以火成论胜利结束,然而人们却逐渐发现“水成岩”和“火成岩”都是存在于自然界中的,并且发现了第三类岩石变质岩的存在。三大岩循环图03灾变论18世纪晚期到19世纪初,多数科学家都已认

天文科普:太阳的基本知识

天文科普:太阳的基本知识 【导语】当你在夜空中认星的时候,老师会告诉你,天上看得见的星星大多数都是恒星。恒星是一种由于内部发生热核反应产生巨大能量,从而自己就会发光发热的星球。那么离我们最近的恒星是什么呢?其实它的大名我们谁都知道,就是白天天空中灿烂夺目的太阳。它给我们带来光明和温暖。地球上万物的生长,江河海水的蒸发,地下煤和石油等矿藏的形成,都和太阳的照耀有关。假如没有阳光的照射,地面温度将会降到绝对零度左右,地球上的生命也不可能存在。太阳还是我们所在太阳系的主宰,它巨大的质量占太阳系质量的99%以上。在天文学上表示太阳的符号是⊙。 太阳在空间的位置 太阳只是宇宙中一颗十分普通的恒星,但它却是太阳系的中心天体。太阳系中,包含我们的地球在内的八大行星、一些矮行星、彗星和其它无数的太阳系小天体,都在太阳的强大引力作用下环绕太阳运行。 太阳系的疆域庞大,仅以冥王星为例,其运行轨道距离太阳就将近40个天文单位,也就是60亿千米之遥远,而实际上太阳系的范围还要数十倍于此。 但是这样一个庞大的太阳系家族,在银河系中却仅仅只是十分普通的沧海一粟。我们的银河系拥有至少1000亿颗以上的恒星,直径约10万光年。跳到银河系之外来看,我们会发现太阳位于银河系的对称面附近,距离银河系中心约3.3万光年,在银道面以北约26光年。它以约每秒250千米的速度绕银河系中心旋转,同时又相对于周围的恒星以每秒19.7千米的速度朝着织女星附近方向运动。 [小资料]天文单位和光年

天体的距离实在过于遥远,用普通的米制单位来表示就显得十分不方便。天文学家们想出了一些特别的单位制来取代米制单位。其中常见的有以下两个: (1)天文单位(简写为AU),定义为太阳与地球的平均距离,1AU=149,597,892公里。(简记为:1AU≈1.5亿千米) (2)光年。定义为光在一年里所能走过的距离,1光年=9.4605×1013千米(简记为:1光年≈10万亿千米。) 太阳的大小 太阳是一个巨大而炽热的气体星球。知道了日地距离,再从地球上测得太阳圆面的视角直径,从简单的三角关系就可以求出太阳的半径为69.6万千米,是地球半径的109倍。由此可以算出太阳的体积为地球的130万倍。 天文学家根据开普勒行星运动的第三定律,利用地球的质量和它环绕太阳运转的轨道半径及周期,还可以推算出太阳的质量为1.989×1033克,这个质量是地球的33万倍。并且集中了太阳系99.86%的质量。但是,即使这样一个庞然大物,在茫茫宇宙之中,却也不过只是一颗质量中等的普通恒星而已。 由太阳的体积和质量,可以计算出太阳平均密度为1.409克/厘米3,约为地球平均密度的0.26倍。太阳表面的重力加速度等于2.7398′104厘米/秒2,约为地球表面重力加速度的28倍。太阳表面的逃逸速度约617.7公里/秒,任何一个中性粒子的速度必须大于这个值,才能脱离太阳的吸引力而跑到宇宙空间中去。 太阳的自转

地质史-各种运动汇总

地球科学大辞典构造运动期(幕) 地球科学大辞典构造运动期(幕) 中国地壳运动 【迁西运动】Qianxi movement 发生于中国北方中太古代末的一次构造运动及构造?热事件。因河北迁西得名。在冀东,表现为迁西群遭受强烈的变形、以角闪岩相—麻粒岩相为主的变质作用和以钠质花岗岩为主的岩浆事件。在华北及东北南部各太古宙麻粒岩?片麻岩区具有 广泛性和一定代表性,应属一次主要的构造运动。铁架山运动、兴和运动与之相当,为迄今中国境内确定之最早的构造运动。 【铁架山运动】Tiejiashan orogeny 辽宁东部鞍山地区中太古代末的一次构造运动。据东鞍山铁矿采场南部鞍山群上亚群的条带状含铁建造与下伏东鞍山花岗岩之间的沉积不整合而确定。不整合界面时限放在28 亿年左右。 【兴和运动】Xinghe orogeny 阴山地区新太古代末的构造运动。得名于内蒙古乌兰察布盟兴和县,是根据集宁群晚期的不整合及构造?热事件确定的。相当于五台运动。 【阜平运动】Fuping movement新太古代的一次褶皱运动。五台群与下伏的阜平群上亚群(龙泉关群)间确属角度不整合接触。五台群与阜平群无论在构造形态、构造方向、混合岩化作用、变质作用以及沉积建造上都有明显差异。因而主张将其放在阜平群与五台群之间,其时限置于26 亿年。阜平运动在华北各太古宙变质岩区影响较广,它使阜平群及更老地层普遍发生变形和产生以角闪岩相为主的区域变质,并伴随大量花岗质岩浆侵位。所造成的角度不 整合,除五台—太行山区外,还包括吕梁山区吕梁群与下伏界河口群之间、中条山区绛县群 与下伏涑水杂岩之间的角度不整合等。阴山、燕山及辽东、吉南、山东、豫西以及小秦岭等地亦然。【铁堡运动】Tiebu orogeny 为太古宙后期的一次褶皱运动。据五台—太行山区新太古界阜平群上亚群(龙泉关群)与上覆五台群之间的角度不整合确定。在五台山东北边缘龙泉关以西约5 千米的铁堡村南见有明显的低角度不整合接触关系,二者之间尚保存有厚约1?5 米的古风化壳,因之命名。其时限距今约26 亿年,相当于阜平运动。 【黑疙瘩岭运动】Heigedaling movement 新太古代与古元古代间的地壳运动。原指吕梁山北端黑疙瘩岭地区新太古界上部的五台群石英岩与下部泰山群片麻岩间的不整合。后证实原 定五台群的石英岩、角闪片岩、大理岩和白云母片岩这一套沉积变质岩系与滹沱群相当,原泰山群片麻岩和五台群相当,其不整合面就在滹沱群与五台群之间。现将古元古界与新太古界之间的地壳运动称为五台运动。此名应废弃。 【建屏运动】Jia nping moveme nt新太古代发生的造山运动。根据新太古界阜平群与上覆建屏群间的不整合或假整合接触关系确定。王曰伦等(1962)指出建屏群底砾岩不存在,它由原始的复理式砂岩经区域变质形成,不能用以划分阜平群和建屏群。此名已废弃。 【虎坪运动】Huping orogeny 桑干杂岩、吕梁杂岩、涑水杂岩和登封杂岩都可能代表华北古太古界,而新太古界是五台群。在古新太古代间有广泛的地壳运动发生,形成不整合及沉积间断。河南嵩山、山西中条山和吕梁山均有表现。但有人认为依据不足,尚需进一步研究。【嵩阳运动】Songyang orogeny 新太古代后期的一次褶皱运动。系据河南登封县嵩山群底部石英岩与登封群变质杂岩间的角度不整合确定的,因在嵩山之阳而得名。其发生时间距今25 亿年,大致相当于加拿大的基诺尔运动。 【五台运动】Wutai orogeny 马杏垣等1955 年创名。太古宙末的一次褶皱运动。是根据五台山区新太古界五台群与古元古界滹沱群之间的角度不整合确定的。广义的五台运动应包括 甘泉不整合、探马石不整合及金洞梁不整合等3 个褶皱幕。在华北除太行、吕梁及中条山等地发

《海洋地质学》填空题1-80(已整理).

《海洋地质学》复习思考题 1.海洋地质学是研究被广袤的海水所覆盖的这一部分地球在时间上的发生、发展,在空间上的分布、变化规律的科学。既是海洋科学的重要分支学科,是当代地质学发展的三个主要前沿学科(海洋、外层空间和深部地质之一。 2.海洋地质学的研究对象是占地球表面积70.8%的广阔海底,即被浩瀚无垠的海水所覆盖的这一部分岩石圈。具体来说,就是从海岸线起,经大陆架、大陆坡、大陆裙直至深海洋底,地理范围环绕七大洲,遍布四大洋。 3.海洋地质学的主要研究内容是:在海洋动力(波浪、潮汐、海流等营力作用下海岸地貌的塑造演化、泥沙运动和沉积作用;三角洲与河口湾的研究;海平面变动及其地质意义;海底地壳的组成物质及其分布规律;珊瑚礁的成因、特征与成岩作用;海底地壳的运动及其所引起的构造和形态特征;海洋沉积物及其成岩过程;大洋盆地的起源和发展演化历史;海洋矿产资源的分布规律和成矿条件的探讨;以及海岸工程、港口建设、滩涂开发等所涉及的海洋地质学知识在人类生产斗争中的应用。随着海洋调查技术的革新,海洋地质研究正向纵深发展,古海洋学已成为该学科的前沿。 4.海底是正在进行并且长期接受沉积的场所,与陆上相比很少遭受侵蚀,因而保留了较为连续的沉积记录。对现代海洋沉积作用和成岩机理的研究,不仅可以大大地丰富沉积学的内容,而且根据“将今论古”的现实主义原则,还可以利用已知,推断未知。 5.海岸及近岸海底含有锡石、锆石、金红石、独居石、钛铁矿、磁铁矿、金刚石等砂矿床;在深海底表层还分布着大量锰结核、锰结壳,其成分除锰、铁外,还富含镍、钴、铜等,其数量远远大于陆地储量,而且至今仍在继续堆积生长着。分布于海底裂谷或扩张中心附近的多金属硫化物矿床以块状或软泥状赋存于海底,富含铜、铅、金、银等多种金属,被称为“海底的金银库”。

中国大陆地质历史的旋回与阶段

中国地质GEOLOGY IN CHINA 第36卷第3期2009年6月Vol.36,No.3 Jun.,20091引言 地球上的大陆,是宇宙中人类赖已生存和发展的唯一场所。大陆的形成演化,一直是人类探索的自 然科学主题之一。从早期的地槽-地台理论、大陆漂 移假说,到20世纪60年代以来的板块构造理论,以 及近20年来明确提出的大陆动力学问题研究,人类 对大陆形成演化的研究,不断深入。但是也不应忽视 和否认的是,人类对大陆的形成演化,还知之有限。 大陆地壳是何时如何形成的,又是如何演化的?长期 困扰着地质界和人类社会,在某种程度上,也制约了 人类社会的生存与发展。 中国大陆是地球上地质历史漫长而又最年轻的 大陆,是在新生代期间欧亚板块与印度板块碰撞以后才最后形成的。迄今为止,中国地质学家已经对这块大陆的地质历史进行了多年不懈的研究,提出了多旋回构造演化[1-3]和由古陆核逐渐演变成现今大陆[4,5]等截然不同的大陆发展演化构造模型。然而,这两种不同构造模型的一个共同特征,都认为前南华纪与南华纪以来地球动力学体制是不同的。以板块构造理论研究中国大陆的地质历史,是李春昱[6]倡导实施的,并于1982年主编出版了《亚洲大地构造图》,比较系统地论述了亚洲大陆显生宙以来板块构造演化。该项研究成果在中国乃至亚洲大陆地质历史的研究方面,具有划时代的意义。然而,遗憾的是由于人生时间的限制,他未能完成关于中国大陆板块构造演化深入系统的研究工作。板块构造理论起源于大洋的研究,又被称之为 中国大陆地质历史的旋回与阶段 李锦轶 (中国地质科学院地质研究所,北京100037) 提要:基于对中国大陆已有资料的综合研究,特别是把中国大陆已有地质记录与现今不同板块构造环境形成的岩石组合对比,笔者提出了中国大陆太古宙以来的地质历史可以划分为至少6个大陆形成演化旋回的新论点,根据它们对中国大陆形成演化的贡献并考虑全球大陆形成演化已有认识,建议把它们分别命名为始华旋回、古华旋回、北华旋回、南华旋回、华夏旋回和泛华旋回。建议以大陆裂解记录作为划分这些旋回的标志,每个旋回根据运动学和动力学的差异,进一步划分为裂解离散阶段、汇聚重组阶段和陆内发展阶段。在简要论述了中国大陆形成演化的这6个旋回以后,对中国大陆不同地区时空演化差异和板块构造与地幔柱之间的关系进行了简要讨论,认为(1)此张彼合的地球表层构造运动规律和陆缘与陆内环境并存是导致不同地区大陆时空演化差异的根本原因;(2)板块之间相互作用和地幔柱活动(即地球不同层圈之间的相互作用),是地球上同时存在的两种相互独立的构造体制,它们有可能在一个地区同时存在。 关键词:中国大陆;地质历史;旋回;阶段;板块构造;地幔柱 中图分类号:P311.2 文献标志码:A 文章编号:1000-3657(2009)03-0504-24收稿日期:2009-06-08;改回日期:2009-06-10 基金项目:国家973项目课题“大型断裂系统与古构造格局改造(2007CB411306)”和“中亚型造山与成矿综合研究(2001CB409810)”,国土 资源大调查工作项目“中美矿产资源对比研究(1212010561502-1)”、“全国重要矿产成矿地质背景研究(1212010733802)”、“中 国北方及邻区古生代造山过程、陆壳生长及其对成矿作用制约(1212010711817)”、“中国北方及邻区大型断裂活动历史及其对 古构造-成矿格局的改造(1212010611806)”和“东天山地区构造格架研究(200013000201)”资助。作者简介:李锦轶,男,1956年生,研究员,博士生导师,从事大陆内部古造山带区地壳形成与演化方面研究;E-mail :jyli@cags.ac.cn 。

相关主题
文本预览
相关文档 最新文档