当前位置:文档之家› 数学建模课后作业第四章

数学建模课后作业第四章

数学建模课后作业第四章
数学建模课后作业第四章

第四章,最优化与存储模型实验

4.2,基本实验

1.非线性最小二乘问题

解:由题可以得出:

(1)最小二乘法,分别用x、y代替ξ、η平方和的形式时的lingo程序:

sets:

quantity/1..15/: x,y;

endsets

min=@sum(quantity: (b*2.71828^(c*x)+a-y)^2);

@free(a);@free(b);@free(c);

data:

x=2 5 7 10 14 19 26 31 34 38 45 52 53 60 65;

y=54 50 45 37 35 25 20 16 18 13 8 11 8 4 6; enddata

运行程序后可以得出:

Local optimal solution found.

Objective value: 44.78049

Infeasibilities: 0.000000

Extended solver steps: 5

Total solver iterations: 64

Model Class: NLP

Total variables: 4

Nonlinear variables: 3

Integer variables: 0

Total constraints: 2

Nonlinear constraints: 1

Total nonzeros: 4

Nonlinear nonzeros: 3

Variable Value Reduced Cost

B 57.33209 0.000000

C -0.4460386E-01

0.3922619E-07

A 2.430177 0.000000 X( 1) 2.000000 0.000000 X( 2) 5.000000 0.000000 X( 3) 7.000000 0.000000 X( 4) 10.00000 0.000000 X( 5) 14.00000 0.000000 X( 6) 19.00000 0.000000 X( 7) 26.00000 0.000000 X( 8) 31.00000 0.000000 X( 9) 34.00000 0.000000

X( 10) 38.00000 0.000000 X( 11) 45.00000 0.000000 X( 12) 52.00000 0.000000 X( 13) 53.00000 0.000000 X( 14) 60.00000 0.000000 X( 15) 65.00000 0.000000 Y( 1) 54.00000 0.000000 Y( 2) 50.00000 0.000000 Y( 3) 45.00000 0.000000 Y( 4) 37.00000 0.000000 Y( 5) 35.00000 0.000000 Y( 6) 25.00000 0.000000 Y( 7) 20.00000 0.000000 Y( 8) 16.00000 0.000000 Y( 9) 18.00000 0.000000 Y( 10) 13.00000 0.000000 Y( 11) 8.000000 0.000000 Y( 12) 11.00000 0.000000 Y( 13) 8.000000 0.000000 Y( 14) 4.000000 0.000000 Y( 15) 6.000000 0.000000

Row Slack or Surplus Dual Price 1 44.78049 -1.000000

即a=2.4302,b=57.3321,c=-0.0446039

y=2.4302+57.3321e^(-0.0446039x)

η=2.4302+57.3321e?0.0446039ξ

(2)最小一乘法,分别用x、y代替ξ、η的形式时的lingo程序:sets:

quantity/1..15/: x,y;

endsets

data:

x = 2,5,7,10,14,19,26,31,34,38,45,52,53,60,65;

y = 54,50,45,37,35,25,20,16,18,13,8,11,8,4,6;

enddata

min=@sum(quantity: @abs(a+b*@exp(c*x)-y));

@free(a); @free(b); @free(c);

运行程序后可得:

Linearization components added:

Constraints: 60

Variables: 60

Integers: 15

Local optimal solution found.

Objective value: 20.80640

Objective bound: 20.80640

Infeasibilities: 0.1219750E-06

Extended solver steps: 0

Total solver iterations: 69

Model Class: MINLP

Total variables: 64

Nonlinear variables: 2

Integer variables: 15

Total constraints: 62

Nonlinear constraints: 15

Total nonzeros: 196

Nonlinear nonzeros: 30

Variable Value Reduced Cost

A 3.398266 0.000000

B 57.11461 0.000000

C -0.4752126E-01 0.000000 X( 1) 2.000000 0.000000 X( 2) 5.000000 0.000000 X( 3) 7.000000 0.000000 X( 4) 10.00000 0.000000 X( 5) 14.00000 0.000000 X( 6) 19.00000 0.000000 X( 7) 26.00000 0.000000 X( 8) 31.00000 0.000000 X( 9) 34.00000 0.000000 X( 10) 38.00000 0.000000 X( 11) 45.00000 0.000000 X( 12) 52.00000 0.000000 X( 13) 53.00000 0.000000 X( 14) 60.00000 0.000000 X( 15) 65.00000 0.000000

Y( 1) 54.00000 0.000000 Y( 2) 50.00000 0.000000 Y( 3) 45.00000 0.000000 Y( 4) 37.00000 0.000000 Y( 5) 35.00000 0.000000 Y( 6) 25.00000 0.000000 Y( 7) 20.00000 0.000000 Y( 8) 16.00000 0.000000 Y( 9) 18.00000 0.000000 Y( 10) 13.00000 0.000000 Y( 11) 8.000000 0.000000 Y( 12) 11.00000 0.000000 Y( 13) 8.000000 0.000000 Y( 14) 4.000000 0.000000 Y( 15) 6.000000 0.000000

Row Slack or Surplus Dual Price 1 20.80640 -1.000000

a=3.3983 , b=57.1146 , c=-0.04752;

η=3.3983+57.1146e?0.04752ξ;

(3)最大偏差最小法,分别用x、y代替ξ、η的形式时的lingo程序:sets:

quantity/1..15/: x,y;

endsets

data:

x = 2,5,7,10,14,19,26,31,34,38,45,52,53,60,65;

y = 54,50,45,37,35,25,20,16,18,13,8,11,8,4,6;

enddata

min=@max(quantity: ((a+b*@exp(c*x)-y)^2)^0.5);

@free(a); @free(b); @free(c);

运行程序可以得出:

Linearization components added:

Constraints: 31

Variables: 16

Integers: 15

Local optimal solution found.

Objective value: 3.287687

Objective bound: 3.287687

Infeasibilities: 0.3513839E-05

Extended solver steps: 2

Total solver iterations: 666

Model Class: MINLP

Total variables: 20

Nonlinear variables: 3

Integer variables: 15

Total constraints: 33

Nonlinear constraints: 30

Total nonzeros: 152

Nonlinear nonzeros: 90

Variable Value

A 4.360430

B 53.99638

C -0.4858083E-01 X( 1) 2.000000

X( 2) 5.000000

X( 3) 7.000000

X( 4) 10.00000

X( 5) 14.00000

X( 6) 19.00000

X( 7) 26.00000

X( 8) 31.00000

X( 9) 34.00000

X( 10) 38.00000

X( 11) 45.00000

X( 12) 52.00000

X( 13) 53.00000

X( 14) 60.00000

X( 15) 65.00000

Y( 1) 54.00000

Y( 2) 50.00000

Y( 3) 45.00000

Y( 4) 37.00000

Y( 5) 35.00000

Y( 6) 25.00000

Y( 7) 20.00000

Y( 8) 16.00000

Y( 9) 18.00000

Y( 10) 13.00000

Y( 11) 8.000000

Y( 12) 11.00000

Y( 13) 8.000000

Y( 14) 4.000000

Y( 15) 6.000000

Row Slack or Surplus 1 3.287687

由此可知最大偏差最小时相应曲线为:

η=4.3604+53.9964*e^(-0.04858*x)

由此对比可知三种方法时的时候相应模拟曲线为:

η=2.4302+57.3321e?0.0446039ξ(下图绿线);

η=4.3604+53.9964*e^(-0.04858*x) (下图蓝线);

η=3.3983+57.1146e?0.04752ξ;(下图红线);

相应的曲线图与散点图Matlab程序为:

x=[2 5 7 10 14 19 26 31 34 38 45 52 53 60 65]

y=[54 50 45 37 35 25 20 16 18 13 11 8 8 4 6]

plot(x,y,'.');

hold on;

x=2:3:65;

y=2.4302+57.3321.*2.71828.^(-0.0446039.*x);

plot(x,y,'-g');

hold on;

x=2:3:65;

y=3.3983+57.1146.*2.71828.^(-0.04752.*x);

plot(x,y, '-r');

hold on;

x=2:3:65;

y=4.3604+53.9964.*2.71828.^(-0.04858.*x); plot(x,y, '-b');

hold on;

相应的曲线图为:

2.非线性优化问题:

解:(1)令x11、x12、x13为汽油加工所需要的A、B类原油与广告费的值,令x21、x22、x23为民用燃油所需要的A、B类原油与广告费的值。相应的目标函数为总利润Z=250*x13/10*5+200*x23/10*10-x13-x23

=124*x13+199*x23

约束条件为:

(10x11+5x12)/(x11+x12)≥8;

(10x21+5x22)/(x21+x22)≥6;

x11+x21≤5000;

x12+x22≤10000;

5*x13/10≤x11+x12;

10*x23/10≤x21+x22;

则可以得出对应的lingo程序:

max=124*x13+199*x23;

(10*x11+5*x12)/(x11+x12)>=8;

(10*x21+5*x22)/(x21+x22)>=6;

(10*x21+5*x22)/(x21+x22)<=8;

x11+x21<=5000;

x12+x22<=10000;

x11+x12>=0.5*x13;

x21+x22>=x23;

@GIN(x11);

@GIN(x12);

@GIN(x13);

@GIN(x21);

@GIN(x22);

@GIN(x23);

运行程序后可得:

Local optimal solution found.

Objective value: 3230000.

Objective bound: 3230000.

Infeasibilities: 0.000000

Extended solver steps: 1

Total solver iterations: 44

Model Class: PINLP

Total variables: 6

Nonlinear variables: 4

Integer variables: 6

Total constraints: 8

Nonlinear constraints: 3

Total nonzeros: 18

Nonlinear nonzeros: 6

Variable Value X13 10000.00 X23 10000.00 X11 3000.000 X12 2000.000 X21 2000.000 X22 8000.000

Row Slack or Surplus

1 3230000.

2 0.000000

3 0.000000

4 2.000000

5 0.000000

6 0.000000

7 0.000000

8 0.000000

由以上可得最优的生产方案即:

(2)由题目中条件可令加入汽油中的SQ为x14桶,可令加入民用燃油中的SQ为x24桶,则可得新的目标函数为:

Z=250*x13/10*5+200*x23/10*10-x13-x23-200x14-200x24;

约束条件为:

x11+x21≤5000;

x12+x22≤10000;

(10*x11+5*x12)/(x11+x12+x14)+(x14/(x11+x12+x14))^0.5>=8; (10x21+5x22)/(x21+x22+x24)+0.6*(x24/(x21+x22+x24))^0.6>=6; x13/10*5≤x11+x12+x14;

x23/10*10≤x21+x22+x24;

x14≤(x11+x12)*5%;

x24≤(x21+x22)*5%;

则可以得到新的lingo程序:

max=124*x13+199*x23-200*x14-200*x24;

(1+(x14/(x11+x12+x14))^0.5)*(10*x11+5*x12)/(x11+x12)>=8;

(1+0.6*(x24/(x21+x22+x24))^0.6)*(10*x21+5*x22)/(x21+x22)>=6;

x11+x21<=5000;

x12+x22<=10000;

x11+x12+x14>=0.5*x13;

x21+x22+x24>=x23;

0.05*x11+0.05*x12>=x14;

0.05*x21+0.05*x22>=x24;

@GIN(x11);

@GIN(x12);

@GIN(x13);

@GIN(x14);

@GIN(x21);

@GIN(x22);

@GIN(x23);

@GIN(x24);

运行程序后可得:

Local optimal solution found.

Objective value: 3755856. Objective bound: 3755856. Infeasibilities: 0.000000 Extended solver steps: 2 Total solver iterations: 902

Model Class: PINLP

Total variables: 8

Nonlinear variables: 6

Integer variables: 8

Total constraints: 9

Nonlinear constraints: 2

Total nonzeros: 28

Nonlinear nonzeros: 6

Variable Value

X13 31494.00

X23 0.000000

X14 747.0000

X24 0.000000

X11 5000.000

X12 10000.00

X21 0.000000

X22 0.000000

Row Slack or Surplus

1 3755856.

2 0.1186784

3 0.1000000E+31

4 0.000000

5 0.000000

6 0.000000

7 0.000000

8 3.000000则可以得到新的生产方案:

(3)当x14+x24>400后可以得知新的lingo程序

max=124*x13+199*x23-100*x14-100*x24;

(1+(x14/(x11+x12+x14))^0.5)*(10*x11+5*x12)/(x11+x12)>=8;

(1+0.6*(x24/(x21+x22+x24))^0.6)*(10*x21+5*x22)/(x21+x22)>=6;

x14+x24>400;

x11+x21<=5000;

x12+x22<=10000;

x11+x12+x14>=0.5*x13;

x21+x22+x24>=x23;

0.05*x11+0.05*x12>=x14;

0.05*x21+0.05*x22>=x24;

@GIN(x11);

@GIN(x12);

@GIN(x13);

@GIN(x14);

@GIN(x21);

@GIN(x22);

@GIN(x23);

@GIN(x24);:

运行程序后可以得知:

Local optimal solution found.

Objective value: 3831000.

Objective bound: 3831000.

Infeasibilities: 0.000000

Extended solver steps: 0

Total solver iterations: 35

Model Class: PINLP

Total variables: 8

Nonlinear variables: 6

Integer variables: 8

Total constraints: 10

Nonlinear constraints: 2

Total nonzeros: 30

Nonlinear nonzeros: 6

Variable Value

X13 31500.00

X23 0.000000

X14 750.0000

X24 0.000000

X11 5000.000

X12 10000.00

X21 0.000000

X22 0.000000

Row Slack or Surplus

1 3831000.

2 0.1214526

3 0.1000000E+31

4 350.0000

5 0.000000

6 0.000000

7 0.000000

8 0.000000

9 0.000000

10 0.000000

由此可以得出新的生产方案:

3.毛巾清洗服务问题

解:(1)设每x天就有洗衣店来取毛巾,每次送的毛巾就是600x条,同时洗衣店取的也是600x,这样既可以满足正常的需求而且节约费用。每次送毛巾需要要81元,洗毛巾的费用为600*x*0.6=360x元平均每天有脏毛巾600*x/2条,平均每天干净毛巾600*x/2条,所以每天的支出费用为:

可得如下的lingo程序运行:

min=(81+600*x*0.6+0.02*600*x*x/2+0.01*600*x*x/2)/x;

x>=1;

@GIN(x);

运行之后得到

Local optimal solution found.

Objective value: 414.0000

Objective bound: 414.0000

Infeasibilities: 0.000000

Extended solver steps: 0

Total solver iterations: 40

Model Class: PINLP

Total variables: 1

Nonlinear variables: 1

Integer variables: 1

Total constraints: 2

Nonlinear constraints: 1

Total nonzeros: 2

Nonlinear nonzeros: 1

Variable Value Reduced Cost X 3.000000 0.000000

Row Slack or Surplus Dual Price 1 414.0000 -1.000000

2 2.000000 0.000000当由以上结果x=3天时,最小支出为每天为414元。这是酒店的毛巾数量就是3600条。

(2)由以上条件可以得知费用为

这时候运行一下程序:

min=(81+600*x*0.5+0.02*600*x*x/2+0.01*600*x*x/2)/x;

x>=1;

600*x>2500;

@GIN(x);

得到如下的结果:

Local optimal solution found.

Objective value: 361.2000

Objective bound: 361.2000

Infeasibilities: 0.000000

Extended solver steps: 0

Total solver iterations: 23

Model Class: PINLP

Total variables: 1

Nonlinear variables: 1

Integer variables: 1

Total constraints: 3

Nonlinear constraints: 1

Total nonzeros: 3

Nonlinear nonzeros: 1

Variable Value Reduced Cost X 5.000000 5.759999

Row Slack or Surplus Dual Price

1 361.2000 -1.000000

2 4.000000 0.000000

3 500.0000 0.000000当x=5天时,平均每天最低支出为361.2元。这时,酒店的毛巾为6000条。由于361.2<414,故应当采取这项打折服务。

4.经济订购与生产存储模型

解:(1)若公司自己生产:

令x1天生产了x2次,每生产100个产品的成本为x3元,可以得出每年的支出费用为:

Z=(20x2+x2x3+(100x2-26000/365*x1)/x1*0.02*x1)*365/x1; 约束条件为:

365/x1*100x2≥26000;

X2≤x1;

可得相应的lingo程序:

min=(20*x2+x2*x3+2*x2-520/365*x1)*365/x1;

365/x1*x2*100>=26000;

x2<=x1;

x3>0;

@GIN(x1);

@GIN(x2);

运行程序可得:

Local optimal solution found.

Objective value: 5200.000

Objective bound: 5199.996

Infeasibilities: 0.000000

Extended solver steps: 177

Total solver iterations: 924

Model Class: MINLP

Total variables: 3

Nonlinear variables: 3

Integer variables: 2

Total constraints: 4

Nonlinear constraints: 2

Total nonzeros: 8

Nonlinear nonzeros: 5

Variable Value

X2 52.00000

X3 0.000000

X1 73.00000

Row Slack or Surplus

1 5200.000

2 0.000000

3 21.00000

4 0.000000

可得73天生产52次,总支出成本为5200元。

(2)若公司通过购买来满足需求:

令x1天订货x2次,每次支出购买费用x3元,订购x4个,

可得新的lingo程序为:

min=(15*x2+x2*x3*x4+0.02*x2*x4-520/365*x1)*365/x1;

365/x1*x2*x4>=26000;

x2<=x1;

x1<=365;

x4>=26000/365;

x4<=100;

x3>0;

@GIN(x1);

@GIN(x2);

运行程序后可知:

Local optimal solution found.

Objective value: 3900.000

Objective bound: 3899.999

Infeasibilities: 0.000000

Extended solver steps: 93

Total solver iterations: 640

Model Class: MINLP

Total variables: 4

Nonlinear variables: 4

Integer variables: 2

Total constraints: 7

Nonlinear constraints: 2

Total nonzeros: 13

Nonlinear nonzeros: 7

Variable Value

X2 104.0000

X3 0.000000

X4 100.0000

X1 146.0000

Row Slack or Surplus

1 3900.000

2 0.000000

3 42.00000

4 219.0000

5 28.76712

6 0.000000

7 0.000000

可得146天天生产104次,总支出成本为3900元比自己生产相对节约了不少。

4.3.加分实验

数学建模作业

数学建模作业 姓名:李成靖 学号:1408030311 班级:计科1403班 日期:2015.12。30

1.某班准备从5名游泳队员中选4人组成接力队,参加学校的4×100m混合泳接力比赛,5名队员4种泳姿的百米平均成绩如下表所示,问应如何选拔队员组成接力队? 如果最近队员丁的蛙泳成绩有较大的退步,只有1′15"2;而队员戊经过艰苦训练自由泳成绩有所进步,达到57”5,组成接力队的方案是否应该调整? 名队员4种泳姿的百米平均成绩 ij 若参选择队员i 加泳姿j 的比赛,记x i j=1, 否则记xi j=0 目标函数: 即m in=66.8*x11+75.6*x12+87*x13+58.6*x14+57。2*x21+66*x22+66.4*x 23+53*x24+78*x31+67.8*x32+84。6*x33+59.4*x34+70*x 41+74。2*x42+69.6*x 43+57。2*x44+67。4*x51+71*x52+83。8*x53+62.4*x54; 约束条件: x 11+x12+x13+x14〈=1; x 21+x22+x23+x 24〈=1; x 31+x32+x33+x34<=1; x 41+x42+x 43+x44〈=1; x 51+x52+x53+x54<=1; x11+x 21+x31+x41+x51=1; x 12+x22+x32+x42+x52=1; x13+x 23+x33+x43+x53=1; x14+x24+x 34+x44+x54=1; 甲 乙 丙 丁 戊 蝶泳 1′06"8 57”2 1′18” 1′10” 1′07"4 仰泳 1′15"6 1′06" 1′07”8 1′14"2 1′11" 蛙泳 1′27” 1′06"4 1′24"6 1′09"6 1′23"8 自由泳 58"6 53” 59”4 57”2 1′02”4 ∑∑=== 415 1j i ij ij x c Z Min

最新数学建模习题答案资料

数学建模部分课后习题解答 中国地质大学 能源学院 华文静 1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解: 模型假设 (1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况), 即从数学角度来看,地面是连续曲面。这个假设相当于给出了椅子能放稳的必要条件 (3) 椅子在任何位置至少有三只脚同时着地。为了保证这一点,要求对于椅脚的间 距和椅腿的长度而言,地面是相对平坦的。因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。 模型建立 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。首先,引入合适的变量来表示椅子位置的挪动。生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。 注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。于是,旋转角度θ这一变量就表示了椅子的位置。为此,在平面上建立直角坐标系来解决问题。 设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。 其次,把椅脚是否着地用数学形式表示出来。当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。因此,只需引入两个距离函数即可。考虑到长方形ABCD 是对称中心图形,绕其对称中心O 沿逆时针方向旋转180度后,长方形位置不变,但A,C 和B,D 对换了。因此,记A ,B 两脚与地面竖直距离之和为)(θf ,C,D 两脚之和为 )(θg ,其中[]πθ,0∈,使得)()(00θθg f =成立。 模型求解 如果0)0()0(== g f ,那么结论成立。

数学建模作业

郑重声明: 本作业仅供参考,可能会有错误,请自己甄别。 应用运筹学作业 6.某工厂生产A,B,C,D四种产品,加工这些产品一般需要经刨、磨、钻、镗四道工序,每种产品在各工序加工时所需设备台时如表1-18所示,设每月工作25天,每天工作8小时,且该厂有刨床、磨床、钻床、镗床各一台。问:如何安排生产,才能使月利润最大?又如A,B,C,D四种产品,每月最大的销售量分别为300件、350件、200件和400件,则该问题的线性规划问题又该如何? 1234 四种产品的数量,则得目标函数: Max=(200?150)x1+(130?100)x2+(150?120)x3+(230?200)x4 =50x1+30x2+30x3+30x4 生产四种产品所用时间: (0.3+0.9+0.7+0.4)x1+(0.5+0.5+0.5+0.5)x2+(0.2+0.7+0.4+ 0.8)x3+(0.4+0.8+0.6+0.7)x4≤25×8 即:2.3x1+2.0x2+2.1x3+2.5x4≤200 又产品数量不可能为负,所以:x i≥0(i=1,2,3,4) 综上,该问题的线性规划模型如下: Max Z=50x1+30x2+30x3+30x4 S.T.{2.3x1+2.0x2+2.1x3+2.5x4≤200 x i≥0(i=1,2,3,4) 下求解目标函数的最优解: max=50*x1+30*x2+30*x3+30*x4; 2.3*x1+2.0*x2+2.1*x3+2.5*x4<200; Global optimal solution found. Objective value: 4347.826 Total solver iterations: 0 Variable Value Reduced Cost X1 86.95652 0.000000 X2 0.000000 13.47826 X3 0.000000 15.65217

数学建模作业——实验1

数学建模作业——实验1 学院:软件学院 姓名: 学号: 班级:软件工程2015级 GCT班 邮箱: 电话: 日期:2016年5月10日

基本实验 1.椅子放平问题 依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。 答:能放平,证明如下: 如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,

则一定存在α’∈(0,π),使得 f(α’)=g(α’)=0 令α=π(即椅子旋转180°,AB 边与CD 边互换),则 f(π)=0,g(π)>0 定义h(α)=f(α)-g(α),得到 h(0)=f(0)-g(0)>0 h(π)=f(π)-g(π)<0 根据连续函数的零点定理,则存在α’∈(0,π),使得 h(α’)=f(α’)-g(α’)=0 结合条件f(α’)g(α’)=0,从而得到 f(α’)=g(α’)=0,即四脚着地,椅子放平。 2. 过河问题 依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。 答:用i =1,2,3,4分别代表人,猫,鸡,米。1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。安全状态集合为 :

数学建模作业43508

数学建模作业

1、在甲乙双方的一场战争中,部分甲方部队被乙方部队包围长达4个月,乙方封锁了所有 水陆交通通道,因此被包围的甲方只能依靠空中交通维持补给,运送4个月的供给依此分别 需要2次、3次、3次、4次飞行,每次飞行编队由50架飞机组成,每架飞机都需要3名飞 行员,每架飞机每月只能飞行一次,每名飞行员每月也只能飞行一次,每次执行完运输飞行 任务后的返回途中有20%的飞机被乙方部队击落,导致机上的飞行员也牺牲或失踪。在第 一个月开始时,甲方拥有110架飞机和330名熟练的飞行员,每个月开始时,甲方可以招聘 新飞行员和购买新飞机,新飞机必须经过一个月的检查磨合后才可以投入使用,新飞行员也 必须在熟练飞行员的指导下经过一个月的训练才能成为熟练飞行员而投入飞行(作为教练的 熟练飞行员本月不能参与飞行任务),每名熟练飞行员作为教练每月指导20名飞行员(包括 自己在内)进行训练,每名飞行员在完成本月的飞行任务后必须有一个月的带薪休假,然后 返回待命可再次投入飞行,已知各项费用平均单价如下表所示(单位:千元)。 第一个月第二个月第三个月第四个月新飞机价格200 195 190 185 闲置的熟练飞行员报酬7 6.9 6.8 6.7 10 9.9 9.8 9.7 教练及飞行员报酬和训练 费用 执行飞行任务的飞行员报 9 8.9 9.8 9.7 酬 休假期的飞行员报酬 5 4.9 4.8 4.7 (1)为甲方安排一个总费用最小的飞行计划。 (2)如果每名熟练飞行员作为教练每月指导不超过20名飞行员(包括自己在内)进行训练, 相应的模型和安排将会发生怎样的改变? 解:(1) 设每月初购买飞机数量为d1,d2,d3,d4架,每月闲置飞机数量为 y1,y2,y3,y4架,每月教练与新飞行员总数量为a1,a2,a3,a4人,每月闲置熟练 飞行员的数量为b1,b2,b3,b4人。由于每月执行任务的飞行员和休假期的飞行员 的数量是固定的,即这部分的花费是固定的,所以在优化目标中可以不必考虑。 模型建立: 决策变量:设每月初购买飞机数量为d1,d2,d3,d4架,每月闲置飞机数量 为y1,y2,y3,y4架,每月教练与新飞行员总数量为a1,a2,a3,a4人,每月闲置熟 练飞行员的数量为b1,b2,b3,b4人。 目标函数:设总费用为z元,则由价格平均表可知: z=200d1+195d2+190d3+185d4+10a1+9.9a2+9.8a3+9.7a4+7b1+6.9b2+6.8b3+ 6.7b4 约束条件包括: (1)飞机数量限制:四个月中出去执行任务的飞机数量分别为100,150,150,200架次,每次安全返回的数量为80,120,120,160架次。 根据每个月的实际情况可得方程: 100+y1=110; 150+y2=80+y1+d1; 150+y3=120+y2+d2; 200+y4=120+y3+d3;

数学建模习题集及标准答案

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学 生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

西南大学2016年春《数学建模》作业及答案(已整理)(共5次)

西南大学2014年春《数学建模》作业及答案(已整理) 第一次作业 1:[填空题] 名词解释: 1.原型 2.模型 3.数学模型 4.机理分析 5.测试分析 6.理想方法 7.计算机模拟 8.蛛网模型 9.群体决策 10.直觉 11.灵感 12.想象力 13.洞察力 14.类比法 15.思维模型 16.符号模型 17.直观模型 18.物理模型19.2倍周期收敛20.灵敏度分析21.TSP问题22.随机存储策略23.随机模型24.概率模型25.混合整数规划26.灰色预测 参考答案: 1.原型:原型指人们在现实世界里关心、研究或者从事生产、管理的实际对象。2.模型:指为某个特定目的将原形的某一部分信息简缩、提炼而构造的原型替代物。3.数学模型:是由数字、字母或其它数字符号组成的,描述现实对象数量规律的数学公式、图形或算法。4.机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明显的物理意义或现实意义。5.测试分析:将研究对象看作一个"黑箱”系统,通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合得最好的模型。6.理想方法:是从观察和经验中通过想象和逻辑思维,把对象简化、纯化,使其升华到理状态,以其更本质地揭示对象的固有规律。7.计算机模拟:根据实际系统或过程的特性,按照一定的数学规律用计算机程序语言模拟实际运行情况,并依据大量模拟结构对系统或过程进行定量分析。8.蛛网模型:用需求曲线和供应曲线分析市场经济稳定性的图示法在经济学中称为蛛网模型。9.群体决策:根据若干人对某些对象的决策结果,综合出这个群体的决策结果的过程称为群体决策。10.直觉:直觉是人们对新事物本质的极敏锐的领悟、理解或推断。11.灵感:灵感是指在人有意识或下意识思考过程中迸发出来的猜测、思路或判断。12.想象力:指人们在原有知识基础上,将新感知的形象与记忆中的形象相互比较、重新组合、加工、处理,创造出新形象,是一种形象思维活动。13.洞察力:指人们在充分占有资料的基础上,经过初步分析能迅速抓住主要矛盾,舍弃次要因素,简化问题的层次,对可以用那些方法解决面临的问题,以及不同方法的优劣作出判断。14.类比法:类比法注意到研究对象与以熟悉的另一对象具有某些共性,比较二者相似之处以获得对研究对象的新认识。15.思维模型:指人们对原形的反复认识,将获取的知识以经验的形式直接储存于人脑中,从而可以根据思维或直觉作出相应的决策。16.符号模型:是在一定约束条件或假设下借助于专门的符号、线条等,按一定形式组合起来描述原型。17.直观模型:指那些供展览用的实物模型以及玩具、照片等,通常是把原型的尺寸按比例缩小或放大,主要追求外观上的逼真。18.物理模型:主要指科技工作者为一定的目的根据相似原理构造的模型,它不仅可以显示原型的外形或某些特征,而且可以用来进行模拟实验,间接地研究原型的某些规律。19.2倍周期收敛:在离散模型中,如果一个数列存在两个收敛子列就称为2倍周期收敛。20.灵敏度分析:系数的每个变化都会改变线性规划问题,随之也会影响原来求得的最优解。为制定一个应付各种偶然情况的全能方法,必须研究以求得的最优解是怎样随输入系数的变化而变化的。这叫灵敏性分析。21.TSP问题:在加权图中寻求最佳推销员回路的问题可以转化为在一个完备加权图中寻求最佳哈密顿圈的问题,称为TSP问题。22.随机存储策略:商店在订购货物时采用的一种简单的策略,是制定一个下界s和一个上界S,当周末存货不小于s时就不定货;当存货少于s 时就订货,且定货量使得下周初的存量达到S,这种策略称为随机存储策略。23.随机模型:如果随机因素对研究对象的影响必须考虑,就应该建立随机性的数学模型,简称为随机模型。24.概

数学建模数模第一次作业(章绍辉版)

1.(1) n=101; x1=linspace(-1,1,n); x2=linspace(-2,2,n); y1=[sqrt(1-x1.^2);-sqrt(1-x1.^2)]; y2=[sqrt(4-x2.^2);-sqrt(4-x2.^2);sqrt(1-(x2.^2)/4);-sqrt(1-(x2.^2)/4)]; plot(x1,y1) … hold on; plot(x2,y2) title('椭圆x^2/4+y^2=1的内切圆和外切圆') axis equal -2.5 -2-1.5-1-0.500.51 1.52 2.5 -2-1.5-1-0.500.511.5 2椭圆x 2/4+y 2=1的内切圆和外切圆 (2) x1=linspace(-2,2,101); / x2=linspace(-2,8); axis equal plot(exp(x1),x1,x1,exp(x1),x2,x2) title('指数函数y=exp(x)和对数函数y=ln(x)关于y=x 对称')

-2 -1 1 2 3 4 5 6 7 8 -2-101234567 8指数函数y=exp(x)和对数函数y=ln(x)关于y=x 对称 (3) hold on — q=input('请输入一个正整数q;') for i=1:q for j=1:i if rem(j,i) plot(j/i,1/i) end end end @

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 00.050.10.150.20.250.30.350.40.45 0.5 3.代码如下: n=input('请输入实验次数n=') k=0; for i=1:n 。 x=ceil(rand*6)+ceil(rand*6); if x ==3|x==11 k=k+1; elseif x~=2&x~=7&x~=12 y= ceil(rand*6)+ceil(rand*6); while y~=x&y~=7 y=ceil(rand*6)+ceil(rand*6); end if y==7 ; k=k+1; end end end

数学建模题目及答案

09级数模试题 1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。试作合理的假设并建立数学模型说明这个现象。(15分) 解:对于此题,如果不用任何假设很难证明,结果很 可能是否定的。 因此对这个问题我们假设: (1)地面为连续曲面 (2)长方形桌的四条腿长度相同 (3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。 那么,总可以让桌子的三条腿是同时接触到地面。 现在,我们来证明:如果上述假设 条件成立,那么答案是肯定的。以长方 桌的中心为坐标原点作直角坐标系如图 所示,方桌的四条腿分别在A、B、C、D 处,A、、D的初始位置在与x轴平行,再 假设有一条在x轴上的线,则也与A、B,C、D平行。当方桌绕中心0旋转时,对角线与x轴的夹角记为θ。 容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。为消除这一不确定性,令() fθ为A、B离地距离之和,

()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。由假设(1), ()f θ,()g θ均为θ的连续函数。又由假设(3) ,三条腿总能同时着地, 故()f θ()g θ=0必成立(?θ)。不妨设(0)0f =(0)0g >(若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为: 已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。 证明:当θ=π时,与互换位置,故()0f π>,()0g π=。作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。又由于00()()0f g θθ=,故必有00()()0f g θθ==,证毕。 2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。(15分) 解:按各宿舍人数占总人数的比列分配各宿舍的委员数。设:A 宿舍的委员数为x 人,B 宿舍的委员数为y 人,C 宿舍的委员数为z 人。计算出人数小数点后面的小数部分最大的整数进1,其余取整数部分。 则 10; 10=235/1000;

数学建模第三次作业——追击问题

数 学 建 模 实验报告 机械工程及自动化75班

丁鑫 四人追击问题 问题: 在一个边长为1的正方形跑道的四个顶点上各站有一人,他们同时开始以等速顺时针追逐下一人,在追逐过程中,每个人时刻对准目标,试模拟追击路线。并讨论: (1) 四个人能否追到一起? (2)若能追到一起,则每个人跑过多少路程? (3)追到一起所需要的时间(设速率为1)? (4)如果四个人追逐的速度不一样,情况又如何呢 分析: 先建立坐标系,设计程序使从A,B,C,D 四个点同时出发,画出图形并判断。 程序设计流程: 四个人追击的速度相等,则有14321=====v v v v v 。针对这种情形,可有以下的程序。 hold on axis([0 2 0 2]); grid A=[0,0];B=[0,1];C=[1,1];D=[1,0]; k=0; s1=0;s2=0;s3=0;s4=0; %四个人分别走过的路程 t=0; v=1;dt=0.002; while k<10000 k=k+1; plot(A(1),A(2),'r.','markersize',15); plot(B(1),B(2),'b.','markersize',15); plot(C(1),C(2),'m.','markersize',15);

plot(D(1),D(2),'k.','markersize',15); e1=B-A;d1=norm(e1); e2=C-B;d2=norm(e2); e3=D-C;d3=norm(e3); e4=A-D;d4=norm(e4); fprintf('k=%.0f ',k) fprintf('A(%.2f,%.2f) d1=%.2f ',A(1),A(2),d1) fprintf('B(%.2f,%.2f) d2=%.2f ',B(1),B(2),d2) fprintf('C(%.2f,%.2f) d3=%.2f ',C(1),C(2),d3) fprintf('D(%.2f,%.2f) d4=%.2f\n',D(1),D(2),d4) A=A+v*dt*e1/d1; B=B+v*dt*e2/d2; C=C+v*dt*e3/d3; D=D+v*dt*e4/d4; t=t+dt; s1=s1+v*dt; s2=s2+v*dt; s3=s3+v*dt; s4=s4+v*dt; if norm(A-C)<=5.0e-3&norm(B-D)<=5.0e-3 break end end t s1 s2 s3 s4

数学建模作业

数学建模第一次综合练习班级:数学123班 成员:蒋滢蓥(12170310)汤丽娅(12170321) 吴瑞(12170322)

2.建立不允许缺货的生产销售存贮模型。设生产速率为常数k ,销售速率为常数r ,k>r 。在每个生产周期T 内,开始的一段时间(0>r 和k ≈r 的情况。 解: 1.模型假设:① 每天生产速率为常数k ,销售速率为常数r ; ② 每次生产准备费为1C ,单位时间每件产品贮存费为2C ; ③ 当贮存量降到0时,立即又重新开始生产,即不允许缺货。 2.模型建立:将贮存量表示为时间t 的函数q (t ),开始时贮存量以单位时间(k-r )的速率增加,后一段时间以单位时间r 的速率减少直至0,即q (T )=0 。 如图: 总量 q(t) r*T 生产 销售 (k-r)*T0 k-r r 时间t 时间t T0 T T0 T 图1 图2 其中图1为生产销售模型,T r To k **= 图2为贮存量模型q(t), 且? ??≤<-+--≤<-=T t To r k To To t r To t t r k t q ),(*)(*0,*)()( 而总费用=生产准备费+贮存费,即 ??+=++=To T To c To T c c dt t q c dt t q c c c 02/2***21)(*2)(*21)(总 平均费用k r k T r c T c T r k T To c c 2)(***212/)(***21)(c -+=-+= 均 3.模型求解:k r k r c T c c 2)(**22^1)'(-+-=均

数学建模习题指导

数学建模习题指导 第一章 初等模型 讨论与思考 讨论题1 大小包装问题 在超市购物时你注意到大包装商品比小包装商品便宜这种现象吗?比如洁银牙膏50g 装的每支1.50元,120g 装的每支3.00元,二者单位重量的价格比是1.2:1,试用比例方法构造模型解释这种现象。 (1)分析商品价格C 与商品重量w 的关系。 (2)给出单位重量价格c 与w 的关系,并解释其实际意义。 提示: 决定商品价格的主要因素:生产成本、包装成本、其他成本。 单价随重量增加而减少 单价的减少随重量增加逐渐降低 思考题2 划艇比赛的成绩 赛艇是一种靠浆手划桨前进的小船,分单人艇、双人艇、四人艇、八人艇四种。各种艇虽大小不同,但形状相似。T.A.McMahon 比较了各种赛艇1964—1970年四次2000m 比赛的最好成绩(包括1964年和1968年两次奥运会和两次世界锦标赛),见下表。建立数学模型解释比赛成绩与浆手数量之间的关系。 各种艇的比赛成绩与规格 γβα++=3 2w w C w w c γβα++=-3 123 431w w c γβ--='-3 2943 4w w c γβ+=''-

第二章 线性代数模型 森林管理问题 森林中的树木每年都要有一批砍伐出售。为了使这片森林不被耗尽且每年都有所收获,每当砍伐一棵树时,应该就地补种一棵幼苗,使森林树木的总数保持不变。被出售的树木,其价值取决于树木的高度。开始时森林中的树木有着不同的高度。我们希望能找到一个方案,在维持收获的前提下,如何砍伐树木,才能使被砍伐的树木获得最大的经济价值。 思考: 试解释为什么模型中求解得到的 为每周平均销售量会略小于模型假设中给出的1。 练习: 将钢琴销售的存贮策略修改为:当周末库存量为0或1时订购,使下周初的库存 达到3架;否则,不订购。建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。 2.将钢琴销售的存贮策略修改为:当周末库存量为0时订购本周销售量加2架;否则,不订购。建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。 第三章 优化模型 讨论题 1)最优下料问题 用已知尺寸的矩形板材加工半径一定的圆盘。给出几种加工排列方法,比较出最优下料方案。 2)广告促销竞争问题 甲乙两公司通过广告竞争销售商品,广告费分别为 x 和 y 。设甲乙公司商品的售量在两公司总售量中所占份额是它们的广告费在总广告费中所占份额的函数 又设公司的收入与售量成正比,从收入中扣除广告费后即为公司的利润。试构造模型的图形,并讨论甲公司怎样确定广告费才能使利润最大。 (1)令 (2)写出甲公司的利润表达式 对一定的 y ,使 p (x ) 最大的 x 的最优值应满足什么关系。用图解法确定这个最优值。 练习1 三个家具商店购买办公桌:A 需要30张,B 需要50张,C 需要45张。这些办公桌由两个工厂供应:工厂1生产70张,工厂2生产80张。下表给出了工厂和商店的距离(单位公里) , 857.0=n R ) (),(y x y f y x x f ++的示意图。。画出则)()()(,t f t f t f y x x t 11=-++= 。 )(t p

初等数学建模试题极其标准答案

1.你要在雨中从一处沿直线走到另一处,雨速是常数,方向不变。 你是否走得越快,淋雨量越少呢? 2.假设在一所大学中,一位普通教授以每天一本的速度开始从图书 馆借出书。再设图书馆平均一周收回借出书的1/10,若在充分长的时间内,一位普通教授大约借出多少年本书? 3.一人早上6:00从山脚A上山,晚18:00到山顶B;第二天,早 6:00从B下山,晚18:00到A。问是否有一个时刻t,这两天都在这一时刻到达同一地点? 4.如何将一个不规则的蛋糕I平均分成两部分? 5.兄妹二人沿某街分别在离家3公里与2公里处同向散步回家,家 中的狗一直在二人之间来回奔跑。已知哥哥的速度为3公里/小时,妹妹的速度为2公里/小时,狗的速度为5公里/小时。分析半小时后,狗在何处? 6.甲乙两人约定中午12:00至13:00在市中心某地见面,并事先 约定先到者在那等待10分钟,若另一个人十分钟内没有到达,先到者将离去。用图解法计算,甲乙两人见面的可能性有多大? 7.设有n个人参加某一宴会,已知没有人认识所有的人,证明:至 少存在两人他们认识的人一样多。 8.一角度为60度的圆锥形漏斗装着10 端小孔的 面积为0.5 9.假设在一个刹车交叉口,所有车辆都是由东驶上一个1/100的斜

坡,计算这种情 下的刹车距离。如果汽车由西驶来,刹车距离又是多少? 10. 水管或煤气管经常需要从外部包扎以便对管道起保护作用。包扎时用很长的带子缠绕在管道外部。为了节省材料,如何进行包扎才能使带子全部包住管道而且带子也没有发生重叠。 :顶=1:a:b ,选坐v>0,而设语雨速 L( 1q -+v x ),v≤x Q(v)= L( v x -q +1),v>x 2.解:由于教授每天借一本书,即一周借七本书,而图书馆平均每周

数学建模作业

2016年数学建模作业 作业要求 1. 由于时间的原因,同学们只需将题目做在word上,不需要做在ppt上。 2. 详细的写出模型或方法、程序、程序运行的重要结果,并做结果分析。 3. 你做的答案将与全体同学分享。结业考试也是以你的答案为参考。如果因为你的不认真导致题目做错。从而误导了大家,你将负全部责任。切记要认真做题。如果你不会,那一定要虚心向学霸们请教。 第一部分优化与控制 2016-01 灵敏度分析 某公司计划生产I、II两种产品,每天生产条件如表,问: (1)该公司应如何安排生产计划才能使总利润最多? (2)若产品Ⅰ的利润降至1.5百元/单位,而产品Ⅱ的利润增至2百元/单位,最优生产计划有何变化? (3)若产品Ⅰ的利润不变,则产品Ⅱ的利润在什么范围内变化时,该公司的最优生产计划将不发生变化? (4)设备A和设备C每天能力不变,而设备B能力增加到32,问最优生产计划如何变化? 资源产品ⅠⅡ每天可用能力 设备A(h)0 5 15 设备B(h) 6 2 24 设备C(h) 1 1 5 利润(百元) 2 1 2016-02 投资问题 某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示。按照规定,市政证券的收益可以免税,其它证券的收益需按50%的税率纳税。此外还有以下限制:①政府及代办机构的证券总共至少要购进400万元;②所购证券的平均信用等级不超过1.49,信用等级数字越小,信用程度越高;③所购证券的平均到期年限不超过3年;④不允许重复投资。 (1)若该经理有1000万元资金,应如何投资? (2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?(3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变?

数学建模课后习题答案

第一章 课后习题6. 利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。 解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为: )()0(mg M x = 由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程 M x x dt dx =-=)0(,λ(1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程: 0)0(,=-=y y x dt dy μλ(2) 方程(1)可转换为:t Me t x λ-=)( 带入方程(2)可得:)()(t t e e M t y λμμ λλ ----= 将01386=λ和1155.0=μ带入以上两方程,得: t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t 针对孩子求解,得: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987= 课后习题7. 对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。

解:已知血液透析法是自身排除率的6倍,所以639.06==μu t e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---= 1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dt dz t 解得:()2,274.112275693.01386.0≥+=--t e e t z t t 用matlab 画图: 图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。 从图中可以看出,采取血液透析时血液中药物浓度就开始下降。T=2时,血液中药物浓度最高,为236.5;当z=200时,t=2.8731,血液透析0.8731小时后就开始解毒。 第二章 1.用 2.4节实物交换模型中介绍的无差别曲线的概念,讨论以下的雇员和雇主之间的关系: 1)以雇员一天的工作时间和工资分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图,解释曲线为什么是那种形状; 2)如果雇主付计时费,对不同的工资率画出计时工资线族,根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议; 3)雇员和雇主已经达成了协议,如果雇主想使用雇员的工作时间增加到t 2,他有两种

数模作业4(讨论题)

姓名:晏福刚学号:班级:数学一班 一、问题描述 某部门现有资金10万元,五年内有以下投资 项目供选择: 项目A:从第一年到第四年每年初投资,次年末收回本金且获利15%; 项目B:第三年初投资,第五年末收回本金且获利25%,最大投资额为4万元; 项目C:第二年初投资,第五年末收回本金且获利40%,最大投资额为3万元; 项目D:每年初投资,年末收回本金且获利6%; 问如何确定投资策略使第五年末本息总额最大 二、问题分析 本题为投资组合问题,且属于数学规划问题。其中项目A前4年每年初都可以进行投资但只能在第二年末才能收回本利息。B、C在五年中只能进行投资一次,分别在第三年、第四年初进行投资均在第五年末收回且有金额限定。D项目每年初进行投资,每年末就能收回本利息。并且在本题中并没有涉及到风险的问题,所以不考虑有损失。在此题中首先目标是使第五年末的本息最大,约束条件为总的金额及个项目投资金额的限制。 三、模型假设 ①假设每项投资不存在风险,不会出现损失。 ②在投资中一旦投资,就在上面题中所说的时间收回本利息,不考虑中途撤销资金投资的情况。 四、符号假设 x1i 第i年用于A项目的投资金额 x2 第三年用于B项目的投资金额 x3 第二年用于C项目的投资金额

x4j 第j年用于D项目的投资金额 五、模型建立 1.约束条件和目标函数的建立 首先假设第i年用于投资A项目的资金为x1i(i=1、2、3、4)。第三年投资B项目的资金为x2(由于B项目投资条件的限定在五年内只能进行一次投资)。第2年投资C项目的金额为x3。D项目第i年投资金额为x4j(j=1、2、3、4、5)。那么五年内的投资情况及收益情况将如下表所示: 下面对上述表格进行具体的表述: 总的资金为10万。(以下单位均为:万元) 第一年初:可投资金额:10万可投资项目:A、D项目 A的投资金额:x11(将在第二年末收回) D的投资金额:x41则必有x11+x41=10 第一年错误!未指定书签。末:收回D项目的本利息:x41*(1+6%) 第二年初:可投资金额:x41*(1+6%) 可投资项目:A、C、D项目 A的投资金额:x12 (将在第三年末收回) C的投资金额:x3(将在第五年末收回且x3<3) D的投资金额:x42 则必有x12+x3+x42=x41(1+6%) 第二年末:收回第一年A项目的本利息:x11(1+15%) 第二年D的本利息:

数模第一次作业 (1)

2016年数学建模论文 第套 论文题目: 专业、姓名: 专业、姓名: 专业、姓名: 提交日期:2016.6.27

题目:人口增长模型的确定 摘要 对美国人口数据的变化进行拟合,并进行未来人口预测,在第一个模型中,考虑到人口连续变化的规律,用微分方程的方法解出其数量随时间变化的方程,先求对数用matlab里线性拟合求出参数,即人口净增长率r=0.0214,对该模型与实际数据进行对比,并计算了从1980年后每隔10年的人口数据,与实际对比,有很大出入。因此又改进出更为符合实际的阻滞增长模型,应用微分方程里的分离变量法和积分法解出其数量随时间变化的方程,求出参数人口增长率r=0.0268和人口所能容纳最大值m x=285.89,与实际数据对比,拟合得很好,并预测出1980年后每隔10年的人口数据,与实际对比,比较符合。为了便于比较两个模型与实际数据的描述情况作对比,又做出了两个模型与实际数据的对比图,并计算了误差。 关键词:人口预测微分方程马尔萨斯人口增长模型阻滞增长模型 一、问题重述 1790-1980年间美国每隔10年的人口记录如下表所示: 表1 人口记录表 试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。 如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测。 二、问题分析 由于题目已经说明首先用马尔萨斯人口增长模型来刻划,列出人口增长指数增长方程并求解,并进行未来50年内人口数据预测,但发现与实际数据有较大出入。考虑到实际的人口增长率是受实际情况制约的,因此,使人口增长率为一变化的线性递减函数,列出人口增长微分方程,求出其方程解,并预测未来五十年内人口实际数据。 三、问题假设 1.假设所给的数据真实可靠; 2.各个年龄段的性别比例大致保持不变;

数学建模模拟试题及答案.pdf

数学建模模拟试题及答案 一、填空题(每题5分,共20分) 1. 若,, x z z y ∝∝则y 与x 的函数关系是. 2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 . 3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了 4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型. 二、分析判断题(每小题15分,满分30分) 1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种. 2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是 ),m l /m g (100/56 又过两个小时,含量降为),m l /m g (100/40试判断,当事故发生时,司 机是否违反了酒精含量的规定(不超过80/100)m l /m g (. (提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ?+内酒精浓度的改变量为 t t kC t C t t C ??=??+)()()( 其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分) 1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答: (1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.

数学建模章绍辉版第四章作业

第四章作业 第二题: 针对严重的交通情况,国家质量监督检验检疫局发布的国家标准,车辆驾驶人员血液中的酒精含量大于或等于20mg/100ml,小于80mg/100ml 为饮酒驾车,血液中的酒精含量大于或等于80mg/100ml 的为醉酒驾车。 下面分别考虑大李在很短时间内和较长时间内(如2个小时)喝了三瓶啤酒,多长时间内驾车就会违反新的国家标准。 1、 问题假设 大李在短时间内喝下三瓶啤酒后,酒精先从吸收室(肠胃)吸收进中心室(血液和体液),然后从中心室向体外排除,忽略喝酒的时间,根据生理学知识,假设 (1) 吸收室在初始时刻t=0时,酒精量立即为 32 D ;在任意时刻,酒精从吸收室吸收进中心室的速率(吸收室在单位时间内酒精含量的减少量)与吸收室的酒精含量成正比,比例系数为1k ; (2) 中心室的容积V 保持不变;在初始时刻t=0时,中心室的酒精含量为0;在任意时 刻,酒精从中心室向体外排除的速率(中心室在单位时间内酒精含量的减少量)与 中心室的酒精含量成正比,比例系数为2k ; (3) 在大李适度饮酒没有酒精中毒的前提下,假设1k 和2k 都是常量,与饮酒量无关。 2、 符号说明 酒精量是指纯酒精的质量,单位是毫克; 酒精含量是指纯酒精的浓度,单位是毫克/百毫升; ~t 时刻(小时) ; ()~x t 在时刻t 吸收室(肠胃)内的酒精量(毫克) ; 0~D 两瓶酒的酒精量(毫克); (t)~c 在时刻t 吸收室(血液和体液)的酒精含量(毫克/百毫升) ; 2()~c t 在时刻t 中心室(血液和体液)的酒精含量(毫克/百毫升); ~V 中心室的容积(百毫升) ; 1~k 酒精从吸收室吸收进中心室的速率系数(假设其为常数2.0079); 2~k 酒精从中心室向体外排除的速率系数(假设其为常数0.1855);

相关主题
文本预览
相关文档 最新文档