当前位置:文档之家› 实验二碰撞实验报告

实验二碰撞实验报告

实验二碰撞实验报告
实验二碰撞实验报告

实验二

碰撞实验报告

14 级软件工程班

候梅洁 14047021

【实验目的】

1.掌握气垫导轨的水平调整、光电门及电脑通用计数器的使用。

2.学会使用物理天平。

3.用对心碰撞特例检验动量守恒定律。

4.了解动量守恒定律和动能守恒的条件。

碰撞前后的动量关系为:

m 1 u1 =(m1 +m 2)v 2

动能变化为:

E k =1/2 (m1 +m 2)v 22 -1/2m 1 u 12【实验步骤】

用物理天平校验两滑块的(连同挡光物)的质量

m 1及 m 2,经测量

1.

m 1 =136.60g、m 2 =344.02g

2.用游标卡尺测出两挡光物的有效遮光宽度,本实验中s 1 = s 2 =5.00cm

3.将气垫导轨调水平。

(1)粗调:调节导轨下的三只底脚螺丝,使导轨大致水平(观察

导轨上的气泡,若气泡位于最中央,说明已调平)。

(2)静态调平:接通气源,将滑块放在导轨上,这时滑块在导轨上

自由运动,调节导轨的单脚底螺丝,使滑块基本静止(不会一直向单一方向运动)

(3)动态调平:将两个安装在到导轨上的光电门相距 60cm左右。在滑块上安放 u 型挡光片,接电脑通用计数器的电源,打开电源开关,将电脑计数器功能置于“ s2”挡。轻轻推动滑块,分别读出遮光片通

过两个光电门的时间t 1和t 2,它们不等,则反复强调单脚螺丝,使它们相差不超过千分之几秒,此时可认为气垫导轨基本水平。

4.完全弹性碰撞

适当放置光电门的位置,使它能顺利测出两个滑块碰撞前后的

速度,并在可能的情况下,使两个光电门的距离小些。每次碰撞时,

大滑块的速度不要太大,让两个滑块完全碰撞两次,分别记录每次的滑块的速度并结算出:(注意速度方向)

动量的变化大小C=(m 1 v1 +m 2 v 2 )/(m 1 u1 +m 2 u 2 )

恢复系数 e=(v 2 -v 1 )/(u 1 -u 2 )

(v 2 -v 1为两物体碰撞后相互分离的相对速度,u1 -u 2则为碰撞前彼此接近的相对速度)

【注意事项】

1.严格按照在操作规范使用物理天平;

2.严格按照气垫导轨操作规则;

3.给滑块速度时速度要平稳,不应使滑块产生摆动;挡光框应与滑块

运动方向一致,且其遮光边缘应与滑块运动方向垂直;

4.挡光框应与滑块之间应固定牢固,防止碰撞时相对位置改变,影响

测量精度。

【思考题】

1.动量守恒定律成立的条件是什么?

系统所受的外力之和为0

2.滑块距光电门近些好还是远些好?两光电门间近些好还是远些

好?为什么?

滑块距光电门近些好,两光电门间近些好,因为气垫导轨上仍然是存在微小的摩擦的,滑块和光电门之间、两光电门之间的距离尽可能的小,可以减小实验误差。

【实验结果与分析】

(均以轻滑块的初速度方向为正方向)

第一组实验:

m 1:u1 =14.52cm/s v 1 =-16.00cm/s

m 2:u 2 =-8.63cm/s u 2 =6.22cm/s

计算得:e1 =0.99c1 =0.89

第二组实验:

m 1:u 1 =20.66cm/s v 1 =-27.42cm/s

m 2:u 2 =-13.04cm/s v 2 =4.96cm/s

计算得: e2 =0.96 c 2 =0.75

根据完全弹性碰撞的定义,理论上所求的e1、 c1、 e2、c 2都应该等于 1.实验出现这样的结果,原因可能是:

1.由于气轨上各处气流分布不均匀导致滑块受阻力

2.室内空气流动导致滑块受空气阻力

3.气垫导轨未调平,滑块的重力做功

4.实验仪器存在故障

5.测量误差,因为无论是再精良的仪器总是会有误差的,不可能

做到绝对准确

6.操作误差,两滑块接触面粗糙

7.两滑块不是正面碰撞

【实验心得】

在我们小组的实验过程中,第一次实验的两组测量值出现较大

偏差,表现为计算得出的 e 和 c 远小于 1,我们在同一台仪器上再次进行多次测量,得出的结果仍然存在比较大的误差。

本次实验让我们熟悉了物理天平,掌握气垫导轨的水平调整、光电门及电脑通用计数器的使用。同时通过自己的操作利用对心碰撞验证了动量守恒定律,从而使我们更加深入地理解力学原理,实验中遇到了问题,我们经过努力分析后解决问题,让我们学会了许多。

大学物理碰撞打靶实验报告

碰撞打靶实验 物体间的碰撞是自然界中普遍存在的的现象,从宏观物体的一体碰撞到微观物体的粒子碰撞都是物理学中极其重要的研究课题。 本实验通过两个体的碰撞、碰撞前的单摆运动以及碰撞后的平抛运动,应用已学到的力学定律去解决打靶的实际问题,从而更深入地了解力学原理,并提高分析问题、解决问题的能力。 一.实验原理 1. 碰撞:指两运动物体相互接触时,运动状态发生迅速变化的现象。"正碰"是指两碰撞物体的速度都沿着它们质心连线方向的碰撞;其他碰撞则为"斜碰"。 2. 碰撞时的动量守恒:两物体碰撞前后的总动量不变。 3. 平抛运动:将物体用一定的初速度v 0沿水平方向抛出,在不计空气阻力的情况下,物体所作的运动称平抛运动,运动学方程为t v x 0=,2 21gt y =(式t 中是从抛出开始计算的时间,x 是物体在时间t 内水平方向的移动距离,y 是物体在该时间内竖直下落的距离,g是重力加速度) 4. 在重力场中,质量为m的物体在被提高距离h后,其势能增加了mgh E p =? 5. 质量为m 的物体以速度v 运动时,其动能为2 21mv E k = 6. 机械能的转化和守恒定律:任何物体系统在势能和动能相互转化过程中,若合外力对该物体系统所做的功为零,内力都是保守力(无耗散力),则物体系统的总机械能(即势能和动能的总和)保持恒定不变。 7. 弹性碰撞:在碰撞过程中没有机械能损失的碰撞。 8. 非弹性碰撞:碰撞过程中的机械能不守恒,其中一部分转化为非机械能(如热能)。 二.实验仪器 碰撞打靶实验仪如图1所示,它由导轨、单摆、升降架(上有小电磁铁,可控断通)、被撞小球及载球支柱,靶盒等组成。载球立柱上端为锥形平头状,减小钢球与支柱接触面积,在小钢球受击运动时,减少摩擦力做功。支柱具有弱磁性,以保证小钢球质心沿着支柱中心位置。

碰撞实验报告

西安交通大学高级物理实验报告 课程名称:高级物理实验实验名称:碰撞实验第 1 页共12页 系别:实验日期:2014年12月2日 姓名:班级:学号: 实验名称:碰撞实验 一、实验目的 1.设计不同实验验证一系列的力学定律; 2.熟悉实验数据处理软件datastudio的应用。 二、实验原理 1.动量守恒定理: 若作用在质点系上的所有外力的矢量和为零,则该质点系的动量保持不变。即: 根据该定理,我们将两个相互碰撞的小车看作一个质点系时,由于在忽略各种摩擦阻力的情况下外力矢量和为零,所以两个小车的动量之和应该始终不变。 2.动量定理: 物体在某段时间内的动量增量,等于作用在物体上的合力在同一时间内的冲量。即: 其中F在内的积分,根据积分的几何意义可以用F-t曲线与坐标 轴的面积来计算。 3.机械能守恒定理: 在仅有保守力做功的情况下,动能和时能可以相互转化,但是动能和势能的总和保持不变。 在质点系中,若没有势能的变化,若无外力作用则质点系动能守恒。4.弹簧的劲度系数: 由胡克定律: F=kx 在得到F随x变化关系的情况下就可以根据曲线斜率计算出劲度系数。 5.碰撞: 碰撞可以分为完全弹性碰撞、完全非弹性碰撞和非完全弹性碰撞。完全弹性碰撞满足机械能守恒定律和动量守恒定律,完全非弹性碰撞和非完全弹性碰撞则只满足动量守恒定律而不满足机械能守恒定律。 三、实验设计 1.摩擦力的测量:

给小车一初速度使之在调节为水平的轨道上运动,同时记录其运动过程中的速度随时间变化图。 用直线拟合所得到的v-t图像,所得斜率即为加速度a,进而可得小车所受摩擦力为f=ma,并有小车与导轨之间的滚动摩擦因数为μ=a/g。 2.胡克定律测量弹性系数: 使小车运动并撞向弹簧(注意速度不应太大以免直接撞到弹簧后边的传感器),记录该过程中弹簧弹力随小车位移的变化图线。由于相撞过程中小车位移与弹簧保持一致,所以求得相撞阶段F-x图像的斜率△F/△x即为弹簧劲度系数。 3.验证动量定理 仍然给小车一初速度,让小车撞向弹簧,记录相撞过程中弹簧弹力随时间的变化图线和小车速度随时间的变化图。根据F-t图求其在碰撞过程中积 分即为冲量,而动量变化量则可由碰撞前后的速度变化量与质量相乘 求得m△v。 4.验证机械能守恒定理和动量守恒定理 (1)爆炸:(动量守恒) 两小车连接在一起,突然间将二者弹开,使二者获得相反的速度运动。 记录二者运动速度随时间的变化曲线。其中让一个小车运动经过弹簧反弹从而使得两小车同向运动比较其运动速度。 (2)非完全弹性碰撞:(动量守恒,机械能不守恒) 给两个小车相向的速度,使它们相撞,相撞端内置磁铁使它们相互吸引,由于磁铁引力有限二者又各自弹开反向运动。记录二者的速度随时间变化图,可以计算前后的动量和动能。 (3)以下三个是机械能守恒和动量守恒的验证: 由于在这里只分析小车之间的碰撞,不涉及势能的变化,所以机械能守恒表现为动能守恒。 ①两小车质量基本相等一个运动小车撞一个静止小车: 两小车一个静止一个运动,二者质量基本相等。让运动的小车A撞静止的小车B,然后二者交换速度,B运动而A静止。B撞到弹簧后返回又撞到静止的A,于是再次交换速度,B静止而A运动。记录二者运动速度关于时间的图线,可以验证每次发生碰撞时动量与动能是否守恒。 ②大质量运动碰小质量静止: 两小车质量差异较大,大质量小车A,小质量小车B。B静止而A运动,A撞到B之后,A以较小速度继续原方向运动,B以较大速度开始运动,B撞到弹簧后返回再次撞到A,A反向运动,B再次改变方向朝弹簧运动并再次撞到弹簧。这几次碰撞过程中都应该遵守动量守恒和动能守恒。记录两小车的速度随时间的变化即可验证。 ③同时反向运动质量基本相等相撞: 同时推动两质量基本相等的小车相向运动,相撞之后二者基本上速度交换。记录二者的速度随时间的变化曲线即可验证动能守恒和动量守恒。 四、实验数据及其处理 (一)基本实验数据: 以下数据是实验中用到的器材的基本参数

实验三 打靶实验报告

实验三打靶实验报告 14级软件工程班候梅洁14047021 【目的要求】 物体间的碰撞是自然界中普遍存在的现象,单摆运动和平抛运动是运动学中的基本内容,能量守恒和动量守恒是力学中的重要概念,本实验研究球体的碰撞及碰撞前后的单摆运动和平抛运动,应用已学到的力学定律去解决打靶的实际问题;特别是从理论分析和实践结果的差别上,研究实验过程中能量损失的来源,自行设计实验来分析能量损失的相对大小,从而更深入地理解力学原理,提高分析问题解决问题的能力。 【仪器道具】 碰撞打靶实验仪、米尺、物理天平等。 碰撞打靶实验仪示意图:

的运动状态。测量两球的能量损失。 1.用天平测量被撞球(直径与材料均与碰撞相同)的质量m,并以此作为撞击球的质量。本实验经过重复测量得m=3 2.80g。 2.调整导轨水平(如果不水平可调节导轨上的两只调节螺钉) 3.采用仪器的初始值,使被撞球的高度为仪器可设定的最小值Y=16cm,分别设定5组撞击球高的值h 。然后每组中分别进行4次碰撞,测量4次靶心距离X,多次测量求平均值,并与用设定撞击球 高的值计算出的靶心距离理论值X 相比较。 (根据mgh 0=1/2mv2、X=vt和Y=1/2gt2可得X=Y 4h ) 4.计算E 1、E 2 :E 1 =mgh ,E 2 =1/2mv2=mgX2/4Y

设定被撞球的高度Y=16cm一定时, 靶心距 离理论 值 X 0/cm 撞击球 高的理 论值 h0/cm 靶心距 离测量 值X/cm 靶心距 离测量 值的平 均值 /cm 理论能 量E 1 实际能 量E 2 能量损 失△E 1 2 3 4

碰撞实验实验报告数据记录

碰撞实验实验报告数据记录 现在,很多厂家都会在新车发布时展示自家车辆用于安全上的配置,如各类高强度钢以及安全气囊等,强调座舱安全。当然,这还不够的话,随着科技的发展,越来越多的驾驶辅助配置也出现在了车辆的选装名单中。 不过,这些配置究竟能起到多大的作用,就需要依靠一些专业的测试标准来进行评判,于是便有了我们今天耳熟能详的安全碰撞测试。就在最近,有一家外媒还评选出了在欧洲E-NCAP测试中表现最好的十款车型,其中近来大火的特斯拉Model 3出人意料,又毫无意外地占据了榜单第一名的位置。不过,对于普通消费者来说,绝大多数人并不清楚安全碰撞测试究竟是如何进行,以及应该用怎样的角度去解读这份报告。于是在临近去年年底时,“中国保险汽车安全指数(C-IASI)”意外登上微博热搜了。 如何解读一份碰撞测试报告?

说到汽车碰撞测试,国内名气最大的无疑是C-NCAP,脱胎于NCAP体系,这个全球最主流的碰撞测试体系最早诞生于美国的NHTSA(美国高速公路安全管理局),在欧洲、日本等多个国家地区都是最重要的碰撞参考指标。而C-NCAP 自2006年诞生起,就成为我们买车时,对于车辆安全性的一个最主要的参考。同时,负责营运C-NCAP的中汽研还是不少汽车业内“国标”的制定者。在这几年里,随着主机厂逐渐适应了C-NCAP的规则,新车在C-NCAP上的碰撞成绩也是越来越好。 与此同时,C-NCAP的标准也在与时俱进地发展着,每三年就会有一次升级,如2018年出台的标准被许多业内人士称之为史上最严C-NCAP。其中还有不少标准已经超过了E-NCAP的难度,如侧面碰撞台车重量由950kg增加至1400kg,相应碰撞测试强度增加了47.7%;考虑到国内市场SUV比重越来越大,台架车最下端离地高度从300mm提高至350mm,比欧洲测试台车高

实验二 碰撞实验报告

实验二 碰撞实验报告 14级软件工程班 候梅洁14047021 【实验目得】 1.掌握气垫导轨得水平调整、光电门及电脑通用计数器得使用。 2.学会使用物理天平. 3.用对心碰撞特例检验动量守恒定律。 4.了解动量守恒定律与动能守恒得条件. 碰撞前后得动量关系为: mu=(m+m)v 动能变化为: ΔE=1/2(m+m)v-1/2mu 【实验步骤】 1.用物理天平校验两滑块得(连同挡光物)得质量m及m,经测量 m=136、60g、m=344、02g 2.用游标卡尺测出两挡光物得有效遮光宽度,本实验中Δs=Δs=5、00cm 3.将气垫导轨调水平. (1)粗调:调节导轨下得三只底脚螺丝,使导轨大致水平(观察导轨上得气泡,若气泡位于最中央,说明已调平).

(2)静态调平:接通气源,将滑块放在导轨上,这时滑块在导轨上自由运动,调节导轨得单脚底螺丝,使滑块基本静止(不会一直向单一方向运动) (3)动态调平:将两个安装在到导轨上得光电门相距60cm左右.在滑块上安放u型挡光片,接电脑通用计数器得电源,打开电源开关,将电脑计数器功能置于“s2”挡.轻轻推动滑块,分别读出遮光片通过两个光电门得时间Δt与Δt,它们不等,则反复强调单脚螺丝,使它们相差不超过千分之几秒,此时可认为气垫导轨基本水平。 4.完全弹性碰撞 适当放置光电门得位置,使它能顺利测出两个滑块碰撞前后得速度,并在可能得情况下,使两个光电门得距离小些。每次碰撞时,大滑块得速度不要太大,让两个滑块完全碰撞两次,分别记录每次得滑块得速度并结算出:(注意速度方向) 动量得变化大小C=(mv+mv)/(mu+mu) 恢复系数e=(v—v)/(u—u) (v—v为两物体碰撞后相互分离得相对速度,u-u则为碰撞前彼此接近得相对速度) 【注意事项】 1.严格按照在操作规范使用物理天平; 2.严格按照气垫导轨操作规则; 3.给滑块速度时速度要平稳,不应使滑块产生摆动;挡光框应与滑块运动方向一致,且其遮光边缘应与滑块运动方向垂直;

大学物理碰撞打靶实验报告

篇一:大学物理碰撞打靶实验报告 碰撞打靶实验 物体间的碰撞是自然界中普遍存在的的现象,从宏观物体的一体碰撞到微观物体的粒子碰撞都是物理学中极其重要的研究课题。 本实验通过两个体的碰撞、碰撞前的单摆运动以及碰撞后的平抛运动,应用已学到的力学定律去解决打靶的实际问题,从而更深入地了解力学原理,并提高分析问题、解决问题的能力。 一.实验原理 1. 碰撞:指两运动物体相互接触时,运动状态发生迅速变化的现象。"正碰"是指两碰撞物体的速度都沿着它们质心连线方向的碰撞;其他碰撞则为"斜碰"。 2. 碰撞时的动量守恒:两物体碰撞前后的总动量不变。 3. 平抛运动:将物体用一定的初速度 0沿水平方向抛出,在不计空气阻力的情况下,物体所作的运动称平抛运动,运动学方程为 ? 0 , ?12 (式中是从抛出开始计算的时2 间,是物体在时间内水平方向的移动距离,是物体在该时间内竖直下落的距离,g是重力加速度) 4. 在重力场中,质量为m的物体在被提高距离h后,其势能增加了? ? 5. 质量为的物体以速度运动时,其动能为 ?12 2 6. 机械能的转化和守恒定律:任何物体系统在势能和动能相互转化过程中,若合外力对该物体系统所做的功为零,内力都是保守力(无耗散力),则物体系统的总机械能(即势能和动能的总和)保持恒定不变。 7. 弹性碰撞:在碰撞过程中没有机械能损失的碰撞。 8. 非弹性碰撞:碰撞过程中的机械能不守恒,其中一部分转化为非机械能(如热能)。 二.实验仪器 碰撞打靶实验仪如图1所示,它由导轨、单摆、升降架(上有小电磁铁,可控断通)、被撞小球及载球支柱,靶盒等组成。载球立柱上端为锥形平头状,减小钢球与支柱接触面积,在小钢球受击运动时,减少摩擦力做功。支柱具有弱磁性,以保证小钢球质心沿着支柱中心位置。 图1 碰撞打靶实验仪

实验报告

实验报告 §3.8 数据插值与拟合实验 一、实验目的及意义 [1] 了解插值、最小二乘拟合的基本原理 [2] 掌握用MATLAB计算一维插值和两种二维插值的方法; [3] 掌握用MATLAB作最小二乘多项式拟合和曲线拟合的方法。 二、实验内容 1.针对实际问题,试建立数学模型。用MATLAB计算一维插值和两种二维插值的方法求解; 1.用MATLAB中的函数作一元函数的多项式拟合与曲线拟合,作出误差图; 2.用MATLAB中的函数作二元函数的最小二乘拟合,作出误差图; 3.针对预测和确定参数的实际问题,建立数学模型,并求解。 三、实验步骤 1.开启软件平台——MATLAB,开启MATLAB编辑窗口; 2.根据各种数值解法步骤编写M文件 3.保存文件并运行; 4.观察运行结果(数值或图形); 5.根据观察到的结果写出实验报告,并浅谈学习心得体会。

四、实验要求与任务 根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论→心得体会) 1.山区地貌:在某山区测得一些地点的高程如下表3.8。平面区域为: 1200<=x<=4000,1200<=y<=3600) 试作出该山区的地貌图和等高线图,并对几种插值方法进行比较。 x0=1200:400:4000; y0=1200:400:3600; z0=[1130,1250,1280,1230,1040,900,500,700; 1320,1450,1420,1400,1300,700,900,850; 1390,1500,1500,1400,900,1100,1060,950; 1500,1200,1100,1350,1450,1200,1150,1010; 1500,1200,1100,1550,1600,1550,1380,1070; 1500,1550,1600,1550,1600,1600,1600,1550; 1480,1500,1550,1510,1430,1300,1200,980]; meshc(x0,y0,z0) xlabel('x'); ylabel('y'); zlabel('z') title('原始图')

大学物理实验

目录 实验一牛顿第二定律的验证 (2) 实验二弦线振动的研究 (4) 实验三碰撞打靶实验 (6) 实验四利用直流电桥测量电阻 (9)

实验一 牛顿第二定律的验证 实验目的 1.熟悉气垫导轨的构造,掌握正确的使用方法。 2.学会用光电计时系统测量物体的速度和加速度。 3.验证牛顿第二定律。 实验仪器 气垫导轨,气源,通用电脑计数器,游标卡尺,物理天平等。 实验原理 牛顿第二定律的表达式为 F =m a . 验证此定律可分两步 (1)验证m 一定时,a 与F 成正比。 (2)验证F 一定时,a 与m 成反比。 把滑块放在水平导轨上。滑块和砝码相连挂在滑轮上,由砝码盘、滑块、砝码和滑轮组成的这一系统,其系统所受到的合外力大小等于砝码(包括砝码盘)的重力W 减去阻力,在本实验中阻力可忽略,因此砝码的重力W 就等于作用在系统上合外力的大小。系统的质量m 就等于砝码的质量、滑块的质量和滑轮的折合质量的总和. 在导轨上相距S 的两处放置两光电门k 1和k 2,测出此系统在砝码重力作用下滑块通过两光电门和速度v 1和v 2,则系统的加速度a 等于 S v v a 22 122-= 在滑块上放置双挡光片,同时利用计时器测出经两光电门的时间间隔,则系统的加速度为 )11(2)(2121 22 22122t t S d v v S a ?-??=-= 其中d ?为遮光片两个挡光沿的宽度如图1所示。在此测量中实际上测定的是滑块上 遮光片(宽d ?)经过某一段时间的平均速度,但由于d ?较窄,所以在d ?范围内,滑块的速度变化比较小,故可把平均速度看成是滑块上遮光片经过两光电门的瞬时速度。同样,如果t ?越小(相应的遮光片宽度d ?也越窄),则平均速度越能准确地反映滑块在该时刻运动的瞬时速度。 实验内容 1.观察匀速直线运动 (1)首先检查计时装置是否正常。将计时装置与光电门连接好,要注意套管插头和插孔要正确插入。将两光电门按在导轨上,双挡光片第一次挡光开始计时,第二次挡光停止计时就说明光电计时装置能正常工作; (2)给导轨通气,并检查气流是否均匀; (3)选择合适的挡光片放在滑块上,再把滑块置于导轨上; Δd 图1

4.2“碰撞打靶”实验中能量损失的分析

4.2“碰撞打靶”实验中能量损失的分析 一、试验目的、意义和要求 物体间的碰撞是自然界中普遍存在的现象;单摆运动和平抛运动是运动学中的基本内容;能量守恒是力学中的重要概念。本实验研究两个球体的碰撞及碰撞前后的单摆运动和平抛运动,应用已学到的力学定律去解决打靶的实际问题;特别是从理论分析与实践结果的差别上,研究实验过程中能量损失的来源,自行设计实验来分析各种损失的相对大小,从而更深入的理解力学原理,并提高分析问题、解决问题的能力。 二、参考书籍与材料 1.郑永令,贾起民。力学。上海:复旦大学出版社,2001。 2.沈元华,陆申龙。基础物理实验。北京:高等教育出版社,2003。 三、实验前应回答的问题 (一)关于单摆运动和平抛运动 1.什么是单摆?什么是单摆运动?单摆运动中,动能与势能是如何相互转换的?在加速度为g的重力场中,质量为m的单摆的最大速度v与最大高度h的关系如何?实际的单摆运动中可能有哪些能量损失?如何判断和测量这些能量损失的大小? 2.什么是平抛运动?平抛运动中,动能与势能是如何相互转换的?质量为m、初速度为v的平抛物体所抛出的水平距离x和下落的铅直距离y的关系如何?平抛运动中可能有哪些能量损失?如何判断和测量这些能量损失的大小? (二)关于碰撞 1.什么是弹性碰撞?什么样的碰撞可看作弹性碰撞?实际上是否有真正的弹性碰撞? 2.什么是非弹性碰撞?非弹性碰撞中是否有能量损失?什么是完全非弹性碰撞?什么样的碰撞可看作完全非弹性碰撞?实际上是否有真正的完全非弹性碰撞? 3.什么是正碰撞?什么是斜碰撞?正碰撞或斜碰撞和弹性碰撞或非弹性碰撞是否有关? (三)关于能量守恒和动量守恒 1.什么是能量?什么是机械能?什么是动量? 2.在什么条件下,体系的总能量守恒?在什么条件下,体系的机械能守恒? 3.在什么条件下,体系的总动量守恒?在非弹性碰撞中,总动量是否守恒? 四、实验室可提供的主要器材 1.“碰撞打靶”装置。用两细绳挂在两杆上的铁质“撞击球”被吸在升降架上的电磁铁下;与撞击球质量和直径都相同“被撞球”放在升降台上。升降台和升降架可自由调节其高度。可在滑槽内横向移动的竖尺和固定的横尺用以测量撞击球的高度h、被撞球的高度y和靶心与被撞球的横向距离x。 2.不同大小、不同材料的撞击球和被撞球。 3.游标卡尺、电子天平、钢尺等。

大学物理仿真实验报告 碰撞与动量守恒

大学物理仿真实验报告 实验目的 利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律, 定量研究动量损失和能量损失在工程技术中有重要意义。 同时通过实验还可提高误差分析的能力。 实验原理 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 实验中用两个质量分别为m1、m2的滑块来碰撞(图1),若忽略气流阻力,根据动量守恒有 对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,式(2)中矢量v可 改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取 负号。 完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 由(3)、(4)两式可解得碰撞后的速度为

如果v20=0,则有 动量损失率为 能量损失率为 理论上,动量损失和能量损失都为零,但在实验中,由于空气阻力和气垫导轨本身的原因,不可能完全为零,但在一定误差范围内可认为是守恒的。 完全非弹性碰撞 碰撞后,二滑块粘在一起以10同一速度运动,即为完全非弹性碰撞。在完全非弹性碰撞中,系统动量守恒,动能不守恒。 在实验中,让v20=0,则有 动量损失率 动能损失率

一般非弹性碰撞 一般情况下,碰撞后,一部分机械能将转变为其他形式的能量,机械能守恒在此情况已不适用。牛顿总结实验结果并提出碰撞定律:碰撞后两物体的分离速度与碰撞前两物体的接近速度成正比,比值称为恢复系数,即 恢复系数e由碰撞物体的质料决定。E值由实验测定,一般情况下0m2,用物理天平称m1、m2的质量(包括挡光片)。将两滑块分别装上弹簧钢圈,滑块m2置于两光电门之间(两光电门距离不可太远),使其静止,用m1碰m2,分别记下m1通过第一个光电门的时间Δt10和经过第二个光电门的时间Δt1,以及m2通过第二个 光电门的时间Δt2,重复五次,记录所测数据,数据表格自拟,计算

实验4.刚体碰撞实验

实验四 刚体碰撞实验 2017年9月 实验目的:通过本实验,加深对理论力学课程中碰撞一节基本知识的理解,熟悉对碰撞问题 的分析方法,掌握恢复系数、冲量比等参数的力学意义。在此基础上,结合实验介绍三维空间碰撞问题的简化处理方法。 实验内容:1.恢复系数e 的测定 2.冲量比μ的测定 3.三维空间碰撞简化处理方法的介绍 实验设备:碰撞实验台(见下图) 通过程序或手动控制,可以使发球器中存储的钢球以自由下落的方式发出;当钢球碰落到撞块A 时发生碰撞,并回弹继续运动;当钢球碰落到撞块B 时,再次发生碰撞,回弹继续运动;最后钢球将溅落到底板的某一位置。 实验步骤及实验原理: 1. 恢复系数e 的测定 1:发球器 2:碰撞块A 3:碰撞块B 4:立柱 5:滑轨 6:底板 7:围栏 8:调节螺钉(3?) 该碰撞台中的可调节部分为: 2与4之间可转动,调碰撞面A 法向 3与6之间可转动,调碰撞面B 法向 6与8之间可转动,调平实验台 测定恢复系数时,需将碰撞块A 的上表面的外法线调至垂直向上的方向,即方向余弦向量为(0,0,1)T 。钢球自由下落开始时的位置已知,通过两次碰撞的时间间隔可以反算出钢球碰撞后的回弹高度,从而可以计算出碰撞中的恢复系数。见图2。 设初始高度为0h ,碰撞前速度为1v *, (*注:下文中一律以:i v 表示第i 次碰撞前钢球的质心速度,i V 表示第i 次碰撞后钢球的质心速度) 图2:回弹高度测定

设碰撞后钢球回弹的最高位置为m ax h ,碰撞后钢球的质心速度为1V 。则: 012gh v =, max 12gh V -= (负号说明方向为-Z 方向) 恢复系数的定义为:A A v v V V e --- =11,碰撞块A 的碰撞前和碰撞后速度均为0,可得: max h h e = (1) 测出m ax h 的值便可以由式(1)计算出恢复系数e 2. 冲量比μ的测定 测定冲量比时,同样需将碰撞块A 的上表面的外法线调至垂直向上的方向,另外还要取下碰撞块B ,这时钢球经过第一次碰撞将直接溅落在底板上。通过测量其溅落位置并结合已测定的恢复系数可以得到冲量比的测定结构。见图3。 测量钢球在底板上的溅落位置可按如下方法进行:发球前在底板上平铺一张坐标纸(或其他白纸均可)并记录下它在底板上的位置,即它在图1中的O-XYZ 坐标系中的绝对位置。然后在其上在平铺一张复写纸,并用压块固定。当球溅落在底板上时,便通过复写纸在坐标纸上留下痕迹。实验结束后,测量这些痕迹在坐标纸上的位置,并结合坐标纸在O-XYZ 坐标系中的绝对位置可以得到实验中钢球的实际溅落位置。 1

实验报告

学号 实验报告 计算机导论实验 起止日期:2016 年10 月24 日至2016 年11 月2 日 学生姓名 班级 成绩 指导教师(签字) 计算机与信息工程学院 2016年11月16日

天津城市建设学院 实验任务 2016 —2017 学年第一学期(秋季) 计算机与信息工程学院软件工程专业班级 实验名称:计算机导论实验 完成期限:自2016 年10月24 日至2016 年11 月 2 日 实验一Windows操作系统操作 一、实验目的 了解windows XP操作系统的基本功能,通过上机学会在windows XP环境下使用操作系统,主要包括:界面属性、设置和使用,各种设备的属性、设置和使用,文件和文件夹的性质和基本操作,其他应用软件的操作,系统的设置、维护等。 二、实验要求 (1)根据实验内容提示,独立完成实验操作过程。 (2)通过练习,熟练掌握Windows XP的基本操作与设置。通过各项操作理解操作系统。 (3)编写实验报告。 三、实验内容 (1)掌握Windows XP的启动和退出、个性化桌面设置、桌面快捷方式的创建方法。 (2)掌握Windows XP的任务栏和开始菜单的设置和使用。 (3)掌握屏幕属性的设置。 (4)掌握窗口的操作(菜单、按钮和工具栏等)并学习其设计特点和功能。 (5)掌握对话框的操作和功能特点(选项卡、单选、多选、文本框、列表框、下拉列表框、数字框、滑块等)。 (6)比较窗口与对话框的区别,并用文字说明。 (7)熟悉浏览、查找、打开及关闭文件和文件夹的方法。 (8)掌握创建、命名和重新命名文件和文件夹。掌握复制、移动文件和文件夹。 (9)熟悉从“回收站”中还原已经被删除了的文件和文件夹方法。 (10)掌握备份、还原文件和文件夹。 (11)掌握磁盘格式化方法。 (12)掌握查看和更改磁盘属性的方法。 (13)了解磁盘的维护过程。 (14)了解U盘的使用方法。 (15)了解控制面板的设置。 (16)了解其他应用软件的使用(记事本、画图等)。

打靶命题汇总(DOC)

山西地理教师网络教研活动第二期 高考打靶命题(猜题) 汇总人:景华府 2017.5.19 第一部分 选择题 命题人:白瑞生 孝义复习中心 气候舒适度是为了从气象学角度评价不同天气/气候条件下人体 的舒适状态而制定的生物气象指标,是人类活动和人居环境的重要影 响因素。气候舒适度的影响因素包括气温(16~24 ℃是人体感觉舒 适的范围)、风速、湿度、日照时数、昼长等。读我国某季节气候舒 适期天数等值线图,完成1-3题。 1.图示季节最有可能是( ) A .春季 B .夏季 C .秋季 D .冬季 2.影响该季节气候舒适期长短的主导因素是( ) A .纬度位置 B .距冬季风源地远近 C .距海远近 D .海拔高低 0 1.6 10 20 40 30 50

3.该季节,海南省受气候舒适期作用较小的的产业活动是()A.工业生产 B.旅游业 C.蔬菜种植 D.会展业 命题人:毕科运城中学 植物的花期长度是指一株植物从第一朵花开放到最后一朵花开 毕延续的时间,即植物从开花始期到开花末期所经过的时间。下表是研究中国主要木本植物过去50 年(1963-2012)花期长度的变化趋势。据此,回答4-6题。 4.关于中国境内的花期长度的说法正确的是( ) A.花期长度延长的序列明显少于缩短的序列 B.乔木和灌木相比,花期长度显著缩短的比例明显较小 C.花期长度延长或缩短由开花始期的提前或推迟决定 D.灌木花期的延长趋势比乔木更加显著 5.有专家发现英吉利海峡的根西岛 85%的物种花期长度在1985-2011 年呈缩短态势,并且缩短平均趋势与中国花期长度的平均变化趋势有较大差异。形成这种差异最不可能的原因是( ) A.因研究时段的不同 B.与研究的植物种不同 C.不同研究区的气候类型 D.研究水平的差异

碰撞打靶实验仪的改进

2016—2017学年第一学期 碰撞打靶试验仪的改进 学校名称: 沈阳科技学院 专业班级: 生物工程1501 学生姓名及学号: 胡慧敏 154320126 侯泽宇 154320127 姚浩雅 154320128 王帅鑫 154320134 指导教师: 韩晓静

碰撞打靶试验仪的改进 关键字:碰撞;打靶;能量损失 摘要:介绍碰撞打靶试验仪在力学实验中的应用 一、引言 物体间的碰撞是自然界中普遍存在的现象,从宏观物体的天体的碰撞 到微观物体的粒子碰撞都是物理学中极其重要的研究课题。本实验通 过两个球体的碰撞、碰撞前的单摆运动以及碰撞后的平抛运动,应用 力学定律解决问题,从而更深入地了解力学原理,并探讨碰撞中能量 损失的诸方面的原因,是一个较好的设计性研究性物理实验。 二、设计原理 假设撞击球的质量为M,被撞球的质量为m,单摆向下运动的过程有: 两球相碰的瞬间,据动量守恒有: 由能量守恒有: 被撞球被撞击后做平抛运动,假设下落的时间为t,有: 由以上公式得: 三、演示实验 (一)实验目的 通过实验研究单摆运动、碰撞和平抛运动规律;研究机械能守恒、动量守恒条件;分析理论和实际的差异并探讨减少这种差异的方法;培养学生在解

决实际问题过程中,利用定性和半定量的方法选取实验方法、设计实验方案和选择实验装置的能力;通过调节实验装置,记录与分析试验数据,加深学生对机械能守恒定律和动量守恒定律的理解。 (二)实验原理 1.碰撞:指两物体相互接触时,运动状态发生迅速变化的现象。(“正碰”是指两碰撞物体的速度都沿着它们质心连线方向的碰撞;其他碰撞则为“斜碰”。) 2.弹性碰撞:在碰撞过程中没有机械能损失的碰撞。 3.非弹性碰撞:碰撞过程中,形变不能恢复,机械能不守恒,其中一部分转化为内能(热能)。 4.平抛运动:将物体用一定的初速度沿水平方向抛出,在不计空气阻力的情况下,物体所作的运动称为平抛运动。 5.动量守恒定律:一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律。 6.机械能的转化和守恒定律:合外力对物体没有做功和所做的功为零。物体在势能和动能相互转化过程中,物体的总机械能(即势能和动能总和)保持不变。 (三)实验仪器 1.该实验仪器结构: 碰撞打靶试验仪由底盘、升降式立柱、小铁球、双线摆、带有升降架的电磁铁、滑槽、触摸板计时器、重力感应测距板等组成。底盘是一个内凹是盒体,使整个仪器的基板,有不让球滚出去的功能,它有三个螺丝用以调节水平。 底盘的中央,是一个升降台,升降台包括圆柱形的外套、空心内柱和接触感应盘及固定螺丝钉四个部分,其内柱可以在外套中自由升降,确定合适的高度后,再用固定螺丝把它固定,实验时被撞球放在内柱顶端的接触感应盘上。盘面光滑,以减少摩擦。 底盘的右侧,有两条滑槽,可供其上的竖尺在水平方向上的移动,竖尺的零点与升降台的零点在一条水平线上,竖尺上有一个升降架,可在尺上升降。升降架上有一块小电磁铁,实验时,用细绳挂在杆上的撞击球被吸在磁铁下,操作时

全球汽车安全碰撞实验详细介绍及安全常识

全球汽车安全碰撞实验 详细介绍及安全常识 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

(一)碰撞指标查询系统 1. 欧洲评鉴协会Euro-NCAP (1)NCAP碰撞简介 衡量性能好不好,不能由自己说了算,要经过试验验证。其中“碰撞性能试验”就是主要项目之一,也是人们最关注的试验项目,因为车祸大部分都是碰撞,这个测试结果基本反映了对乘员和行人的程度。 美国、欧洲和日本都制定了相关的乘员碰撞保护法规。例如美国国家公路交通管理局(NHTSA)颁布的FMVSS208《乘员碰撞保护》法规、欧盟重新修订的《正面碰撞乘员保护》法规、日本运输省颁布的TRAIS11-4-30《正面碰撞的基准》法规等,定期对本国生产及进口进行正面碰撞或侧面碰撞进行性试验,以检查内驾驶员及乘员在碰撞时的受伤害程度。但是,这些法规仅是这些国家或区域国家政府管理部门对产品性的最低要求,而生产企业追求的却是行业上公认的NCAP(New Car Assessment Program),中文称为评估计划。它是一个行业性组织,定期将 企业送来或者上出现的进行碰撞试验,它规定的实车碰撞速度往往比政府制定的法规的碰撞速度要高,从而在更严重的碰撞环境下评价车内乘员的伤害程度,根据头部、胸部、腿部等主要部位的伤害程度将试验车的性进行分级。尽管NCAP 不是政府强制性实验,但由于它代表性广泛,标准科学,试验严格,组织公正,直接面向消费者公布试验结果,通过碰撞测试向消费者表示什么是的或是最的。

因此各大企业都非常重视NCAP,把它作为开发的重要评估依据,在NCAP试验取得良好成绩的,也将试验结果作为产品推广的宣传内容。 NCAP最早出现在美国,随后欧洲和日本等国都制订了相关的NCAP。其中欧洲的NCAP(European New Car Assessment Program)最具影响力和代表性。它由欧洲各国联合会、政府机关、消费者权益组识、俱乐部等组织组成,由国际联合会(FIA)牵头。欧洲NCAP不依附于任何生产企业,所需经费由欧盟提供,不定期对已上市的和进行碰撞试验,每年都组织几次。 欧洲NCAP的碰撞测试有两个基本项目,即正面和侧面碰撞。正面碰撞速度为64公里/小时,侧面碰撞速度为50公里/小时。在车辆碰撞时邀请生产企业直接参与以示公正性,还允许其产品有两次碰撞机会,当获知初次碰撞结果不理想时,会对产品进行改进或安装装置,再进行第二次碰撞,以获得最好的成绩为准。 NCAP的碰撞测试成绩通过星级(★)表示,共有五个星级,星级越高表示该车的碰撞性能越好,达到33分为满分。 (2)欧洲NCAP碰撞测试项目详解 ①NCAP正面碰撞测试标准详解

碰撞与动量守恒实验报告

大学物理仿真实验 ——碰撞与动量守恒 实 验 报 告

一、实验简介: 动量守恒定律和能量守恒定律在物理学中占有非常重要的地位。力学中的运动定理和守恒定律最初是冲牛顿定律导出来的,在现代物理学所研究的领域中存在很多牛顿定律不适用的情况,例如高速运动物体或微观领域中粒子的运动规律和相互作用等,但是能量守恒定律仍然有效。因此,能量守恒定律成为了比牛顿定律更为普遍适用的定律。 本实验的目的是利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。定量研究动量损失和能量损失在工程技术中有重要意义。同时通过实验还可提高误差分析的能力。 二、实验容: 1.研究三种碰撞状态下的守恒定律 (1)取两滑块m1、m2,且m1>m2,用物理天平称m1、m2的质量(包括挡光片)。将两滑块分别装上弹簧钢圈,滑块m2置于两光电门之间(两光电门距离不可太远),使其静止,用m1碰m2,分别记下m1通过第一个光电门的时间Δt10和经过第二个光电门的时间Δt1,以及m2通过第二个光电门的时间Δt2,重复五次,记录所测数据,数据表格自 拟,计算、。 (2)分别在两滑块上换上尼龙搭扣,重复上述测量和计算。 (3)分别在两滑块上换上金属碰撞器,重复上述测量和计算。 2.验证机械能守恒定律 (1)a=0时,测量m、m’、m e、s、v1、v2,计算势能增量mgs和动能增量 ,重复五次测量,数据表格自拟。 (2)时,(即将导轨一端垫起一固定高度h,),重复以上测量。

三、实验原理: 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 (1) 实验中用两个质量分别为m1、m2的滑块来碰撞(图4.1.2-1),若忽略气流阻力,根据动量守恒有 (2) 对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,式(2)中矢量v可改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取负号。 1.完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 (3)

大一碰撞实验实验报告

碰撞打靶实验 【目的和要求】 通过实验描绘平抛物体运动的轨迹,加强对平抛运动的认识并求出平抛物体的初速度。 【仪器和器材】 碰撞实验器(J2135型或J2135-1型),绘图板,小球,白纸、铅笔、复写纸、过球指示器。 【实验方法】 1.实验器材的安装 将碰撞实验器用C形夹固定在桌边,如图2.23-1所示,注意使轨道的下段保持水平。检查是否水平的办法是将一钢球放在其上的任一点,它都能保持静止。把重锤挂在槽口下端定位针的小孔内。

在绘图板上固定好白纸,纸的边缘应与木板的一个边对齐,用支架将板竖直地固定在槽口旁,注意使木板平面与碰撞实验器的斜槽中心线平行。使钢球沿槽滚下,如果小球运动轨迹所在的平面始终与木板面平行,此时木板的位置就可以了。 2.坐标原点的确定 当小球从斜槽滚下离开槽口开始做平抛运动时,质心的位置在绘图板上的投影取作坐标原点,如图2.23-2。确定坐标原点的方法是:把钢球放在槽口上,用三角板作钢球最高点在竖直板上的投影A,在点A正下方R处(R为小球的半径)标明坐标原点O。 3.小球起始位置的确定 选择钢球在斜槽上的高度,使钢球做平抛运动时恰好在纸的另一边的下角处离开纸面。然后把定位板固定在选好的释放小球处,这样做的目的在于充分利用纸面。 4.小球的释放每次释放小球时,都必须从定位板所确定的位置处释放,而且释放的动作既要干净利落,又要保持一致,不要让小球获得任何方向的初速度,从而重复实验时小球做平抛运动的初速度接近相等。可用直尺将小球压在定位板上,然后使直尺向外迅速离开,即完成放球工作,如图2.23-3。

5.小球运动轨迹的描绘 将过球指示器置于距槽口2-3厘米处,使其迎着小球的速度方向。当小 球恰好从过球指示器中穿过时,定出钢球质心位置,并把它标在白纸上。移动 过球指示器,每次移动的距离为2-3厘米,依次找出钢球在平抛运动中的一 系列位置在白纸上的投影点。 取下平板,用平滑的曲线连接各投影点,即得到钢球做平抛运动的轨迹。 从坐标原点O向右引水平直线作为x轴,向下引竖直直线作为y轴。再将平板装回原处,按前述要求让小球重作一次平抛运动,对所画曲线进行核对并修正,使之更接近钢球的实际运动轨迹。 6.平抛运动初速度的计算

大学物理碰撞打靶实验报告

大学物理碰撞打靶实验报告 篇一:大学物理碰撞打靶实验报告 碰撞打靶实验 物体间的碰撞是自然界中普遍存在的的现象,从宏观物体的一体碰撞到微观物体的粒子碰 撞都是物理学中极其重要的研究课题。 本实验通过两个体的碰撞、碰撞前的单摆运动以及碰撞后的平抛运动,应用已学到的力学 定律去解决打靶的实际问题,从而更深入地了解力学原理,并提高分析问题、解决问题的 能力。 一.实验原理 1. 碰撞:指两运动物体相互接触时,运动状态发生迅速变化的现象。"正碰"是指两碰撞物 体的速度都沿着它们质心连线方向的碰撞;其他碰撞则为"斜碰"。 2. 碰撞时的动量守恒:两物体碰撞前后的总动量不变。 3. 平抛运动:将物体用一定的初速度v0沿水平方向抛出,在不计空气阻力的情况下,物 体所作的运动称平抛运动,运动学方程为x?v0t,y?12gt(式t中是从抛出开始计算的时2 间,x是物体在时间t内水平方向的移动距离,y是物体在该时间内竖直下落的距离,g 是重力加速度) 4. 在重力场中,质量为m的物体在被提高距离h后,其势能增加了?Ep?mgh 5. 质量为m的物体以速度v运动时,其动能为Ek?12mv 2 6. 机械能的转化和守恒定律:任何物体系统在势能和动能相互转化过程中,若合外力对该 物体系统所做的功为零,内力都是保守力(无耗散力),则物体系统的总机械能(即势能 和动能的总和)保持恒定不变。 7. 弹性碰撞:在碰撞过程中没有机械能损失的碰撞。 8. 非弹性碰撞:碰撞过程中的机械能不守恒,其中一部分转化为非机械能(如热能)。二.实验仪器 碰撞打靶实验仪如图1所示,它由导轨、单摆、升降架(上有小电磁铁,可控断通)、被 撞小球及载球支柱,靶盒等组成。载球立柱上端为锥形平头状,减小钢球与支柱接触面积,在小钢球受击运动时,减少摩擦力做功。支柱具有弱磁性,以保证小钢球质心沿着支柱中 心位置。 图1 碰撞打靶实验仪

碰撞试验报告

地空学院 陈剑雄 PB06007111 一实验名称:碰撞过程中守恒定律的研究 二实验目的:利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。 三实验原理:如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或 在某方向上守恒,即 ∑=恒量i i v m (1) 实验中用两个质量分别为m 1、m 2的滑块来碰撞,若忽略气流阻力,根据动量守恒有 2211202101v m v m v m v m +=+ (2) 对于完全弹性碰撞,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙;一般非弹性碰撞用一般金属,无论哪种碰撞面,必须保证是对心碰撞。 1. 完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 2211202101v m v m v m v m +=+ (3) 2 2 2211220221012 1212121v m v m v m v m +=+ (4) 如果v 20=0,则有 2110 211)(m m v m m v +-= (5) 2 110 122m m v m v += (6) 动量损失率为 10 122111010100)(v m v m v m v m p p p p p +-=-=? (7) 能量损失率为

22222 11011220111222200110110 111())222112 m v m v m v E E m v m v E E E m v m v -+-+D ===- (8) 理论上,动量损失和能量损失都为零,但在实验中,由于空气阻力和气垫导轨本身的原因,不可能完全为零,但在一定误差范围内可认为是守恒的。 2. 完全非弹性碰撞 碰撞后,二滑块粘在一起以同一速度运动,即为完全非弹性碰撞。在完全非弹性碰撞中,系统动量守恒,动能不守恒。 v m m v m v m )(21202101+=+ (9) 在实验中,让v 20=0,则有 v m m v m )(21101+= (10) 2 110 1m m v m v += (11) 动量损失率 101210)(1v m v m m p p +-=? (12) 动能损失率 2 120m m m E E +=? (13) 3. 一般非弹性碰撞 一般情况下,碰撞后,一部分机械能将转变为其他形式的能量,机械能守恒在此情况已不适用。牛顿总结实验结果并提出碰撞定律:碰撞后两物体的分离速度12v v -与碰撞前两物体的接近速度成正比,比值称为恢复系数,即 20 101 2v v v v e --= (16) 恢复系数e 由碰撞物体的质料决定。E 值由实验测定,一般情况下0

相关主题
文本预览
相关文档 最新文档