当前位置:文档之家› 钢结构水工钢闸门课设

钢结构水工钢闸门课设

钢结构水工钢闸门课设
钢结构水工钢闸门课设

2014年 1月

一、设计资料

专业年级 11级水工5班 学 号 1102010521

姓 名 王旭 指导教师 伞冰冰 潜孔式平面钢闸门设

1.闸门型式:潜孔式平面钢闸门。

2.孔口尺寸:10.0m×5.8m

3.上游水位:▽27.5m

4.下游水位:▽22.5m

5.闸底高程:▽20.0m

6.胸墙底高程:▽25.8m

7.启闭方式:电动固定式启闭机

8. 材料:钢材:Q235B钢

焊条:E43

止水:侧止水用P型橡皮,底止水用条型橡皮

行走支承:采用滚轮,材料为铸钢ZG45

9.制造条件:金属结构制造厂制造,手工电焊,满足Ⅲ级焊缝质量检验标准。

4.规范:《水利水电工程钢闸门设计规范》(SL 74-1995)

二、闸门结构的形式及布置

1.闸门尺寸的确定

闸门高度:考虑到安装顶止水构造要求,取ΔH=0.3m故

闸门高度H=25.8-20.0+0.3=6.1m

闸门的荷载跨度为两侧止水的距离

L

q

=10.0m

闸门计算跨度

L=L

+2d=10+2×0.2=10.4m

闸门总宽

B=B=L

0+2d+L

a

+b=10.0+2×0.2+0.4+0.2=11.0m

L

---孔口尺寸

d---行走支承到闸墙边缘的距离 (本次设计取0.2m)

L

a

---边梁两腹板中到中距离 (本次设计取0.4m)

b---边梁一块下翼缘的宽度

1.主梁的型式

主梁的型式根据水头和跨度大小确定,本闸门属中等跨度,为了便于制造和维护,决定采用实腹式组合梁。

2.主梁布置

根据闸门的高跨比(L≥1.2B),决定采用双主梁。为了使两根主梁所受的水

压力相等,两根主梁的位置对称于水压力合力P的作用线y

c

=2.5m。并要求上悬臂c≤0.45H=2.745且不宜大于3.6m,底主梁到底止水的距离尽量符合底缘布置要求(即α≥30°),取c=1.92m,则主梁间距

2b=2(H-y

c

-c)=2×(6.1-2.5-1.92)=3.36m

a=H-2b-c=6.1-3.36-1.92=0.82m

3.梁格的布置及形式

梁格采用复式布置和齐平连接,水平次梁穿过横隔板上的预留孔并被横隔板所支承。水平次梁为连续梁,其间距应上疏下密,使面板各区格所需要的厚度大致相等,梁格布置的具体尺寸如图所示

4.联结系的布置和形式

(1)横向联结系。根据主梁的跨度,决定布置3道横隔板,其间距为2.6m,

横隔板兼做竖直次梁。

(2)纵向联结系。采用斜杆式桁架,布置在2根主梁下翼缘的竖平面内。 5.边梁与行走支承

为了便于制造,边梁采用双腹式,行走支承采用滚轮。

二、面板设计

根据《水利水电工程钢闸门设计规范》(SL74-1995)关于面板的设计,先估算面板厚度,在主梁截面选择以后再验算面板的局部弯曲与主梁整体弯曲的折算应力。

1.估算面板厚度

假定梁格布置尺寸如图2所示。面板厚度按下式计算

t=a

]

[σa kp

当b/a ≤3时,a=1.5,则t=a

160

5.1?kp

=0.065kp a

当b/a >3时,a=1.4,则t=a 160

4.1?kp

=0.067kp a

现列表1计算如下:

2.面板与梁格的连接焊缝计算

已知面板厚度t=8mm ,并且近似地取板中最大弯应力σmax=[σ]=160N/mm 2,则

N t =0.07t σmax =0.07×8×160=89.6N/mm ,

面板与主梁连接焊缝方向单位长度内地应力:

T =0

2I VS =,/2101025602373

8620105806

3mm N =?????? 面板与主梁连接的焊缝厚度:

mm T N h w f

t f 84.2]115[7.0/2106.89][7.0/2

222

=?+=?+=τ, 面板与梁格连接焊缝厚度取起最小厚度mm h f 6=。

四、水平次梁,顶梁和底梁地设计

1.荷载与内力地验算

水平次梁和顶,底梁都时支承在横隔板上地连续梁,作用在它们上面的水压力可

按下式计算,即: q=p 2下

上a a +

现列表2计算如下:

根据上表计算,水平次梁计算荷载取46.41kN/m ,水平次梁为4跨连续梁,跨度为 2.6m ,水平次梁弯曲时的边跨弯距为: M 次中=0.077ql 2=0.077×46.41×

2.62=24.2kN ?m

支座B 处的负弯距:

M 次B =0.107ql 2=0.107×46.41×2.62=33.57kN ?m

2.截面选择

W=5.209812160

1057.33][6=?=σM mm 3

考虑利用面板作为次梁截面的一部分,初选[20b,由附录三表四查得:

A=3280mm 2 ; W x =191000mm 3 ; I x =19140000mm 4 ; b l =75mm ; d=9.0mm 。 面板参加次梁工作的有效宽度分别按式8—15及式8—16计算,然后取其中较小值。

式:8—15 B ≤b l +60t=75+60×8=555mm ; 式:8—16 B=ζ1b (对跨间正弯距段) B=ζ2b (对支座负弯距段)

按6号梁计算,梁间距b=2

下上a a +=2830

790+=810。对于第一跨中正弯距段

l 0=0.8l=0.8×2600 =2080mm ;对于支座负弯距段l 0=0.4l =0.4×2600=1040mm 。 根据l 0/b 查表8—1:

对于l 0/b =2080/810=2.568 得ζ1=0.79,得B=ζ1b =0.79×810=640mm ,

对于l 0/b =1040/810=1.284 得ζ2=0.37 ,得B=ζ2b =0.37×810=298mm ,

对第一跨中选用B =555m,则水平次梁组合截面

面积:

A=3280+555×8=7720mm 2 ;

组合截面形心到槽钢中心线得距离:

e=7720

1048555??=60mm ;

跨中组合截面的惯性距及截面模量为:

I 次中=19140000+3280×602+555×8×442

=3.954×107mm 4

W min =3

7

24710016010×3.954mm =

对支座段选用B =298mm ,则组合截面面积:A=3280+298×8=5664mm 2 ; 组合截面形心到槽钢中心线得距离

e=5664

1048298??=44mm

支座初组合截面的惯性距及截面模量为:

I 次B =19140000+3280×442+298×8×602=34072480mm 4

W min =

3236614144

34072480

mm =

3.水平次梁的强度验算

由于支座B 处弯距最大,而截面模量较小,故只需验算支座B 处截面的抗弯强度,即

σ次=

,/160][/142236614

10357.3227

mm N mm N =<=?σ 说明水平次梁选用[20b 满足要求。

轧成梁的剪应力一般很小,可不必验算。

4.水平次梁的挠度验算

受均布荷载的等跨连续梁,最大挠度发生在边跨,由于水平次梁在B 支座处截面的弯距已经求得M 次B=22.82kN ?m,则边跨挠度可近似地按下式计算:

EI ql l w 100632.03

==7

5310954.31006.2100260041.46632.0?????? =6.33×10-4

≤004.0250

1][==

l w 故水平次梁选用[20b 满足强度和刚度要求 5.顶梁和底梁

顶梁和底梁也采用和中间次梁相同的截面,故也选用[20b 。

五、主梁设计

(一)设计资料

1)主梁跨度:净跨(孔口净宽)l 0=10.0m ;计算跨度l =10.4m ;

荷载跨度l q =10.0m 。

2)主梁荷载:

kN P

q 1162/2322

===/m

3)横向隔板间距: 2.6m

4)主梁容许挠度: [ω]=l/750

(二)主梁设计 1.截面选择

(1)弯距和剪力 弯距与剪力计算如下:

弯距: m kN M ?=-??=

1566)40

.1024.10(20.10116max 剪力: kN ql V 5802

0.1011621max =?==

(2)需要的截面抵抗距,已知钢材Q235B 的容许应力[σ]=160N/mm2 ,考虑钢闸门自重引起附加应力的影响,取容许应力0.9[σ]=,/1441609.02mm N =? 则需要的截面抵抗矩为;

W=。

33

max 10875144

101566][cm M =?=σ (3)腹板高度选择

按刚度要求的最小梁高(变截面梁)

[],4.120750

/11006.21004.114423.096.0]

/[L 9.023.096.053

min

cm l w E h =??????=???=σ

经济梁高:。cm W h ec 128)10875(1.31.35/25/2=?== 由于钢闸门中的横向隔板重量将随主梁增高而增加,故主梁高度宜选得比

h ec 为小,但不小于h min 。现选用腹板厚度h 0=125cm 。 (4)腹板厚度选择

,02.111/12511/cm h t w ===选用t w =1.2cm 。

(5)翼缘截面选择:每个翼缘需要截面为

,626

1252.11251087562001cm h t h W A w =?-=-=

下翼缘选用t 1=2.0cm ,需要

,312

62

111cm t A b ===

取b 1=32cm,上翼缘的部分截面积可利用面板,故只需设置较小的翼缘板同面板相连,选用t 1=2.0cm ,b 1=14cm 。

面板兼作主梁上翼缘的有效高度为B =b 1+60t =14+60?0.8=62cm 。

下主梁与相邻两水平次梁的平均间距较小,其值为

b=2下上a a += 27083+=76.5cm

由L/b=1040/76.5=13.59,查表

8-1得ζ1=1.0,则

B=ζ1b=76.5?1.0=76.5cm

故面板可以利用的有效宽度为62cm ,则主梁上翼缘总面积为

A 1=14?2.0+62?0.8=77.6cm 2 。

(6)弯应力强度验算 截面形心距:

,

1.620

.2322.11250.2148.0628

.1280.2323.652.11258.10.2144.08.0621cm A

Ay y i

i

=?+?+?+???+??+??+??=

=

∑∑

截面惯性距:

2

22232307.660.2322.32.11253.600.2147.618.06212

1252.112??+??+??+??+?=+=∑i i w y A h t I =772210cm 4

截面抵抗距:上翼缘顶边 ,124351.62772210

31max cm y I W ===

下翼缘底边 ,114067

.6777221032min cm y I W ===

弯应力:,/1351509.0/3.137101406.110566.12

27

9min max cm kN cm kN W M =?>=??==σ但在3%以内,安全满足要求。

(7)整体稳定与挠度验算。因主梁上翼

缘直接同面板相连,按《钢结构设计规范》(GB 50017-2003)规定可不必验算整体稳定性,因梁高大于按高度要求的最小梁高,故梁的挠度也不必验算。

2.截面改变

因主梁跨度较大,为减小门槽宽度与支承边梁高度(节约钢材),有必要将主梁承端腹板高度减小为

cm h h 756.00d 0==。考虑到主梁端部腹板

及翼缘相焊接,故可按工字截面梁验算应力剪力强度。 截面形心距:

,

7.370

.2322.1750.2148.0628

.780.2323.402.1758.10.2144.08.0621cm A

Ay y i

i

=?+?+?+???+??+??+??=

=

∑∑

截面惯性距:

2

22232301.410.2326.22.1759.350.2143.378.06212

752.112??+??+??+??+?=+=∑Ay h t I w =256000cm 4

截面下半部对中和轴的面积矩

S=32?2.0?41.1+40.1?1.2?40.1/2=3595cm 3

,/95][/9.6712

2560003595

580220max cm kN cm kN t I S V w =<=??==

ττ 安全满足要求。

3.翼缘焊缝

翼缘焊缝厚度h f 按受力最大的支承端截面计算。V max =580kN 。I 0=256000cm 4, 上翼缘对中和轴的面积距:S 1=62?0.8?37.3+14?2.0?35.9=2855cm 3, 下翼缘对中和轴的面积距:S 2=32?2.0?41.1=2630cm 3

需要,mm 4115

25604.12855

580][4.101=???==

f

w f I VS h τ 角焊缝最小,mm t h f 7.6205.15.1==≥。 全梁的上下翼缘焊缝都采用h f =8mm 。

4.腹板的加劲肋和局部稳定验算

1042

.11250==w t h ﹥80故需设置横向加劲肋,以保证腹板的局部稳定性。因闸门上已布置横向隔板可兼作横加劲肋,其间距a =2600mm 。腹板区格划分见图。

梁高都较大的区格,按下式计算 []σξ?ττ20h ≤=

w

V

区格Ⅱ左边截面的剪力

V=580-116?(5-2.6)=302kN 该截面的弯矩

M=580?2.6-1162

4.22

?=1173.9kN ·m

腹板边缘的弯曲正应力

2

9

9x 0/N 9010

7221.7593101739.1I My mm =???==σ 982.1100125901002

2

0=??? ????=???? ?

?w t h σ 查表5-9得

ζ

=0.981

由a/b=260/125=2.08,查表5-10得692.02=‘

?

2?=‘2?=?

??

? ??2

0100h

t w 0.692?=??? ???2

1252.11000.638 所以

[]σξ?ττ2250/N 1.201212501002.3h ≤=??==mm V w =0.638?0.981?160=100N/mm

2

故在区段Ⅱ的隔板之间不必再增设加劲肋。 再从剪力最大的区格Ⅰ来考虑: 该区格的腹板平均高度为

0h =0.5?(125+75)=100cm

因0h /w t =100/1.2=83.3>80w

f 235

=80 需要验算。

区格Ⅰ左边截面的剪力 V=580kN 该截面的弯矩

M=1162

4.22

?=334.1kN ·m

腹板边缘的弯曲正应力

29

8x 0/N 4610

56.2349

10341.3I My mm =???==σ 182.110075461002

2

0=??? ????=???? ?

?w t h σ 查表5-9得

ζ=1.0

由a/b=260/75=3.47,查表5-10得627.02=‘

?

2?=‘2?=?

??

? ??2

0100h

t w 0.627?=??? ???2

752.1100 1.605 所以

[]σξ?ττ2250/N 4.6412750108.5h ≤=??==mm V w =1.605?1.0?160=256.8N/mm

2

故在区段Ⅰ的隔板之间不必再增设加劲肋。

六、面板参加主(梁)工作的折算应力验算

直接与主梁相邻的面板区格,只有区格Ⅵ所需板厚较大,取面板区格Ⅵ验算其长边点的折算应力

面板区格Ⅵ在长边中点的局部弯曲应力为

,/1988

720049.05.022

2mm N my

=??=σ ,/4.591983.02mm N m y m x =?==μσσ

面板区格Ⅵ的长边中点的主梁弯距和弯应力

,0.14682

7.31169.320.101162

m kN M ?=?-??=

,/1.11810

2435.110468.1279

0mm N W M x

=??==σ 该区格长边中点的折算应力

)()(0202

x mx my x mx my zh σσσσσσσ---+=

=)7.58(198)7.58(19822-?--+

22/4.2461604.11.1][1.1/0.233mm N mm N =??=<=σα 故面板厚度选用8mm 满足强度要求 。

七、横隔板设计

1.荷载和内力计算

横隔板同时兼作竖直次梁,主要承受水平次梁、顶梁传来的集中荷载和面板传来的分布荷载。横隔板按支承在主梁上的双悬臂梁计算,则每道横隔板在上悬臂的最大负弯矩为:

m

kN M ?=????-+???=9.81372

.12172.16.2)68.155.32(272.172.16.268.15

2.横隔板和截面选择和强度验算

横隔板的腹板选用与主梁腹板相近,采用1270×10mm ,上翼缘利用面板,下翼缘采用200mm ×10mm 的扁钢,上翼缘可利用面板的宽度公式按式B =ζ2b 确定。

,477.12600/19202/0=?=b l 查表得ζ

2=0.41 ,B=0.41×2600=1066mm ,取B =1000mm 。如图

计算如下图所示截面几何特性截面型心到腹板中心线距离:

10200101270810006401020063981000?+?+???-??=e =169mm 截面惯性距:

2223809200101738100046610127012

127010??+??+??+?=I

491001326.6mm ?=

369

max

min 10387.7814

1001326.6mm y I W ?=?==

验算应力:

2

26

6min /160][/1.1110

387.7109.81mm N mm N W M =<=??==σσ 由于横隔板截面高度较大,剪切强度更不必验算,横隔板翼缘焊缝采用最小焊缝厚度hf =6mm 。

八、纵向联结系设计

纵向联结系承受闸门自重,潜孔式平面滚轮闸门的自重G 按附录五估算,即 G=0.073K 1K 2K 3?79.093.0s H A 9.8(kN)

=0.073×1.0×1.1×()8.958.5100.179.093.0???? =122.5kN

下游面纵向联结系按承受0.4G=0.4×122.5=49kN 计算。纵向联结系按支承

在边梁上的简支平面桁架设计,其腹板布置形式如图所示。

节点荷载为P=49/4=12.25kN,杆件内力计算结果如图所示。

斜杆承受最大拉力N=23.7kN,同时考虑闸门偶然扭曲时可能承受压力,故其长细比的限值取与压杆相同,即[λ]=200。

选用单角钢∟100×6,由附表3-8查得

A=11.9cm2,i

y0

=2.0cm

斜杆计算长度

l

0=0.92

2

25.0

36

.3

6.2+

+

?=3.85m

长细比

λ=l

0/i

y0

=385/2.0=192.5﹤[λ]=200

拉杆强度验算

σ=N/A=23230/1190=19.52

/mm

N<0.85[λ]=1362

/mm

N

九、边梁设计

边梁的截面形式采用双腹式,如图,边梁的截面尺寸按构造要求确定,即截面高度与主梁端部高度相同,腹板厚度与主梁腹板厚度相同,为了便于安装压合胶木滑块,下翼缘宽度不宜小于200mm 。

边梁是闸门的重要受力构件,由于受力情况复杂,故在设计时将容许应力值降低20%作为考虑受扭影响的安全储备。

荷载和内力计算在闸门每侧边梁上各设2个滚轮,其布置如图

(1)水平荷载

主要是主梁传来的水平荷载,还有水平次梁和顶,底梁传来的水平荷载,为了简化起见,可假定这些荷载由主梁传给边梁,每个边梁作用于边梁荷载为R=580kN (1)竖向荷载

有闸门自重,滑道摩阻力,止水摩阻力,起吊力等。

上滚轮所受压力:

kN R 51876

.336

.35801=?=

下滚轮所受压力:

kN R R 51812==

,2.2074.0518max m kN M ?=?=

kN V 518max =,

最大阻力为作用于一个边梁上的起吊力,每边起吊力N=1.2kN 7.1132

5

.189=?估计为120kN , kN f R N 3.4215.0518********=?-=-= , 2.边梁强度验算

截面面积238000

20200212750220600mm A =??+??+?= 截面形心矩

mm A

A y e i

i 35438000

780

2020023951275021020600=???+???+??=

=

3546667222

334

3341234420600mm S =??

?+??= 4

22233740805000344206004262020024110750212/275012mm I =??+???+???+??=3max min 8579828436/3740805000/mm y I W === 。

截面边缘最大应力验算:

2

26

63max max /1201508.0][8.0/3.2510

5798.8102.20738000103.42mm N mm N W M A N =?=<=??+?=+=σσ

腹板最大剪应力验算:

,/76958.0][8.0/5.312410741.3546667210518229

3max max mm N mm N It S V w =?=<=????==ττ 腹板与下翼缘连接处则算应力验算:

2

663'max /0.24395

375105798.8102.20738000103.42mm

N y y W M A N =???+?=?+=σ 29

31max /7.1924

10741.342622002010518mm N It S V w =???????==τ, 2

222222/1281608.0][8.0/7.417.1930.243mm N mm N h =?=<=?+=+=στσσ

均满足强度要求

十、滚轮支承设计

滚轮计算:下滚轮受力值为R =518kN ,计算压力P=1.1R=569.8kN ,设滚轮直径为600mm ,轮缘宽度为100mm ,取滚轮材料为ZG45,则下轮的接触应力:

2222

/12.30850003158.258.25/50.9100600569800mm N E f mm N Db P y =?=<=?==φσ。

满足要求

选定滚轮直径600mm ,轮宽100mm ,滚轮轨道宽140mm ,长6.1m 。

十一、闸门启闭力和吊座验算

1.启门力:T 启=1.1G+1.2(T zd +T zs )+Px G=12

2.5kN 滚轮摩擦阻力:,2.231123001232011kN d R R Wf T k zd =??

?

??+?=??? ??+=

止水摩阻力:

因橡皮止水与钢板间摩擦系数f =0.7, 橡皮止水受压宽度取为b =0.06m , 每边侧止水受压长度H =6.1m ,侧止水平均压强:

,/7.432

)4.12/1.6(8.92m kN p =+?=

.4.227.431.606.07.022kN fbhp T zs =????==

本闸门底主梁到底止水的距离符合底缘布置要求,即α≥30°,以及下游流态良好、通气充分时,不记下吸力P x =0

.5.189)4.222.23(2.15.1221.1kN T =+?+?=启

1. 闭门力:,5.555.1229.0)4.22

2.23(2.19.0)2.1d kN G T T T zS z -=?-+?=-+(=

闭 所以闸门可以依靠自重关闭。

完整钢结构课程设计精

贵州大学高等教育自学考试实践考试 钢结构课程设计 课程代码:02443 题目:单层工业厂房屋盖结构——梯形钢屋架设计 年级:2 0 1 3 级 专业:建筑工程 层次:本科 姓名:张伟 准考证号:21001181132 衔接院校:贵州大学 指导老师:张筱芸 完成日期: 2015. 4. 24

附件:设计资料 1、设计题目:《单层工业厂房屋盖结构——梯形钢屋架设计》 2、设计任务及参数: 第五组: 某地一机械加工车间,长84m,跨度24m,柱距6m,车间内设有两台40/10T中级工作制桥式吊车,轨顶标高18.5m,柱顶标高27m,地震设计烈度7度。采用梯形钢屋架,封闭结合,1.5×6m预应力钢筋混凝土大型屋面板(1.4KN/m2),上铺100mm厚泡沫混凝土保温层(容重为1KN/m3),三毡四油(上铺绿豆砂)防水层(0.4KN/m2),找平层2cm厚(0.3KN/m2),卷材屋面,屋面坡度i=1/10,屋架简支于钢筋混凝土柱上,混凝土强度等级C20,上柱截面400×400mm。钢材选用Q235B,焊条采用E43型。屋面活荷载标准值0.7KN/m2,积灰荷载标准值0.6KN/m2, 3、设计任务分解 学生按照下表分派的条件,完成梯形钢屋架设计的全部相关计算和验算及构造设计内容。 表-3 4、设计成果要求 在教师指导下,能根据设计任务书的要求,搜集有关资料,熟悉并应用有关规范、标准和图集,独立完成课程设计任务书(指导书)规定的全部内容。 1)需提交完整的设计计算书和梯形钢屋架施工图。 2)梯形钢屋架设计要求:经济合理,技术先进,施工方便。 3)设计计算书要求:计算依据充分、文理通顺、计算结果正确、书写工整、数字准确、图文并茂,统一用A4纸书写(打印)。 A、按步骤设计计算,各设计计算步骤应表达清楚,写出计算表达式及必要的计算过程,对数据的选取应写明判断依据。 B、计算过程中,必须配以相应的计算简图。 C、对计算结果进行复核后,为保证施工质量且方便施工,应按规范要求对计算结果进行调整并写明依据。 4)梯形钢屋架施工图共两张,图纸绘制的要求:布图合理,版面整齐,图线清晰,标注规范,符合规范/图集要求。

水工钢结构简答题

简答题 1、角焊缝有哪些主要的构造要求?为什么设置这些要求,请 简述其原因? 答案:角焊缝的主要尺寸是焊脚尺寸hf和焊缝计算长度l w,他们应该满足下列构造要求。 (1)考虑起弧和灭弧的弧坑影响,每条焊缝的计算长度l w,取其实际长度减去2hf; (2)最小焊脚尺寸h f≧1.5max t,其中tmax较厚焊件厚度;若焊缝hf过小,而焊件过厚时,则焊缝冷却过快,焊缝金属易产生淬硬组织,降低塑性; (3)最大焊脚尺寸hf≦1.2tmin,其中tmin薄焊件厚度;若焊缝hf过大,易使母材形成过烧现象,同时也会产生过大的焊接应力,使焊件翘曲变形;(4)最小焊缝计算长度l w,≧40mm及8hf是为了避免焊缝横向收缩时,引起板件拱曲太大;(5)最大侧焊缝计算长度l w,≦60hf,由外力在侧焊缝内引起的剪应力,在弹性阶段沿侧焊缝长度方向的分布是不均匀的,为避免端部先坏,应加以上限制;(6)在端焊缝的搭接连接中,搭接长度不小于5tmin及25mm;是为了减少收缩应力以及因传力偏心在板件中产生的次应力;(7)在次要构建或次要焊缝中,由于焊缝受力很小,采用连续焊缝其计算厚度小于最小容许厚度时,可改为采用间断焊缝,避免局部凸曲而对受力不利和潮气侵入引起锈蚀。 3、焊接组合梁的设计包括哪几项内容? 答案:①首先根据梁的跨度与荷载求得的最大弯矩与最大剪力以及强度、刚度、稳定与节省钢材等要求,来选择经济合理的截面尺寸,有事可以在弯矩较小处减小梁的截面;②计算梁的翼缘和腹板的连接焊缝;③验算组合梁的局部稳定性和设计腹板的加劲肋④设计组合梁各部件的拼接以及设计梁的支座和梁格的连接⑤绘制施工详图。 4、图中所示为一平面钢闸门门叶结构示意图,请分别指明图 中的序号所对应的构件名称? 答案:面板、顶梁、水平次梁、横向隔板、吊耳、主梁、纵向连接系、主轮、边梁; 5、在选定结构所需的钢材种类时,应考虑结构结构的哪些特 点? 答案:结合么钱钢铁生产实际情况,努力做到即使结构安全可靠,又要尽力节约钢材,降低造价选用时注意以下几点:(1)结构所承载特性,(2)结构类型及重要性,(3)连接的方法(4)结构的工作温度和所处的环境。 6、加劲肋在钢梁设计中的作用是什么?有哪些类型?在钢梁 设计中必要时,为什么增设加劲肋而不直接加大腹板厚度? 答:作用是提高局部稳定性;有横向加劲肋和纵向加劲肋; 因为钢结构设计中要求采用薄板,如果加大腹板厚度是不经济的。7、翼钢结构连接和轴心受压构件的设计为例,阐述等稳定原 则在钢结构设计中的具体应用。 答:在焊接连接中,要求焊缝截面强度不能高于母材截面强度;在螺栓连接设计中,螺栓连接强度和拼接板强度和母材强度匹配等,这些体现出等稳定设计的概念;在受压构件设计中,要求两个方向的稳定性接近相等,这也是等稳定原则的体现。 8、当采用平面桁架作为屋卖弄承重体系时,为什么要设置屋架支撑?支撑的作用是什么? 答:平面桁架在平面外刚度很小,容易发生侧向倾斜。作用为:保证桁架体系的空间几何稳定性;提供弦杆的侧向支撑点;提高侧向刚度及稳定性;使结构具有空间整体作用;保证结构安装时的稳定与方便。 9、简述钢材的一次单项拉伸试验中,随着荷载的增加,钢的工 作大致可以分为哪几个阶段?在试验测得的应力应变曲线图可以显示哪几项机械性能指标? 答:钢的工作大致可以分为:弹性阶段、弹塑阶段、塑性阶段、自强和破坏阶段应力应变曲线图可以显示的机械性能指标:比例极限;屈服点;(屈服强度);抗拉强度。10、普通螺栓与高强度螺栓在受力特性方面有什么区别? 答:两者受力主要区别是:普通螺栓连接的螺母拧紧的预拉力很小,受力后全靠螺杆承压和抗剪来传递剪力。高强度螺栓是靠凝紧螺母,对螺杆施加强大而受控制的预拉力,使连接构件夹紧而是搂面的摩擦阻力来承受连接内力。11、整体稳定临界应力受哪几个因素的影响?如何提高和保 证钢梁的整体稳定性? 答:影响整体稳定临界应力的因素有:受压翼缘的自由长度,梁截面的侧向抗弯刚度以及抗扭刚度;提高和保证钢梁整体稳定性的措施;设置纵向联接或称纵向支撑以减小受压翼缘的自由长度,或适当加大受压翼缘的宽度。 12、简述平面闸门结构布置主要有哪些内容? 答:结构布置的主要内容:主梁的布置,包括主梁的数目和位置,梁格的布置,梁格联接形式,边梁的布置。 13、钢结构在水利工程的合理应用范围有哪些? 答:1、活动式结构;2、可拆卸或移动的结构;3、高耸结构;4、板结构;5、大跨度结构;6、海工钢结构 14、为什么说梁高的选择是梁截面选择中的关键?最小梁高 和经济梁高根据什么条件和要求确定的? 答:梁高的选择是梁截面选择中的关键,因为截面各部分尺寸都将随梁高二改变。最小梁高是根据刚度条件而定的,使组合梁在充分利用钢材强度前提下或满足梁的刚度现行规格。再设计中一般选择梁高比经济高校10%--20%,单不得校友最小梁高。 15、简述轴心受压实腹式构件的截面选择步骤? 答:轴心受压实腹式构件截面选择步骤:假定长细比;根据假定长细比和等稳定条件初步稳定A、b1和h;试选翼缘厚

水利水电工程水工钢结构课程设计

露顶式平面钢闸门设计 2007101316 王亮春 一、设计资料 闸门形式:溢洪道露顶式平面钢闸门; 孔口净宽:14.00m; 设计水头: 6.00m; 结构材料:Q235; 焊条:E43; 止水橡胶:侧止水用P 形橡皮,底止水用条形橡皮; 行走支承:采用胶木滑道,压合胶木为MCS —2; 混凝土强度等级:C20 二、闸门的结构形式及布置 1、闸门尺寸的确定(图1) 闸门高度:考虑风浪所产生的水位超高为0.3m,故闸门高度为9+0.3=9.3 米 闸门的荷载跨度为两侧止水的间距即为孔口净宽:L1 14 m 闸门的计算跨度:L L0 2 d 14 2 0.3 14.6 m 2、主梁的形式 本闸门为中等跨度,为了便于制造和维护决定采用实腹式组合梁 3、主梁的布置 闸门高跨比L / H 1.5 采用双主梁,为使两个主梁在设计水位时所受的水压力相等, 两个主梁的位置应对称于水压力的作用线y H / 3 3 m (图2),并要求下悬臂 a 0.12 H 和a 0.4 m 。 4、梁格的布置和形式 梁格采用复式布置和等高连接,水平次梁穿过横隔板上的预留孔并被横隔板所支承。水平次梁为连续梁,其间距应上疏下密,使面板各区格需要的厚度大致相等,梁格布置的具体尺寸见详图 2 5、连接系的布置和形式 1)横向连接系,根据主梁的跨度决定布置 3 道横隔板,其间距为横隔板兼作竖直次梁。 2)纵向连接系,设在两个主梁下翼缘的竖平面内采用斜杆式桁架。 6、边梁和行走支承 1

变量采用单腹式,行走支承采用胶木滑道。 三、面板设计 根据SL74—95《水利水电工程钢闸门设计规范》修订送审稿,关于面板的计算,先估算面板的厚度,在主梁截面选择之后再验算面板的局部弯曲与主梁整体弯曲的折算应力。 1、估算面板厚度 假定梁格布置尺寸如上图所示。面板厚度按式(7--3)计算: t a 0.9 k p a kp 当b / a 3 时,a 1.5 ,则t a 0.068 a kp 0.9 1.5 160 kp 当b / a 3 时,a 1.4 ,则t a 0.07 a kp 0.9 1.4 160 现列表(如下)计算: 表1 注1、面板边长a、b 都从面板与梁格的连接焊缝算起,主梁上翼缘宽度为260mm(详见于后); 2

钢结构课程设计计算书

一由设计任务书可知: 厂房总长为120m,柱距6m,跨度为24m,屋架端部高度为2m,车间内设有两台中级工作制吊车,该地区冬季最低温度为-22℃。暂不考虑地震设防。 屋面采用1.5m×6.0m预应力大型屋面板,屋面坡度为i=1:10。卷材防水层面(上铺120mm 泡沫混凝土保温层和三毡四油防水层)。屋面活荷载标准值为0.7KN/㎡,雪荷载标准值为0.4KN/㎡,积灰荷载标准值为0.5KN/㎡。 屋架采用梯形钢屋架,钢屋架简支于钢筋混凝土柱上,混凝土强度等级C20. 二选材: 根据该地区温度及荷载性质,钢材采用Q235-C。其设计强度为215KN/㎡,焊条采用E43型,手工焊接,构件采用钢板及热轧钢筋,构件与支撑的连接用M20普通螺栓。 屋架的计算跨度L。=24000-2×150=23700,端部高度:h=2000mm(轴线处),h=2150(计算跨度处)。 三结构形式与布置: 屋架形式及几何尺寸见图1所示: 图1 屋架支撑布置见图2所示:

图2 四荷载与内力计算: 1.荷载计算: 活荷载于雪荷载不会同时出现,故取两者较大的活荷载计算。 永久荷载标准值: 防水层(三毡四油上铺小石子)0.35KN/㎡找平层(20mm厚水泥砂浆)0.02×20=0.40 KN/㎡保温层(40mm厚泡沫混凝土0.25 KN/㎡预应力混凝土大型屋面板 1.4 KN/㎡钢屋架和支撑自重0.12+0.011×24=0.384 KN/㎡ 总计:2.784 KN/㎡可变荷载标准值: 雪荷载<屋面活荷载(取两者较大值)0.7KN/㎡积灰荷载0.5KN/㎡风载为吸力,起卸载作用,一般不予考虑。 总计:1.2 KN/㎡永久荷载设计值 1.2×2.784 KN/㎡=3.3408KN/㎡可变荷载设计值 1.4×1.2KN/㎡=1.68KN/㎡2.荷载组合: 设计屋架时应考虑以下三种组合: 组合一全跨永久荷载+全跨可变荷载 屋架上弦荷载P=(3.3408KN/㎡+1.68KN/㎡) ×1.5×6=45.1872KN 组合二全跨永久荷载+半跨可变荷载 屋架上弦荷载P1=3.3408KN/㎡×1.5×6=30.07KN P2=1.68KN/㎡×1.5×6=15.12KN 组合三全跨屋架及支撑自重+半跨大型屋面板自重+半跨屋面活荷载

水工钢结构答案

参考答案 一、选择题(每题2分,共30分) 1.A 2. B 3. A 4.D 5. C 6. B 7. B 8. A 9. B10. C11. B12. D13. A14. D15. A 二、问答题(每题3分,共18分) 1. 建筑钢材的伸长率是通过单向拉伸实验确定的。取试件拉断后的伸长量与原标距的比值的百分率,即 ,伸长率反映了钢材的塑性变形能力。 2. 钢材经过冷作硬化后,其强度提高,塑性变形能力下降。 3. 最大焊脚尺寸:,防止焊缝过烧焊件; 最小焊脚尺寸:,防止焊缝冷裂; 最大计算长度:,防止应力沿焊缝长度不均匀分布; 最小计算长度:,防止焊缝沿长度缺陷几率增加。 4. 承压型高强螺栓承受剪力作用时螺栓直接承受剪力,需验算螺栓的受剪和承压承载能力。摩擦型高强螺栓承受剪力作用时螺栓不直接承受剪力,需验算螺栓的受剪承载能力。 5. 同号应力场时钢材的强度提高而塑性变形能力降低,异号应力场时钢材的强度降低而塑性变形能力提高。 6. 缀条式格构柱的单肢为轴心受力构件,缀板式格构柱的单肢为压弯构件。从受力更合理的角度出发,大型柱应尽可能选用缀条式格构柱。 三、计算题(共52分) 1.(本题10分) 2.(本题10分)

3.(本题15分)某简支梁截面如图所示,梁的跨度为6m,所受荷载为静力荷载设计值,试验算梁的强度是否满足要求。判定梁的局部稳定是否满足要求(腹板判定是否需设加劲肋,如需设加劲肋,请按构造要求设置加劲肋,并画出加劲肋的布置图)。梁采用Q235-A钢材,fd=215N/mm2,fv=125N/mm2,fy=235N/mm2。计算时可忽略梁的自重。 4.(本题17分) ;0.9181; 平面内稳定验算:

水工钢结构潜孔式平面钢闸门设计与拦污栅设计

目录 一.小型潜孔式平面钢闸门 1、设计资料及有关规定 (2) 2、闸门结构的形式及布置 (2) 3、面板设计 (3) 4、水平次梁、顶梁和底梁地设计 (4) 5、主梁设计 (6) 6、横隔板设计 (9) 7、纵向连接系 (10) 8、边梁设计 (11) 9、行走支承设计 (12) 10、轨道设计 (13) 11、止水布置方式 (14) 12、埋固构件 (14) 13、闸门启闭力 (14) 14、闸门的启闭机械 (16) 二.固定式平面拦污栅 1、基本资料 (19) 2、拦污栅的结构布置 (19) 3、栅面结构 (19) 4、梁格设计 (20)

一、设计资料及有关规定 1、闸门形式:潜孔式平面钢闸门 2、孔口尺寸(宽×高):7.0m ×4.0m 3、上游水位:64m 4、下游水位:0m 5、闸底高程:0m 6、启闭方式:电动固定式启闭机 7、材料: 钢结构:Q235-A.F 焊条:E43型 行走支承:采用滚轮支承 止水橡皮:侧止水和顶止水用P 型橡皮,底止水用条型橡皮 8、制造条件:金属结构制造厂制造,手工电弧焊,满足Ⅲ级焊缝质量检验标准。 9、规范:《水利水电工程钢闸门设计规范SL 1974-2005》 二、闸门结构的形式及布置 1、闸门尺寸的确定 闸门高度:4.2m 闸门的荷载跨度为两止水的间距:7.0m 闸门计算跨度:7+2×0.22=7.44 m 设计水头:64m 2、主梁的数目及形式 主梁是闸门的主要受力构件,其数目主要取决于闸门的尺寸。因为闸门跨度L=7m,闸门高度H=4m,L ≥1.5H 。所以闸门采用2根主梁。本闸门决定采用实腹式组合梁。 3、主梁的布置 本闸门为高水头的深孔闸门,主梁的位置可按主梁均匀间隔来布置。设计时按最下 面的那根受力最大的主梁来设计,各主梁采用相同的截面尺寸。 64 4

钢结构课程设计参考示例

参考实例: 钢结构课程设计例题 -、设计资料 某一单层单跨工业长房。厂房总长度为120m,柱距6m,跨度为27m。车间内设有两台中级工作制桥式吊车。该地区冬季最低温度为-20℃。 屋面采用1.5m×6.0m预应力大型屋面板,屋面坡度为i=1:10。上铺120mm 厚泡沫混凝土保温层和三毡四油防水层等。屋面活荷载标准值为0.6kN/㎡,雪荷载标准值为0.75kN/㎡,积灰荷载标准值为0.5kN/㎡。 屋架采用梯形钢屋架,其两端铰支于钢劲混凝土柱上。柱头截面为400mm ×400mm,所用混凝土强度等级为C20。 根据该地区的温度及荷载性质,钢材采用Q235―A―F,其设计强度f=215kN/㎡,焊条采用E43型,手工焊接。构件采用钢板及热轧钢劲,构件与支撑的连接用M20普通螺栓。 屋架的计算跨度:Lo=27000-2×150=26700mm,端部高度:h=2000mm(轴线处),h=2015mm(计算跨度处)。 二、结构形式与布置 屋架形式及几何尺寸见图1所示。 图1 屋架形式及几何尺寸

屋架支撑布置见图2所示。 符号说明:GWJ-(钢屋架);SC-(上弦支撑):XC-(下弦支撑); CC-(垂直支撑);GG-(刚性系杆);LG-(柔性系杆) 图2 屋架支撑布置图

三、荷载与内力计算 1.荷载计算 荷载与雪荷载不会同时出现,故取两者较大的活荷载计算。 永久荷载标准值 放水层(三毡四油上铺小石子)0.35kN/㎡找平层(20mm厚水泥砂浆)0.02×20=0.40kN/㎡保温层(120mm厚泡沫混凝土)0.12*6=0.70kN/㎡ 预应力混凝土大型屋面板 1.40kN/㎡ 钢屋架和支撑自重0.12+0.011×27=0.417kN/㎡管道设备自重0.10 kN/㎡ 总计 3.387kN/㎡可变荷载标准值 雪荷载0.75kN/㎡ 积灰荷载0.50kN/㎡ 总计 1.25kN/㎡ 永久荷载设计值 1.2×3.387=4.0644 kN/㎡(由可变荷载控制) 可变荷载设计值 1.4×1.25=1.75kN/㎡ 2.荷载组合 设计屋架时,应考虑以下三种组合: 组合一全跨永久荷载+全跨可变荷载 屋架上弦节点荷载P=(4.0644+1.75) ×1.5×6=52.3296 kN 组合二全跨永久荷载+半跨可变荷载 屋架上弦节点荷载 P=4.0644×1.5×6=36.59 kN 1 P=1.75×1.5×6=15.75 kN 2 组合三全跨屋架及支撑自重+半跨大型屋面板重+半跨屋面活荷载 P=0.417×1.2×1.5×6=4.5 kN 屋架上弦节点荷载 3 P=(1.4×1.2+0.75×1.4) ×1.5×6=24.57 kN 4 3.内力计算 本设计采用程序计算杆件在单位节点力作用下各杆件的内力系数,见表1。由表内三种组合可见:组合一,对杆件计算主要起控制作用;组合三,可能引起中间几根斜腹杆发生内力变号。如果施工过程中,在屋架两侧对称均匀铺设面板,则可避免内力变号而不用组合三。

水工钢结构试卷

一、选择题(每题2分,共30分) 1.在钢结构设计中,通常以下列中的值作为设计承载力的依据。 (A)屈服点(B)比例极限(C)抗拉强度(D)伸长率 2.压弯格构柱的弯矩绕虚轴作用时,其弯矩作用平面外的整体稳定是通过保证的。 (A)计算平面外的整体稳定(B)计算单肢稳定(C)自然满足(D)计算局部稳定 3.当构件为Q235钢材时,焊接连接时焊条宜采用。 (A )E43型焊条(B) E50型焊条(C) E55型焊条(D)前三种型焊条均可 4.同类钢种的钢板,厚度越大,。 (A)内部存在缺陷的几率越小(B)塑性越好(C) 韧性越好(D) 强度越低 5.在进行正常使用极限状态计算时,计算用的荷载应采用。 (A)将永久荷载的标准值乘以永久荷载分项系数 (B)将可变荷载的标准值乘以可变荷载分项系数 (C)永久荷载和可变荷载的标准值,均不乘以各自的分项系数 (D)将永久荷载和可变荷载的标准值均乘以各自的分项系数 6.钢材牌号Q235代表的是。 (A)钢材的伸长率是235(B) 钢材的屈服强度是235MPa (C)钢材的比例极限是235MPa(D) 钢材的抗拉强度是235MPa 7.承受静力荷载的结构,其钢材应保证的基本力学性能指标是。 (A)抗拉强度、伸长率(B)抗拉强度、屈服强度、伸长率 (C)抗拉强度、屈服强度、冷弯性能(D)屈服强度、冷弯性能、伸长率 8.在螺栓连接中,要求板叠厚度是为了。 (A)防止栓杆发生过大弯曲变形破坏(B)方便施工 (C)节约栓杆材料(D)使板件间紧密 9.在钢结构设计中,认为钢材是理想的弹塑性体,是指屈服点以前的材料为。 (A)非弹性的(B)弹性的(C)弹塑性的(D)塑性的 10.与单向拉应力相比,钢材承担双向拉应力时。 (A)破坏形式没变化(B)易发生塑性破坏(C)易发生脆性破坏(D)无法判定 11.我国钢结构设计规范规定,当构件承担循环应力的循环次数时,应进行疲劳验算。 (A)<105(B) ≧105(C) ≦106(D) ≧106 12.由于建筑用钢材多为塑性性能好的钢材,故应力集中的存在将。 (A)钢材易发生塑性破坏(B)降低静力承载能力 (C)提高静力承载能力(D)对静力承载能力无影响 13.在由双角钢作为杆件的桁架结构中,通常角钢相并肢间每隔一定距离设置垫板,目的是。 (A)双角钢组成共同截面工作(B)方便杆件的制作 (C)杆件美观(D)增加杆件截面面积 14.为提高梁的整体稳定性,在用钢量不变的前提下,应尽可能。 (A)采用窄翼缘截面(B)采用双轴对称截面 (C)加强受拉翼缘(D)加强受压翼缘 15.在吊车梁的强度验算中,。 (A)塑性发展系数取 1.0(B)塑性发展系数取 1.05, 1.2

水工钢结构钢闸门课程设计样本

水工钢结构钢闸门 课程设计

水工刚结构潜孔式焊接平面钢闸门设计计算书 一、设计资料及有关规定: 闸门形式:潜孔式平面钢闸门 孔口净宽:10m 孔口净高:13m 上游水位:73m 下游水位:0.1m 闸底高程:0m 启闭方式:电动固定式启闭机 启闭机械:液压式启闭机 材料:钢材:Q235-A.F; 焊条:E43型; 行走支承:采用滚轮支承; 止水橡皮:侧止水和顶止水用P型橡皮,底止水用条型橡皮。 制造条件:金属结构制造厂制造,手工电弧焊,满足III级焊缝质量检验标准 规范:《水利水电工程刚闸门设计规范 SL 1974- 》 混凝土强度等级:C30

二、闸门结构的形式及布置 (一)闸门尺寸的确定(图 1示) 1 闸门孔口尺寸: 孔口净跨:10m 孔口净高:13m 闸门高度: 13.2m 闸门宽度: 10.4m 荷载跨度: 13.2m 计算跨度: 10.4m 2 计算水头:73m (二)主梁的布置 1.主梁的数目及形式 主梁是闸门的主要受力构件,其数目主要取决于闸门的尺寸。因为闸门跨度L=10m,闸门高度h=13m,L

中等跨度,为了便于制造和维护,决定采用实腹式组合梁。 2.主梁的布置 本闸门为高水头的深孔闸门,孔口尺寸较小,门顶与门底的水压强度差值相对较小。因此,主梁的位置按等间距来布置。设计时按最下面的那根受力最大的主梁来设计,各主梁采用相同的截面尺寸。 3.梁格的布置及形式 梁格采用复式布置与等高连接,水平次梁穿过横隔板所支承。水平梁为连续梁,间距应上疏下密,使面板个区格需要的厚度大致相等,布置图2示 三、面板设计 根据《钢闸门设计规范SDJ—78(试行)》关于面板的设计,先估算面

水工钢结构课设说明书

《水工钢结构》暨露顶式平面钢闸门课程设计 一、设计资料 某水库溢洪道工作闸门,孔口净宽8.0m,设计水头H=5m,采用直升式露顶平面钢闸门,门顶超高取0.2m,试设计闸门门叶结构、门槽埋件、选择启闭机设备。 闸门门叶采用Q235镇静钢,焊条E43 。侧止水选用P60A型,底止水选用I110—16型。行走支承(学号为单号者,采用胶木滑道,压合胶木为MCS—2。学号为双号者,采用滚轮支承)。闸墩混凝土强度等级C20。依照《水利水电工程钢闸门设计规范》SL74—95设计。 二、设计内容及步骤 1、闸门结构的形式及布置 整个设计过程的关键,应综合考虑各方面因素。内容包括:闸门尺寸确定,门叶上需要的各种构件、数目及所在位置,梁格的形式及连接方式,联结系的布置和形式及边梁与行走支承。首先确定主梁形式、数目、位置,然后确定水平次梁及竖直次梁的形式、数目和位置。 2、面板设计 在满足强度要求的基础上,设计出一经济合理的面板厚度。在主梁截面选择之后再验算面板的局部弯曲与主梁整体弯曲的折算应力。 3、水平次梁、顶梁和底梁设计 水平次梁采用不等肢角钢(单学号),槽钢(双学号)。顶、底梁

宜采用槽钢。在计算出各构件的内力后,选择各梁的截面,考虑利用部分面板抗弯,将所选截面适当缩小。之后,进行强度、刚度验算。 4、主梁设计 采用焊接组合截面,面板兼作主梁上翼缘的有效宽度按教材(7—11)式确定。内容包括:截面选择、(梁高改变)、翼缘焊缝、腹板局部稳定验算、面板局部弯曲与主梁整体弯曲的折算应力验算。 W=1.4--2.5的要求,可不改变梁高。 若主梁高度满足门槽宽深比 D 5、竖直次梁及横向联结系设计 横向联结系采用横隔板,并兼作竖直次梁。按构造要求确定其尺寸,即截面高度、腹板厚度与主梁相同,横隔板可不设上翼缘,其下翼缘用宽度100~200mm厚度10~12mm的扁钢做成。因横隔板截面尺寸大应力很小,可不进行强度验算。 6、纵向联结系设计 闸门自重G按教材附录十一附式(1)计算。纵向斜杆采用等肢单角钢其截面尺寸主要按刚度条件要求进行选择。 7、边梁设计 截面型式采用单腹式(适用滑动支承),双腹式(适用滚动支承),尺寸按构造要求确定,即截面高度与主梁端部高度相同,腹板厚度与主梁腹板厚度相。对单腹式边梁,为了便于安装胶木滑快,下翼缘宽度不宜小于300mm。对双腹式边梁,为便于腹板焊接其两腹板间距为300~400mm。边梁需验算的危险截面为与主梁连接处,即求出该截面的弯矩、剪力、轴力,按拉弯构件验算截面的强度以及抗剪强度

水工钢结构问答题

1、钢结构的特点? 答:①钢结构自重较轻②钢结构的可靠性较高③钢材的抗震性、抗冲性较好④钢结构制造的工艺化程度较高⑤钢结构可以准备快速的装配⑥容易做成密封结构⑦钢结构极易腐蚀⑧钢结构耐火性差 2、钢结构在水工中的应用有哪些? 答:①活动式结构②装拆式结构③板结构④高耸结构⑤大跨度结构⑥海工钢结构 3、截面选择的具体步骤是? 答:①选择梁高h和腹板高度h0 ②选择腹板厚度hw ③选择翼缘尺寸b1和t1 ④梁的强度、整体稳定和挠度的验算。 4、闸门的类型有哪些? 答:按功用分为:工作闸门、事故闸门、检修闸门和施工闸门 按闸门空口的位置分:露顶闸门、潜孔闸门 按闸门结构形式分为:平面闸门、弧形闸门及船闸上常采用的人字形闸门 5、平面闸门结构布置的主要内容有哪些? 答:确定闸门上需要的构件,每种构件需要的数目以及确定每个构件所在的位置。 ①主梁的布置②梁格的布置③梁格连接形式④边梁的布置 6、平面闸门门叶结构组成又哪些? 答:面板、梁格、横向和纵向连接系(即横向和纵向支撑)、行走支承(滚轮或滑块)以及止水等部件组成。 ①边梁、②主轮、③面板顶梁、④水平次梁、⑤横向隔板、⑥纵向连接系、⑦主梁、⑧吊耳 1.焊接连接有哪些缺点? 1. 缺点是由于焊接连接处局部受高温,在热影响区形成的材质较差,冷却又很快,再加上热影响区的不均匀收缩,易使焊件产生焊接残余应力以及残余变形,甚至可能造成裂缝,导致脆性破坏对结构工作产生不利影响。 2.在桁架体系中,支撑有哪些主要作用? 2. (1)保证桁架结构的空间几何稳定性,即几何形状不变。(2)保证桁架结构的空间刚度和空间整体性。(3)为桁架弦杆提供必要的侧向支撑点。(4)承受并传递水平荷载。(5)保证结构安装时的稳定且便于安装。 3.系杆的布置原则是什么? 3. 在垂直支撑的平面内一般设置上下弦系杆;屋脊节点及主要支撑点处需设置刚性系杆,天窗侧柱处及下弦跨中附近设置柔性系杆,当屋架横向支撑设在端部第二柱间时,则第一柱间所有系杆均应为刚性系杆。 4.简述钢梁整体失稳的概念。 4. 钢梁截面一般都设计成高而窄且壁厚较薄的开口截面,以获得弯矩作用平面内较大的抗弯承载力和抗弯刚度,但抗扭和侧向抗弯能力较差。如工字形截面梁,弯矩作用在其最大刚度平面内,当弯矩逐渐增加使梁受压,翼缘的最大弯曲应力达到某一数值时,梁在很小的侧向干扰力作用下,会突然向刚度较小的侧向弯曲,并伴有扭矩而破坏,这种现象称为整体失稳。 5.减小或消除焊接变形有哪些措施? 5. (1)反变形法即在施焊前预留适当的收缩量和根据制造经验预先造成相反方向和适当大小的变形来抵消焊后变形;(2)采用合理的焊接和装配顺序控制变形也十分有效;(3)焊接变形的矫正方法,以机械矫正和局部火焰加热矫正较为常用。 1.为什么选择屈服点作为建筑钢材静力强度承载力极限的依据? 1. (1)钢材屈服后,塑性变形很大,从屈服到断裂的塑性变形约等于弹性变形的200倍,这样大的塑性变形已使结构失去正常使用功能而达到极限状态,因而无法利用强化阶段。(2)屈服后塑性变形很大,险情极易被察觉,可以及时采取适当补救措施,以免突然发生破坏。 (3)抗拉强度和屈服点的比值较大,成为结构极大的后背强度,符合结构多级抗震设防的准则,使钢结构从来不会发生真正的塑性破坏。 2.实腹式轴心受压柱有哪些设计原则? 2. (1)截面面积的分布应尽量远离主轴线,以增大截面的惯性矩和回转半径,从而提高柱的整体稳定性和刚度;(2)使两个轴方向的稳定性相等;(3)构造简单,便于制作;(4)便于与其他构件连接;(5)选用便于供应的钢材规格。 3.简述平面钢闸门主梁设计的特点。 3. 当主梁所承受的最大弯矩值不超过500kNm时,可考虑使用型钢作为主梁。若型钢强度不足,可在其上翼缘加焊扁钢予以加强。采用型钢可以简化制造,降低成本。当型钢不能满足要求时,可采用由钢板焊接而成的主梁组合梁。当跨度较大时,采用变截面组合梁较为经济合理。 4.说明格构式压弯构件的设计步骤。

水工钢结构平面定轮钢闸门设计计算书

目录 一.课程设计任务与要求 (1) 二.设计资料 (1) 三.闸门结构形式及布置 (1) 四、面板设计 (2) 五、水平次梁,顶梁和底梁地设计 (3) 六、主梁设计 (5) 七、横隔板设计 (10) 八、边梁设计 (11) 九、行走支承设计 (12) 十、胶木滑块轨道设计 (12) 十一、闸门启闭力和吊座验算 (13)

水工钢结构钢闸门课程设计计算书 一.课程设计任务与要求 1、《钢结构》课程设计的任务为某节制闸工作闸门的设计。 2、要求根据钢闸门设计规范与要求,设计出合理、可行的平面定轮钢闸门。 二.设计资料 某供水工程,工程等级为1等1级,其某段渠道上设有节制闸。节制闸工作闸门操作要求为动水启闭,采用平面定轮钢闸门。本闸门结构设计按SL74-95《水利水电工程钢闸门设计规范》进行。基本资料如下: 孔口尺寸:6.0m×6.0m(宽×高); 底槛高程:23.0m; 正常高水位:35.0m; 设计水头:12.0m; 门叶结构材料:Q235A。 三.闸门结构形式及布置 1.闸门尺寸的确定 闸门的高度:考虑风浪所产生的水位超高为0.5m,故闸门高度H=6+0.5=6.5m 闸门的荷载跨度为两侧止水的间距:L1=6.1m 闸门计算跨度:L=L0+2d=6+2×0.2=6.4m 闸门尺寸图见附图1 2.主梁的数目及形式 主梁是闸门的主要受力构件,其数目主要取决于闸门的尺寸。因为闸门跨度L=6.4,闸门高度H=6.5,L

钢结构课程设计

土建专业 钢结构 课程设计 钢结构课程设计 一、课程设计的性质和任务 《钢结构》是土木工程专业的重要专业课,为了加强学生对基本理论的理解和《钢结构》设计规范条文的应用,培养学生独立分析问题和解决问题的能力,必须在讲完有关课程内容后,安排2周的课程设计,以提高学生的综合运用能力。课程设计又是知识深化、拓宽的重要过程,也是对学生综合素质与工程实践能力的全面锻炼,是实现本科培养目标的重要阶段。通过课程设计,着重培养学生综合分析和解决问题的能力以及严谨、扎实的工作作风。为学生将来走上工作岗位,顺利完成设计任务奠定基础。 课程设计的任务是,通过进一步的设计训练,使学生熟悉钢结构基本构件的设计和构造设计的基本原理和方法,具备一般钢结构设计的基本技能;能够根据不同情况,合理地选择结构、构造方案,熟练地进行结构设计计算,并学会利用各种设计资料。 二、课程设计基本要求 课程设计是综合性很强的专业训练过程,对学生综合素质的提高起着重要的作用。基本要求如下: 1、时间要求。一般不少于2周; 2、任务要求。在教师指导下,独立完成一项给定的设计任务,编写出符合要求的设计说明(计算)书,并绘制必要的施工图。 3、知识和能力要求。在课程设计工作中,能综合应用各学科的理论知识与技能,去分

析和解决工程实际问题,使理论深化,知识拓宽,专业技能得到进一步延伸。通过毕业设计,使学生学会依据设计任务进行资料收集、和整理,能正确运用工具书,掌握钢结构设计程序、方法和技术规范,提高工程设计计算、理论分析、技术文件编写的能力,提高计算机的应用能力。 三、课程设计的内容 《钢结构》课程设计的选题要符合教学基本要求,设计内容要有足够的深度,使学生达到本专业基本能力的训练。对学习好、能力强的学生,可适当加深加宽。 题目:钢屋架设计 采用平面钢屋架作为设计题目。设计内容包括:屋架内力计算、屋架杆件设计;节点设计;施工图绘制以及材料用量计算等。 完成的设计成果包括:结构设计计算书一份,施工图1~3张(2号)。 普通钢屋架设计 案例及设计指导 参考题目: 一、题目:普通梯形钢屋架设计 (一)设计资料 郑州某工业厂房,长度102m,屋架间距6m,车间内设有两台20/5t中级工作工作制桥式吊车,屋面采用×6m预应力钢筋混凝土大型屋面板。水混珍珠岩制品保温层10cm,20mm 厚水混砂浆找平层,三毡四油防水层,屋面坡度1/10。屋架两端铰支于钢筋混凝土柱上,上柱截面400×400,混凝土C30,屋架跨度和屋面积灰荷载按指定的数据进行计算。 1、屋架跨度(1)24m (2)27m 2、屋面积灰荷载标准值(1)m2(2)m2

港口水工建筑物习题集参考答案

港口水工建筑物习题集参考答案 一、名词解释 1、码头是供船舶停靠、装卸货物和上下旅客的水工建筑物,它是港口的主要组成部分。 2、船舶停靠码头时,由于风和水流的作用,使船舶直接作用在码头建筑物上的力称为挤靠力。 3、船舶靠岸或在波浪作用下撞击码头时产生的力,称为撞击力。 4、沉箱是一种巨型的有底空箱,箱内用纵横格墙隔成若干舱格。 5、扶壁是由立板、底板和肋板互相整体连接而成的钢筋混凝土结构。 6、墙前计算低水位与墙后地下水位的水位差称为剩余水头,由此产生的水压力称为剩余水压力。 7、拉杆是板桩墙和锚碇结构之间的传力构件,是板桩码头的重要构件之一。 8、斜坡码头是以岸坡上建造的固定斜坡道结构作为载体,供货物装卸运输、旅客或车辆上下的码头。 9、浮码头是以趸船或浮式起重机与引桥为载体,供货物装卸运输、旅客和车辆上下的码头。 10、斜面上供船舶上墩下水的专用轨道称为滑道。 11、在船舶上墩或下水时,船舶纵轴和移动方向与滑道中心线一致时,称为纵向滑道。 12、船舶纵轴与滑道中心线垂直,而移动方向与滑道中心线一致时,称为横向滑道。 13、船舶在岸上修造的场地称为船台。 14、船坞有效长度是指坞门内壁外缘至坞尾墙底表面在坞底纵轴线上的投影距离。 15、坞室底标高是指船坞中剖面处中板顶面标高。 16、施加在码头结构上的集中力和分布力以及引起结构外加变形和约束变形的原因,总称为码头结构上的作用。 17、凡通过系船缆而作用在码头系船柱(或系船环)上的力称为系缆力。 18、整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求,此特定状态成为该功能的极限状态。 19、按结构预期使用寿命规定的时间参数。 20、从结构建成到预期使用寿命完结的整个期间。

水工钢结构课程设计

露顶式平面钢闸门设计 1、设计资料 1.1闸门形式:露顶式平面钢闸门。 1.2设计水头:6.00m 。 1.3孔口净宽:9.00m 。 1.4结构材料:碳素钢Q235B-F 。 1.5焊条:E43型手工焊。 1.6止水橡皮:侧止水用P 型橡皮,底止水用条形橡皮。 1.7行走支承:采用胶木滑道,压合木为MCS-2。 1.8启闭方式:电动固定式启闭机。 1.9制造条件:金属结构制造,手工电弧焊,焊缝满足III 级质量检验标准。 1.10执行规:《水利水电工程钢闸门设计规》(SL74-95) 2、闸门结构的形式及布置 2.1 闸门尺寸的确定(图1)。 (1)闸门高度:考虑风浪所产生的水位超高为0.2m,故闸门高度=6.0+0.2=6.2(m ); (2)闸门的荷载跨度为两侧止水的间距:L1=9(m); (3)闸门的计算跨度:L=L0+2×0.2=9.0+0.4=9.4(m); 2.2主梁的形式 主梁的形式根据水头合跨度大小而定,本闸门属中等跨度为了便于制造和维护,决定采用实腹式组合梁。 2.3 主梁的布置 根据闸门的高跨比,决定采用双主梁。为使两个主梁在设计水位时所承受的水压力相等,两个主梁的位置应对称于水压力合力的作用线y =H/3=2.0(m)(图1),并要求下悬臂a ≥0.12H 和a ≥0.4m,上悬臂、c ≤0.45H,今取,a=0.7m ≈0.12H=0.67(m ) 则主梁间距:)(6.2)(22m a y b =-= 则H m a b H c 45.0)(7.27.06.262==--=--=(满足要求) 2.4 梁格的布置和形式 梁格采用复式布置和等高连接,水平次梁穿过横隔板上的预留孔并被横隔板所支承。水平次梁为连续梁,其间应上疏下密,使面板各区格所需要的厚度大致相等,梁布置的具

完整钢结构课程设计

1.设计资料: ................................................................ 错误!未定义书签。 2.结构形式与布置 ............................................................ 错误!未定义书签。 3.荷载计算 .................................................................. 错误!未定义书签。 4.内力计算 .................................................................. 错误!未定义书签。 附件:设计资料 1、设计题目:《单层工业厂房屋盖结构——梯形钢屋架设计》 2、设计任务及参数: 第五组: 某地一机械加工车间,长84m ,跨度24m ,柱距6m ,车间内设有两台40/10T 中级工作制桥式吊车,轨顶标高18.5m ,柱顶标高27m ,地震设计烈度7度。采用梯形钢屋架,封闭结合,1.5×6m 预应力钢筋混凝土大型屋面板(1.4KN/m 2 ),上铺100mm 厚泡沫混凝土保温层(容重为1KN/m 3 ),三毡四油(上铺绿豆砂)防水层(0.4KN/m 2 ),找平层2cm 厚(0.3KN/m 2 ),卷材屋面,屋面坡度i=1/10,屋架简支于钢筋混凝土柱上,混凝土强度等级C20,上柱截面400×400mm 。钢材选用Q235B ,焊条采用E43型。屋面活荷载标准值0.7KN/m 2 ,积灰荷载标准值0.6KN/m 2 ,雪荷载及风荷载见下表,7位同学依次按序号进行选取。 活载KN/m 2 1 2 3 4 5 6 7 基本雪压 0.30 0.75 0.10 0.20 0.45 0.50 0.35 基本风压 0.35 0.60 0.25 0.55 0.30 0.50 0.45 3、设计任务分解 学生按照下表分派的条件,完成梯形钢屋架设计的全部相关计算和验算及构造设计内容。 表-3 4、设计成果要求 在教师指导下,能根据设计任务书的要求,搜集有关资料,熟悉并应用有关规范、标准和图集,独立完成课程设计任务书(指导书)规定的全部内容。 1)需提交完整的设计计算书和梯形钢屋架施工图。 2)梯形钢屋架设计要求:经济合理,技术先进,施工方便。 3)设计计算书要求:计算依据充分、文理通顺、计算结果正确、书写工整、数字准确、图文并茂,统一用A4纸书写(打印)。 A 、按步骤设计计算,各设计计算步骤应表达清楚,写出计算表达式及必要的计算过程,对数据的选取应写明判断依据。 B 、计算过程中,必须配以相应的计算简图。 C 、对计算结果进行复核后,为保证施工质量且方便施工,应按规范要求对计算结果进行调整并写明依据。 4)梯形钢屋架施工图共两张,图纸绘制的要求:布图合理,版面整齐,图线清晰,标注规范,符合规范/图集要求。 单层工业厂房屋盖结构——梯形钢屋架设计 1.设计资料:(1)某地一机械加工车间,长84m ,跨度24m ,柱距6m ,车间内设有两台40/10T 中级工作制桥式吊车,轨顶标高18.5m ,柱顶标高27m ,地震设计烈度7度。采用梯形钢屋架,封闭结合,1.5×6m 预应力钢筋混凝土大型屋面板(1.4KN/m 2 ),上铺100mm 厚泡沫混凝土保温层(容重为1KN/m 3 ),三毡四油(上铺绿豆砂)防水层(0.4KN/m 2 ),找平层2cm 厚(0.3KN/m 2 ),卷材屋面,屋面坡度i=1/10,屋架简支于钢筋混凝土柱上,混凝土强度等级C20,上柱截面400×400mm 。钢材选用Q235B ,焊条采用E43型。屋面活荷载标准值0.7KN/m 2 ,积灰荷载标准值0.6KN/m 2 ,雪荷载及风荷载见下表。 活载KN/m 2 1 2 3 4 5 6 7 基本雪压 0.30 0.75 0.10 0.20 0.45 0.50 0.35 基本风压 0.35 0.60 0.25 0.55 0.30 0.50 0.45 (2)屋架计算跨度 )(7.233.0240 m l =-= (3)跨中及端部高度:设计为无檩屋盖方案,采用平坡梯形屋架,端部高度 mm h 19000=中部高度

水工钢结构课程设计露顶式平面钢闸门设计

水工钢结构课程设计 题目:露顶式平面钢闸门设计 专业:水利水电工程 姓名: 班级: 学号: 指导老师: 二〇年月日

2.2 设计资料 闸门形式:溢洪道露顶式平面钢闸门; 孔口净宽:0.00m ; 设计水头:4.40m ; 结构材料:Q244钢; 焊条:E44; 止水橡皮:侧止水用p 形橡皮; 行走支承:采用胶木滑道,压合胶木为MCS-2; 混凝土强度等级:C20。 2.2 闸门结构的形式及布置 (2)闸门尺寸的确定(图2) 2)闸门高度:考虑风浪所产生的水位超高为0.2m ,故闸门高度=4.4+0.2=4.7m ; 2)闸门的荷载跨度为两侧止水的间距:m L 91=; 4)闸门计算跨度:m d L L 40.92.02920 =?+=+= ; (2)主梁的形式。主梁的形式应根据水头的大小和跨度大小而定,本闸门属于中等跨度,为了方便制造和维护,决定采用实腹式组合梁。 (4)主梁的布置。根据闸门的高跨比,决定采用双主梁。为使两个主梁设计水位时所受的水压力相等,两个主梁的位置应对称于水压力合力的作用线m H y 83.13/==(图2)并要求下悬臂a ≥0.22H 和a ≥0.4m 、上悬臂c ≤0.44H 且不大于4.6m ,今取

0.650.120.66 a H m =≈= 主梁间距 22() 2.35 b y a m =-= 则2 5.5 2.350.65 2.50.45 c H b a H =--=--=≈(满足要求) (4)梁格的布置和形式。梁格采用复式布置和等高连接,水平次梁穿过横隔板上的预留孔并被横隔板所支撑。水平次梁为连续梁,其间距应上疏下密,使面板各区格需要的厚度大致相等,梁格布置具体尺寸如图2所示。 图2. 梁格布置尺寸图 (4)连接系的布置和形式。 2)横向连接系,根据主梁的跨度,决定布置4道横隔板,其间距为2.44m,横隔板兼做竖直梁。 2)纵向连接系,设在两个主梁下翼缘的竖直平面内,采用斜杠式桁架。

相关主题
文本预览
相关文档 最新文档