当前位置:文档之家› 经典热力学的产生与发展

经典热力学的产生与发展

经典热力学的产生与发展
经典热力学的产生与发展

浅谈经典热力学的产生与发展

文史学院汉语言文学11102班陈雅琴学号:201106010238

在本学期的选修课《文科物理与实验》中,我又从一个文科生接触到理科物理的一些知识,感觉又回到了高一高二那为了难懂的物理而焦头难额的学习岁月,不管物理对我来说有多么高深莫测,但是了解一下物理学的建立与发展也是很有必要的,俗话说文史哲不分家,有多少哲学家也是物理学家,比如说亚里士多德等等,因此懂一点其他学科的知识对我们的学习也是大有裨益的。那么对于经典力学的产生与发展,将主要从一下几个方面来简单介绍。

一、什么是经典热力学

在过去的一个多世纪里面经典热力学的发展取得了巨大的进步,从最初的模糊的热的概念逐步演变发展成为一门科学、严谨、庞大的学科。经典热力学的发展历是人类对热的本质及能量转换规律的认识、掌握和运用的历史。经典热力学又称为宏观热力学,是以实验为基础的唯象的宏观理论,以热力学三个定律为基础,利用热力学数据,研究平衡系统各宏观性质之间的相互关系,揭示变化过程的方向和限度,它不涉及粒子的微观性质,具有高度的可靠性和普遍性。它研究的内容决定了物理、化学反应进行的方向和限度,对于化工生产的发展意义重大。如果撇开这些理论知识,从我们的日常生活中可以发现从古到今人们对热的本质认识是一个不断发展的螺旋是上升的过程,在古代,人们就知道热与冷的差别,能够利用摩擦生热、燃烧、传热、爆炸等热现象,来达到一定的目的。例如,中国古代燧人氏的钻木取火,炼丹术和炼金术,火药的发明,以及早期的爆竹、走马灯等。又如,在古希腊就有“火、土、水、气组成世界”的四元素学说,这与我国战国时期提出的“水、火、金、木、土为万物之本”的五行学说是类似的。人类对热现象的重视,由来已久。但因当时生产力的低下,不可能对这些热现象有任何实质性的解释。随着人类社会的不断发展,人们对热的认识也在向理性方面迈进。

二、经典热力学产生的时间以及主要人物

经典力学的建立是一段漫长而艰苦的历程。研究这一段历史,不仅能使我们了解经典力学的建立过程,更深刻地理解经典力学的理论体系。许多物理学家都做出了各自不可缺少的贡献。其中热运动说和热质说这两种观点经历了相互更替的曲折的历史演变,热究竟是在各个物体之间流动的一种不可摧毁的物质,还是微观运动的一种表现形式。直到19 世纪中叶,焦耳计算出热功当量的数值并公布了他的研究结果,此时能量守恒定律才得以真正确立。相应地,热质说也就完全退出了科学的历史舞台。这时关于热的本质才得出了明确的具体的结论: 热是微观运动和能量的一种表现形式,并且和能量的其他形式之间可以相互转化。在不断地探究发现中,形成了经典热力学的三大定律:1842年,J.R.von迈尔提出了能量守恒理论,认定热是能的一种形式,可与机械能互相转化,并且从空气的定压比热容与定容比热容之差计算出热功当量。英国物理学家J.P.焦耳于1840年建立电热当量的概念,1842年以后用不同方式实测了热功当量。1850年,焦耳的实验结果已使科学界彻底抛弃了热质说,公认能量守恒、而且能的形式可以互换的热力学第一定律为客观的自然规律。能量单位焦耳(J)就是以他的名字命名的。

热力学第一定律也就是能量守恒定律。自从焦耳以无以辩驳的精确实验结果证明机械能、电能、内能之间的转化满足守恒关系之后,人们就认为能量守恒定律是自然界的一个普遍的基本规律。1850年和1851年,德国的R.克劳修斯和开尔文先后提出了热力学第二定律,并在此基础上重新证明了卡诺定理。热力学第二定律有几种表述方式:克劳修斯表述热量可以自发地从温度高的物体传递到较冷的物体,但不可能自发地从温度低的物体传递到温度高的物体;开尔文-普朗克表述不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。熵表述随时间进行,一个孤立体系中的熵总是不会减少。热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。或者绝对零度(T=0K)不可达到。

热力学发展史

要求: 1、30个PPT左右 2、画面清晰明了 3、相关图片不少于是10张 4、每个画面文字总数不超过80个,配备解说稿 5、3人组成一小组 资料如下: 热力学第一定律(能量守恒定律):英国杰出的物理学家焦耳、德国物理学家亥姆霍兹等 1、我们既不能创造,也不能消灭能量。宇宙中的能量总和一开始便是固定的,而且永远不会改变,但它可以从一种形式转化为另一种形式。一个人、一幢摩天大楼、一辆汽车或一棵青草,都体现了从一种形式转化成为另一种形式的能量。高楼拔地而起,青草的生成,都耗费了在其他地方聚集起来的能量。高楼夷为平地,青草也不复生长,但它们原来所包含的能量并没有消失,而只是被转移到同一环境的其他所在去了。我们都听说过这么一句话:太阳底下没有新鲜东西。要证实这一点你只需呼吸一下,你刚才吸进了曾经让柏拉图吸进过的5000万个分子。 2、宇宙的能量总和是个常数,总的熵是不断增加的。熵是不能再被转化做功的能量的总和的测定单位。这个名称是由德国物理学家鲁道尔夫·克劳修斯于1868年第一次造出来的。蒸汽机之所以能做功,是因为蒸汽机系统里的一部分很冷,而另一部分却很热。换一句话说,要把能量转化为功,一个系统的不同部分之间就必须有能量集中程度的差异(即温差)。当能量从一个较高的集中程度转化到一个较低的集中程度(或由较高温度变为较低温度)时,它就做了功。更重要的是每一次能量从一个水平转化到另一个水平,都意味着下一次能再做功的能量就减少了。比如河水越过水坝流入湖泊。当河水下落时,它可被用来发电,驱动水轮,或做其他形式的功。然而水一旦落到坝底,就处于不能再做功的状态了。在水平面上没有任何势能的水是连最小的轮子也带不动的。这两种不同的能量状态分别被称为“有效的”或“自由的”能量,和“无效的”或“封闭的”能量。熵的增加就意味着有效能量的减少。每当自然界发生任何事情,一定的能量就被转化成了不能再做功的无效能量。被转化成了无效状态的能量构成了我们所说的污染。许多人以为污染是生产的副产品,但实际上它只是世界上转化成无效能量的全部有效能量的总和。耗散了的能量就是污染。既然根据热力学第一定律,能量既不能被产生又不能被消灭,而根据热力学第二定律,能量只能沿着一个方向

热力学发展简史

热力学发展简史 “温度”贯穿我们的一生,人人都知冷暖,古代人便会钻木取火,不可否认的一个方面是为了取暖,而现在,点暖炉,空调等设备的使用也都是人们为了得到一个合适的温度以更好的生活。学了一个学期的工程热力学后发现温度对于热热力学研究起着至关重要的作用。而温度的定义以及测量可以说是热力学的开端。 在17 世纪中,虽然有些科学家对温度的测定及温标的建立,作出不同程度的贡献,提供了有益的经验和教训。但是,由于没有共同的测温基准,没有一致的分度规则,缺乏测温物质的测温特性的资料,以及没有正确的理论指导,因此,在整个17 世纪中,并没有制作出复现性好的、可供正确测量的温度计及温标。在18 世纪中,“测温学”有较大的突破。其中最有价值的是,1714 年法伦海脱所建立的华氏温标,以及1742 年摄尔修斯所建立的摄氏温标(即百分温标)。华氏温标是以盐水和冰的混合物作为基准点(0°F),而以水的冰点(32°F)及水的沸点(212°F)作为固定参考点。摄氏温标是以 水的冰点(100℃)及水的沸点(0℃)作为固定参考点及基准点,并把他们分作100等分,每个间隔定义为一度,故称之为百分温标。1749 年,该温标的基准点及固定参考点,被摄尔修斯的助手斯托墨颠倒过来,这就是后来常用的摄氏温标。 18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热和功的转化问题。于是,热力学应运而生。1798年,汤普生通过实验否定了热质的存在。德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论,尤其是到了19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。 一:热力学第一定律 1.热力学第一定律的文字表述 自然界一切物体都具有能量,能量有各种不同形式,它能从一种

工程热力学期末试题及答案【第五版】【建环专业适用】

工程热力学期末试卷 建筑环境与设备工程专业适用 (闭卷,150分钟) 一、简答题(每小题5分,共40分) 1. 什么是热力过程?可逆过程的主要特征是什么? 答:热力系统从一个平衡态到另一个平衡态,称为热力过程。可逆过程的主要特征是驱动过程进行的势差无限小,即准静过程,且无耗散。 2. 温度为500°C 的热源向热机工质放出500 kJ 的热量,设环境温度为30°C ,试问这部分热量的火用(yong )值(最大可用能)为多少? 答: =??? ? ?++- ?=15.27350015.273301500,q x E 303.95kJ 3. 两个不同温度(T 1,T 2)的恒温热源间工作的可逆热机,从高温热源T 1吸收热量Q 1向低温热源T 2放出热量Q 2,证明:由高温热源、低温热源、热机和功源四个子系统构成的孤立系统熵增 。假设功源的熵变△S W =0。 证明:四个子系统构成的孤立系统熵增为 (1分) 对热机循环子系统: 1分 1分 根据卡诺定理及推论: 1 4. A 中存有高压空气,B 中保持真空,如右图所示。若将隔板抽去,试分析容器中空气的状态参数(T 、P 、u 、s 、v )如何变化,并简述为什么。 答:u 、T 不变,P 减小,v 增大,s 增大。 5. 试由开口系能量方程一般表达式出发,证明绝热节流过程中,节流前后工质的焓值不变。(绝热节流过程可看作稳态稳流过程,宏观动能和重力位能的变化可忽略不计) 答:开口系一般能量方程表达式为 自由膨胀 12iso T T R S S S S S ?=?+?+?+?W 1212 00ISO Q Q S T T -?= +++R 0S ?=iso 0 S ?=

第四章 热力学和统计物理学的发展

第四章热力学和统计物理学的发展 教学目的和要求: 掌握:几种温标的建立;热力学三定律的发现过程及内容;在分子运动论的建立中,克劳修斯作出的贡献;麦克斯韦,玻尔兹曼对统计力学的建立作出的贡献. 熟悉:计温学与量热学的发展;关于热的本质的学说的发展; 了解:气体运动定律;了解克劳修斯是如何得到熵概念和熵增加原理的; 教学重点,难点: 几种温标的建立;热力学三定律的发现过程及内容;在分子运动论的建立中,克劳修斯作出的贡献;麦克斯韦,玻尔兹曼对统计力学的建立作出的贡献 教学内容: §1.热学现象的初期研究 一蒸汽机的发明 1690年巴本(Frnid Papin,1647-1712,法国,惠更斯助手)首先制成带有活塞和汽缸的实验性蒸汽机; 1698年,托马斯萨维里(Thomas Savery,1650-1715,英国军事工程师)制成一具蒸汽水泵; 1705年,托马斯纽可门(Thomas Newcomen,1663-1729,英国铁匠)在萨维里和巴本的基础上,研制了一个带有活塞的封闭的圆筒汽缸,活塞通过一杠杆和一排水泵相连.是一个广义的把热转变为机械力的原动机,是蒸汽机最早的雏形.并真正有效地应用于矿井排水.但活塞的每次下降都必须将整个汽缸和活塞同时冷却,热量的损失太大. 1769年,詹姆斯瓦特(James Watt,1736-1819,法国,格拉斯哥大学仪器维修工)改进了纽可门机,把冷凝过程从汽缸内分离出来,即在汽缸外单独加一个冷凝器而使汽缸始终保持在高温状态. 1782年,又制造出了使高压蒸汽轮流的从两端进入汽缸,推动活塞往返运动的蒸汽机,使机器运作由断续变连续,从而蒸汽机的使用价值大大提高,导致了欧洲的工业革命. 1785年,热机被应用于纺织; 1807年,热机被美国人富尔顿应用于轮船; 1825年被用于火车和铁路. 二计温学的发展 (一)温度计的设计与制造 1603年,伽利略制成最早的验温计:一只颈部极细的玻璃长颈瓶,倒置于盛水容器中,瓶中装有一半带颜色的水.随温度变化,瓶中空气膨胀或收缩.

化工热力学习题集(附标准答案)

化工热力学习题集(附标准答案)

————————————————————————————————作者:————————————————————————————————日期:

模拟题一 一.单项选择题(每题1分,共20分) 本大题解答(用A 或B 或C 或D )请填入下表: 1. T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C ) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽 2. T 温度下的过冷纯液体的压力P ( A ) A. >()T P s B. <()T P s C. =()T P s 3. T 温度下的过热纯蒸汽的压力P ( B ) A. >()T P s B. <()T P s C. =()T P s 4. 纯物质的第二virial 系数B ( A ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 5. 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( ) A. 第三virial 系数 B. 第二virial 系数 C. 无穷项 D. 只需要理想气体方程 6. 液化石油气的主要成分是( A ) A. 丙烷、丁烷和少量的戊烷 B. 甲烷、乙烷 C. 正己烷 7. 立方型状态方程计算V 时如果出现三个根,则最大的根表示( B ) A. 饱和液摩尔体积 B. 饱和汽摩尔体积 C. 无物理意义 8. 偏心因子的定义式( A ) A. 0.7lg()1 s r Tr P ω==-- B. 0.8lg()1 s r Tr P ω==-- C. 1.0lg()s r Tr P ω==- 9. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( B ) A. 1x y z Z Z x x y y ???? ?????=- ? ? ?????????? B. 1y x Z Z x y x y Z ????????? =- ? ? ?????????? C. 1y x Z Z x y x y Z ????????? = ? ? ?????????? D. 1y Z x Z y y x x Z ????????? =- ? ? ?????????? 10. 关于偏离函数M R ,理想性质M *,下列公式正确的是( C ) A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 11. 下面的说法中不正确的是 ( B ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。 (C )偏摩尔性质是强度性质。(D )强度性质无偏摩尔量 。 12. 关于逸度的下列说法中不正确的是 ( D ) (A )逸度可称为“校正压力” 。 (B )逸度可称为“有效压力” 。 (C )逸度表达了真实气体对理想气体的偏差 。 (D )逸度可代替压力,使真实气体 的状态方程变为fv=nRT 。 (E )逸度就是物质从系统中逃逸趋势的量度。 题号 1 2 3 4 5 6 7 8 9 10 答案 题号 11 12 13 14 15 16 17 18 19 20 答案

工程热力学大总结_第五版

第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。

工程热力学-热力学发展简史

科学思维的发展 自然科学溯源于古希腊,十五世纪时勃兴于欧洲,当时欧洲刚经历千年「黑暗时代」,文艺复兴开始,而地中海沿岸贸易兴旺,为开拓市场需要,遂推动天文、地理、数学和力学的发展。而波兰人哥白尼(Nicolas Copernicus),在一五四三年提出「日心说」,其理论经伽利略(Galileo Galilei)、开普勒(Johann Kepler)的论证与发展,使西方的自然观,由笼统、模糊的认识,进入到深入、细致的研究。十六、十七世纪,英国人培根(Roger Bacon)大力提倡「科学方法」,即通过实验、列表、比较、排除、归纳而逐步上升到公理,奠定了西方科学严谨的研究方法和传统。 与培根同时代的法国人笛卡儿(Rene Descartes),把整个自然界看作一架大机器,试图以机械运动说明自然界的一切,并且主张要从错综复杂的事物中区别出最简单事物,然后予以有秩序的研究。他的《方法谈》标示了西方知识传统的「分析还原原理」,认为总体可以分解为部分;复杂、非线性系统,也可以分解为简单线性系统来理解。故奠定了追求简单性和线性解的西方科学及人文思维基础。 英国人牛顿(Sir Issac Newton)在一六八六年提出《自然哲学的数学原理》巨著,创立了以「万有引力」及「运动三定律」为基础的古典力学。他把整个自然界描述成一个秩序井然的大机械钟,只要这个钟上紧发条,便能自动运转,但这机械论仍要请上帝做「第一推动」,为这大钟上紧发条。到十八世纪下半叶,由国家支持的科学机构已在欧美各国普遍建立,故自然科学分门别类而迅速发展,十九世纪自然科学由分门别类的材料收集,进到对经验材料的综合整理和理论概括。 在牛顿的古典力学基础上,热力学大师克劳修斯(Rudolf Julius Emmanuel Clausius)在一八六七年提出热力学第二定律,说明一个孤立系统,总由有序而朝向均匀、简单、消灭差别的无序方向发展,即「熵」(entropy)增加,从而得出「宇宙总体走向退化、死亡」的结论。 热力学的基本定律 热力学是专门探讨能量内涵、能量转换以及能量与物质间交互作用的科学,尤其专注在系统与外在环境间能量的交互作用,是结合工程、物理与化学的一门学问。早期物理中,把研究热现象的部分称为热物理,后来称为热学,近代则称之为热力学,被许多理工相关科系列为必修的基础课程。许多工程科学都是由热力学所衍生的或与其有密切关联,例如热传学、流体力学、材料科学等。 顾名思义,热力学和「热」有关,和「力」也有关。广义而言,热力学主要是研究有关能量的科学,因此物质的特性也是其必须探讨的范围。热力学的应用范围很广,主要包括:引擎、涡轮机、压缩机、帮浦、发电机、推进器、燃烧系统、冷冻空调系统、能源替代系统、生命支持系统及人工器官等。 热是一种传送中的能量。物体的原子或分子透过随机运动,把能量由较热的物体传往较冷的物体。

化工热力学复习题及答案

第1章 绪言 一、是否题 1. 孤立体系的热力学能和熵都是一定值。(错。G S H U ??=?=?,,0,0但和 0不一定等于A ?,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状 态是T ,P 的理想气体,右侧是T 温度的真空。当隔板抽去后,由于Q =W =0, 0=U ?,0=T ?,0=H ?,故体系将在T ,2V ,0.5P 状态下达到平衡,()2ln 5.0ln R P P R S =-=?,2ln RT S T H G -=-=???,2ln RT S T U A -=-=???) 2. 封闭体系的体积为一常数。(错) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等, 初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、终态压力相 等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径无关。) 6. 自变量与独立变量是一致的,从属变量与函数是一致的。(错。有时可能不一致) 三、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。 3. 1MPa=106Pa=10bar=9.8692atm=7500.62mmHg 。 4. 1kJ=1000J=238.10cal=9869.2atm cm 3=10000bar cm 3=1000Pa m 3。 5. 普适气体常数R =8.314MPa cm 3 mol -1 K -1=83.14bar cm 3 mol -1 K -1=8.314 J mol -1 K -1 =1.980cal mol -1 K -1。 第2章P-V-T关系和状态方程 一、是否题 1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。) 2. 当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是超临 界流体。) 3. 纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸汽的摩尔体积随着温度的升高而减小。(对。则纯物质的P -V 相图上的饱和汽体系和饱和液体系曲线可知。) 4. 纯物质的三相点随着所处的压力或温度的不同而改变。(错。纯物质的三相平衡时,体系自 由度是零,体系的状态已经确定。)

工程热力学知识点总结

工程热力学大总结 '

… 第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 ) 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 } 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

化工热力学 例题 与解答(12)

第4章 非均相封闭体系热力学 一、是否题 1. 偏摩尔体积的定义可表示为{}{}i i x P T i n P T i i x V n nV V ≠≠? ??? ????=???? ???=,,,,?。 2. 在一定温度和压力下的理想溶液的组分逸度与其摩尔分数成正比。 3. 理想气体混合物就是一种理想溶液。 4. 对于理想溶液,所有的混合过程性质变化均为零。 5. 对于理想溶液所有的超额性质均为零。 6. 理想溶液中所有组分的活度系数为零。 7. 体系混合过程的性质变化与该体系相应的超额性质是相同的。 8. 对于理想溶液的某一容量性质M ,则__ i i M M =。 9. 理想气体有f=P ,而理想溶液有i i ?? =?。 10. 温度和压力相同的两种理想气体混合后,则温度和压力不变,总体积为原来两气体体积 之和,总热力学能为原两气体热力学能之和,总熵为原来两气体熵之和。 11. 温度和压力相同的两种纯物质混合成理想溶液,则混合过程的温度、压力、焓、热力学 能、吉氏函数的值不变。 12. 因为G E (或活度系数)模型是温度和组成的函数,故理论上i γ与压力无关。 13. 在常温、常压下,将10cm 3的液体水与20 cm 3的液体甲醇混合后,其总体积为 30 cm 3。 14. 纯流体的汽液平衡准则为f v =f l 。

15. 混合物体系达到汽液平衡时,总是有l i v i l v l i v i f f f f f f ===,,??。 16. 均相混合物的总性质与纯组分性质之间的关系总是有 ∑= i i t M n M 。 17. 对于二元混合物体系,当在某浓度范围内组分2符合Henry 规则,则在相同的浓度范围内 组分1符合Lewis-Randall 规则。 18. 二元混合物,当01→x 时,1*1→γ,∞→11γγ,12→γ,∞=2*2/1γγ。 19. 理想溶液一定符合Lewis-Randall 规则和Henry 规则。 20. 符合Lewis-Randall 规则或Henry 规则的溶液一定是理想溶液。 21. 等温、等压下的N 元混合物的Gibbs-Duhem 方程的形式之一是 0ln 0 =??? ? ??∑ =i i N i i dx d x γ。(错。0ln 0 =??? ? ??∑ =j i N i i dx d x γ,N j ~1∈) 等温、等压下的二元混合物的Gibbs-Duhem 方程也可表示成0ln ln * 2 211=+γγd x d x 。 22. 二元溶液的Gibbs-Duhem 方程可以表示成 () () ?? ???????=-==? ? ? ======)1() 0()1()0(210 121111111ln x P x P E x T x T E x x T dP RT V P dT RT H dx 常数常数γγ 23. 下列方程式是成立的:(a )111 1ln ?ln f f RT G G -=-;(b) 1111ln ln γ+=-x RT G G l l ;(c)v l v l f f RT G G 1111?ln ?ln -=-;(d)???? ??=→1111?lim 1x f f x ;(e)??? ? ??=→110,1?lim 1x f H x Solvent 。 24. 因为E H H =?,所以E G G =?。 25. 二元溶液的Henry 常数只与T 、P 有关,而与组成无关,而多元溶液的Henry 常数则与T 、 P 、组成都有关。

工程热力学课程教案完整版

工程热力学课程教案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

《工程热力学》课程教案 *** 本课程教材及主要参考书目 教材: 沈维道、蒋智敏、童钧耕编,工程热力学(第三版),高等教育出版社,2001.6手册: 严家騄、余晓福着,水和水蒸气热力性质图表,高等教育出版社,1995.5 实验指导书: 华北电力大学动力系编,热力实验指导书,2001 参考书: 曾丹苓、敖越、张新铭、刘朝编,工程热力学(第三版),高等教育出版社,2002.12 王加璇等编着,工程热力学,华北电力大学,1992年。 朱明善、刘颖、林兆庄、彭晓峰合编,工程热力学,清华大学出版,1995年。 曾丹苓等编着,工程热力学(第一版),高教出版社,2002年 全美经典学习指导系列,[美]M.C. 波特尔、C.W. 萨默顿着郭航、孙嗣莹等 译,工程热力学,科学出版社,2002年。 何雅玲编,工程热力学精要分析及典型题精解,西安交通大学出版社,2000.4 概论(2学时) 1. 教学目标及基本要求 从人类用能的历史和能量转换装置的实例中认识理解:热能利用的广泛性和特殊性;工程热力学的研究内容和研究方法;本课程在专业学习中的地位;本课程与后续专业课程乃至专业培养目标的关系。 2. 各节教学内容及学时分配 0-1 热能及其利用(0.5学时) 0-2 热力学及其发展简史(0.5学时) 0-3 能量转换装置的工作过程(0.2学时) 0-4 工程热力学研究的对象及主要内容(0.8学时) 3. 重点难点 工程热力学的主要研究内容;研究内容与本课程四大部分(特别是前三大部分)之联系;工程热力学的研究方法 4. 教学内容的深化和拓宽 热力学基本定律的建立;热力学各分支;本课程与传热学、流体力学等课程各自的任务及联系;有关工程热力学及其应用的网上资源。 5. 教学方式 讲授,讨论,视频片段 6. 教学过程中应注意的问题

热力学发展简史

热力学发展简史 “温度”贯穿我们的一生,人人都知冷暖,古代人便会钻木取火,不可否认的一个方面就是为了取暖,而现在,点暖炉,空调等设备的使用也都就是人们为了得到一个合适的温度以更好的生活。学了一个学期的工程热力学后发现温度对于热热力学研究起着至关重要的作用。而温度的定义以及测量可以说就是热力学的开端。 在17 世纪中, 虽然有些科学家对温度的测定及温标的建立,作出不同程度的贡献,提供了有益的经验与教训。但就是, 由于没有共同的测温基准,没有一致的分度规则,缺乏测温物质的测温特性的资料, 以及没有正确的理论指导,因此,在整个17 世纪中,并没有制作出复现性好的、可供正确测量的温度计及温标。在18 世纪中,“测温学”有较大的突破。其中最有价值的就是,1714 年法伦海脱所建立的华氏温标,以及1742 年摄尔修斯所建立的摄氏温标(即百分温标)。华氏温标就是以盐水与冰的混合物作为基准点(0°F),而以水的冰点(32°F)及水的沸点(212°F)作为固定参考点。摄氏温标就是以 水的冰点(100℃)及水的沸点(0℃)作为固定参考点及基准点,并把她们分作100等分,每个间隔定义为一度,故称之为百分温标。1749 年,该温标的基准点及固定参考点,被摄尔修斯的助手斯托墨颠倒过来,这就就是后来常用的摄氏温标。 18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热与功的转化问题。于就是,热力学应运而生。1798年,汤普生通过实验否定了热质的存在。德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这就是热力学第一定律的第一次提出。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论,尤其就是到了19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力与燃料,却能自动不断地做功。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。 一:热力学第一定律 1.热力学第一定律的文字表述 自然界一切物体都具有能量,能量有各种不同形式,它能从一种

化工热力学习题集(附答案)

模拟题一 1. T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( c ) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽 2. T 温度下的过冷纯液体的压力P ( a ) A. >()T P s B. <()T P s C. =()T P s 3. T 温度下的过热纯蒸汽的压力P ( b ) A. >()T P s B. <()T P s C. =()T P s 4. 纯物质的第二virial 系数B ( a ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 5. 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( a ) A. 第三virial 系数 B. 第二virial 系数 C. 无穷项 D. 只需要理想气体方程 6. 液化石油气的主要成分是( a ) A. 丙烷、丁烷和少量的戊烷 B. 甲烷、乙烷 C. 正己烷 7. 立方型状态方程计算V 时如果出现三个根,则最大的根表示( ) A. 饱和液摩尔体积 B. 饱和汽摩尔体积 C. 无物理意义 8. 偏心因子的定义式( ) A. 0.7lg()1s r Tr P ω==-- B. 0.8lg()1s r Tr P ω==-- C. 1.0lg()s r Tr P ω==- 9. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( ) A. 1x y z Z Z x x y y ?????????=- ? ? ?????????? B. 1y x Z Z x y x y Z ?????????=- ? ? ?????????? C. 1y x Z Z x y x y Z ?????????= ? ? ?????????? D. 1y Z x Z y y x x Z ?????????=- ? ? ?????????? 10. 关于偏离函数M R ,理想性质M *,下列公式正确的是( ) A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 11. 下面的说法中不正确的是 ( ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。

工程热力学暖通专业复习

考试安排 考试时间: 20周? 闭卷120分钟 考试地点: 考试范围:绪论、第一~五章、第七~十一章 考试题型:选择题、判断题、简答题、计算题 复 习 绪论 了解:热能利用及其在国民经济中的作用; 掌握:工程热力学的研究对象;主要内容和研究方法; 第一章 基本概念 了解:热力学第零定律及温度标尺; 掌握:热力系统的定义与分类;外界、边界的定义;基本状态参数;平衡状态、状态方程、状态参数坐标图;准平衡过程;可逆与不可逆过程;功和热的定义与性质;示功图、示热图;熵的定义与说明;热力循环的定义与分类,评价指标; 第二章 气体的热力性质 了解: 理想气体状态方程的推出;对定值比热容的讨论;理想气体熵变量计算式; 掌握: 理想气体假设;不同物量时理想气体状态方程;气体常数与摩尔气体常数;Cp 与Cv 的定义与关系;理想气体单质与混合物的C 、U 、H 、S 的性质与计算;利用比热容计算热量;混合气体性质;eq g eq R M ,; ;分压力定律;分体积定律;,,i i i x g r 的换算; 第三章 热力学第一定律 了解: 系统储存能与热力学能的构成;开口系能量方程的推导与公式 掌握: 热力学能、总能、推动功/流动功、焓、轴功、技术功的概念与计算;闭口系能量方程通式的内容与计算;稳态稳流过程的含义、能量方程、分析、计算;

第四章 理想气体的热力过程及气体压缩 了解: 研究热力过程的目的与一般方法;压气机的作用、形式结构、压力范围;最佳增压比的推导; 掌握:多变过程(包括基本过程)过程方程;初、终参数间关系;W 、Q 、Wt 的计算;过程特性在p-v 图和T-s 图上的表示;过程综合分析;余隙容积的概念,对理论压气功的影响,两级压缩中间冷却的p-v 图,最佳增压比的概念与计算;压气机效率; 第五章 热力学第二定律 了解: 自然过程的方向性;熵的导出;克劳修斯不等式的推导;熵及熵变量的计算; 掌握: 热力学第二定律的两种表述;第二类永动机;卡诺循环与逆卡诺循环;,,,,c c c εεηη;卡诺定理的两个小结;△s 与传热量的关系;孤立系熵增原理的内容、实质、计算;熵流与熵产;做功能力损失的计算; 第七章 水蒸气 了解: p-t 相图;水的定压加热汽化过程; 掌握: 一点、两线、三区、五态;汽化潜热;过热度;临界点;三相点;零点;干度x ;水与水蒸气状态的判断;湿饱和空气状态参数的计算;水蒸汽表与图(p-v 、T-S 、h-S )结构;过程中与外界交换的热量、功量的计算; 第八章 湿空气的性质 了解: 饱和度;蒸发冷却过程;冷却塔中的热湿交换过程; 掌握: 组成;未饱和湿空气;饱和湿空气;露点温度、湿球温度、相对湿度、含湿量的定义与确定;湿空气i-d 图结构;基本热力过程的计算; 第九章 气体与蒸汽的流动 了解: 绝热节流温度效应;绝热节流系数;喷管计算; 掌握: 音速的计算;马赫数的定义;超音速、临界音速;亚音速;喷管和扩压管流速变化与截面变化的关系;绝热节流定义、特点、不可逆性、前后参数的变化; 第十章 动力循环 了解: 再热循环;回热循环;热点联产循环; 掌握: 郎肯循环:流程;p-v 图,t-s 图,h-s 图;功、热、热效率的计算;平均吸热温度;提高热效率的途径;

热力学发展史

热力学发展史 201313020406 孙厚齐 化学是论述原子及其组合方式的科学。人们最初考察化学反应时,是把反应物放在一起,经加热等手段,然后分析得到些什么产物,后来根据原子分子假说,有了“当量”的概念,建立了反应物与产物之间的一定联系。人们根据化学组分随条件的变化,发现了质量作用定律,引伸出化学平衡常数。运用热力学定律,人们开始掌握从热力学函数去计算化学平衡常数的方法,并且可以对化学反应的方向作出判断,诞生了化学热力学。 热力学是物理化学和热力学的一个分支学科,它主要研究物质系统在各种条件下的物理和化学变化中所伴随着的能量变化,从而对化学反应的方向和进行的程度作出准确的判断。化学热力学的核心理论有三个:所有的物质都具有能量,能量是守恒的,各种能量可以相互转化;事物总是自发地趋向于平衡态;处于平衡态的物质系统可用几个可观测量描述。化学热力学是建立在三个基本定律基础上发展起来的。热力学第一定律就是能量守恒和转化定律,它是许多科学家实验总结未来的。一般公认迈尔于1842年首先提出普遍“力”的转化和守恒的概念。焦耳1840~1860 年间用各种不同的机械生热法,进行热功当量测定,给能量守恒和转化概念以坚实的实验基础,从而使热力学第一定律得到科学界的公认。热力学第一定律给出了热和功相互转化的数量关系。为了提高热机效率,1824 年卡诺提出了著名的卡诺定理。为了进一步阐明卡诺定理,1850年克劳修斯提出热力学第二定律。1851 年开尔文认为:“不可能从单一热源取热使之完全变为有用的功而不引起其他变化”,相当于摩擦生热过程的不可逆性。除上述两种说法外,热力学第二定律还有几种不同的叙述方式,它们之间是等效的。1912年,能斯脱提出热力学第三定律,即绝对温度的零点是不可能达到的。其他科学家还提出过几种不同表述方式,其中1911 年普朗克的提法较为明确,即“与任何等温可逆过程相联系的熵变,随着温度的趋近于零而趋近于零”。这个定律非常重要,为化学平衡提供了根本性原理。吉布斯给出了热力学原理的更为完美的表述形式,用几个热力学函数来描述系统的状态,使化学变化和物理变化的描述更为方便和实用。他发表了著名的“相律”,对相平衡的研究起着重要的指导作用。20世60年代,昂萨格和普里戈金等都为热力学理论的重大进展作出杰出的贡献。热力学理论对一切物质系统都适用,具有普遍性的优点。这些理论是根据宏观现象得出的,因此称为宏观理论,也叫唯象理论。热力学所根据的基本规律就是热力学第一定律、第二定律和第三定律,从这些定律出发,用数学方法加以演绎推论,就可得到描写物质体系平衡的热力学函数及函数间的相互关系,再结合必要的热化学数据,解决化学变化、物理变化的方向和限度,这就是化学热力学的基本内容和方法。 经典热力学是宏观理论,它不依赖于物质的微观结构。分子结构理论的发展和变化,都无需修改热力学概念和理论并且它只处理平衡问题而不涉及这种平衡状态是怎样达到的,只需要知道系统的起始状态和终止状态就可得到可靠的结果,不涉及变化的细节,所以不能解决过程的速率问题。热力学理论已经解决了物质的平衡性质问题,但是关于非平衡现象,现有的理论还是初步的,有待进一步研究。热力学三大定理可谓物理化学的经典。每条定律的提出都经过了相当长的历史:热力学的基本定律之一,是能量守恒和转换定律的一种表述方式。热力学第一定律指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。它的另一种1850 年进行的热功当

化学热力学的发展简史

化学热力学的发展简史 姓名:xx 学号:xx 1 引言 化学热力学是物理化学中最早发展起来的一个分支学科,主要应用热力学原理研究物质系统在各种物理和化学变化中所伴随的能量变化、化学现象和规律,依据系统的宏观可测性质和热力学函数关系判断系统的稳定性、变化的方向和限度。化学热力学的基本特点是其原理具有高度的普适性和可靠性.对于任何体系,化学热力学性质是判断其稳定性和变化方向及程度的依据。也就是说,相平衡、化学平衡、热平衡、分子构象的稳定性、分子间的聚集与解离平衡等许多重要问题都需要用化学热力学的原理和方法进行判断和解决。化学热力学的研究范畴决定了它与化学乃至化学学科以外的其他学科具有很强的交叉渗透性。化学热力学在化学学科的发展中发挥着不可替代的重要作用,与其他学科的发展相互促进。热力学的历史始于热力学第一定律,100多年来,化学热力学有了很大的发展和广阔的应用。 2 化学热力学的筑基 化学热力学的主要理论基础是经典热力学。19世纪上半叶,作为物理学的巨大成果,“能”的概念出现了; 人们逐渐认识到热只是能的多种可互相转换的形式之一,科学家意识到了统治科学界百年之久的“热质说”是错误的,于是热力学应运而生。19世纪中叶,人们在研究热和功转换的基础上,总结出热力学第一定律和热力学第二定律,解决了热能和机械能转换中在量上的守恒和质上的差异。1873-1878年,吉布斯进一步总结出描述物质系统平衡的热力学函数间的关系,并提出了相律。20世纪初,能斯特提出了热定理,使“绝对熵”的测定成为可能。为了运用热力学函数处理实际非理想系统,1907 年,路易斯提出了逸度和活度的概念%至此,经典热力学建立起完整的体系。 2.1 Hess定律 俄国的赫斯很早就从化学研究中领悟了一些能量守恒的思想。1836年,赫斯向彼得堡科学院报告: “经过连续的研究,我确信,不管用什么方式完成化合,由此发出的热总是恒定的,这个原理是如此之明显,以至于如果我不认为已经被

化工热力学复习题附答案

化工热力学复习题 一、选择题 1.T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( C ) A.饱和蒸汽 超临界流体 过热蒸汽 2.纯物质的第二virial 系数B ( A ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 3.设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( B ) A. 1x y z Z Z x x y y ?????????=- ? ? ?????????? B. 1y x Z Z x y x y Z ?????????=- ? ? ?????????? C. 1y x Z Z x y x y Z ?????????= ? ? ?????????? D. 1y Z x Z y y x x Z ?????????=- ? ? ?????????? 4.关于偏离函数M R ,理想性质M *,下列公式正确的是( C ) A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 5.下面的说法中不正确的是 ( B ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。 (C )偏摩尔性质是强度性质。 (D )强度性质无偏摩尔量 。

6.关于逸度的下列说法中不正确的是( D ) (A)逸度可称为“校正压力” 。(B)逸度可称为“有效压力” 。 (C)逸度表达了真实气体对理想气体的偏差。(D)逸度可代替压力,使真实气体的状态方程变为fv=nRT。(E)逸度就是物质从系统中逃逸趋势的量度。 7.二元溶液,T, P一定时,Gibbs—Duhem 方程的正确形式是( C ). a. X1dlnγ1/dX 1+ X2dlnγ2/dX2 = 0 b. X1dlnγ1/dX 2+ X2 dlnγ2/dX1 = 0 c. X1dlnγ1/dX 1+ X2dlnγ2/dX1 = 0 d. X1dlnγ1/dX 1– X2 dlnγ2/dX1 = 0 8.关于化学势的下列说法中不正确的是( A ) A. 系统的偏摩尔量就是化学势??????? B. 化学势是系统的强度性质 C. 系统中的任一物质都有化学势??? D. 化学势大小决定物质迁移的方向 9.关于活度和活度系数的下列说法中不正确的是( E ) (A)活度是相对逸度,校正浓度,有效浓度;(B) 理想溶液活度等于其浓度。 (C)活度系数表示实际溶液与理想溶液的偏差。(D)任何纯物质的活度均为1。(E)r i是G E/RT的偏摩尔量。 10.等温等压下,在A和B组成的均相体系中,若A的偏摩尔体积随浓度的改变而增加,则B 的偏摩尔体积将(B )

工程热力学期末试题及答案【第五版】【建环专业适用】

工程热力学期末试卷 建筑环境与设备工程专业适用 (闭卷,150分钟) 班级 姓名 学号 成绩 一、简答题(每小题5分,共40分) 1. 什么是热力过程?可逆过程的主要特征是什么? 答:热力系统从一个平衡态到另一个平衡态,称为热力过程。可逆过程的主要特征是驱动过程进行的势差无限小,即准静过程,且无耗散。 2. 温度为500°C 的热源向热机工质放出500 kJ 的热量,设环境温度为30°C ,试问这部分热量的火用(yong )值(最大可用能)为多少? 答: =??? ? ?++- ?=15.27350015.273301500,q x E 303.95kJ 3. 两个不同温度(T 1,T 2)的恒温热源间工作的可逆热机,从高温热源T 1吸收热量Q 1向低温热源T 2放出热量Q 2,证明:由高温热源、低温热源、热机和功源四个子系统构成的孤立系统熵增 。假设功源的熵变△S W =0。 证明:四个子系统构成的孤立系统熵增为 (1分) 对热机循环子系统: 1分 1分 根据卡诺定理及推论: 1 4. A 中存有高压空气,B 中保持真空,如右图所示。若将隔板抽去,试分析容器中空气的状态参数(T 、P 、u 、s 、v )如何变化,并简述为什么。 答:u 、T 不变,P 减小,v 增大,s 增大。 5. 试由开口系能量方程一般表达式出发,证明绝热节流过程中,节流前后工质的焓值不变。(绝热节流过 程可看作稳态稳流过程,宏观动能和重力位能的变化可忽略不计) 答:开口系一般能量方程表达式为 绝热节流过程是稳态稳流过程,因此有如下简化条件 自由膨胀 12iso T T R S S S S S ?=?+?+?+?W 12 1200 ISO Q Q S T T -?=+++R 0S ?= iso 0 S ?=

相关主题
文本预览
相关文档 最新文档