当前位置:文档之家› 导数大题的几种类型

导数大题的几种类型

导数大题的几种类型
导数大题的几种类型

高考中导数问题的常见类型及解法

近几年导数进入中学教学教材,给传统的中学数学内容注入了生机与活力,为中学数学问题(如函数问题、不等式问题、解析几何问题等)的研究提供了新的视角、新的方法,拓宽了高考的命题空间。近几年的高考,在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大。以下我将结合某些高考题或高考模拟题,谈谈高考中导数问题的常见类型及解法。

类型1——利用导数的几何意义处理曲线的公切线问题

例1 (03年全国高考文科试题)已知抛物线C 1: y=x 2

+2x 和抛物线C 2:y=-x 2

+a ,当a 取什么值时,C 1 和C 2有且仅有一条公切线?写出此公切线的方程。

解 :设公切线L 切C

1

于P

1

(x

1

,y

1

),切C

2

于P

2

(x

2

,y

2

),

则L 的方程有两种表达方式:①))(22(111x x x y y -+=-;②)(222x x x y y --=-.

∵a x y x x y +-=+=2

2121122,2

∴①、②变为211)22(2x x x y -+=和a x x x y ++-=2

222

于是

??+=--=+a

x x x x 2

22121222消去2x ,得012212

1=+++a x x ,由题意知,21,0)1(84-=∴=+-=?a a ,此时,212121,4

3

,21,21P P y y x x -==-=-=重合。

故当21-=a 时,1C 和2C 有且仅有一条公切线,且公切线方程为4

1

-==x y .

评注:本题主要考察导数的几何意义、公切线方程的两种表示法以及二次方程的相关知识。注意“11b x k y +=”与“22b x k y +=”表示同一条直线的充要条件是“21k k =且21b b =”

,在曲线的公切线问题中常常以此来构建方程。 类型2——利用导数研究三次函数、简单分式函数的性质

例2 (2003年安徽省春季高考题)已知d cx bx x x f +++=2

3

)(在3

2

-=

x 与x=1时都取得极值。(1)求b 、c 之值;(2)若对任意[]2,1-∈x ,2

3)(d x f <恒成立。求d 的取值范围。

⑴ c bx x x f ++='23)(2

由题意知,1,3

2

-

是方程0232=++c bx x 的两根,于是

.2,21.

31*3

232132

-=-=∴?????=--=+-c b c b ⑵ .23)(,221)(2

23--='+--=x x x f d x x x x f

当)32

,1[--∈x 时,,0)(>'x f

当)1,3

2

(-∈x 时,,0)(<'x f

当]2,1(∈x 时,,0)(>'x f

∴当32-

=x 时,)(x f 有极大值

.77

22

d + 又]2,1[,77

22

2)2(-∈∴+>+=x d d f 时, )(x f 的最大值为.2d + 对任意23)(],2,1[d x f x <-∈恒成立,3)(2max d x f

d d <+ 1>∴d 或.3

2-

(2004年合肥市高考模拟题)研究函数x

a

x x f 3)(3

+

=的单调性. 本题主要考查导数与函数单调性的关系,注意分类讨论的思想方法.

解: .)

(333)(2

422

x

a x x a x x f -=-=' ① 当0>a 时,由,0)(='x f 得.,4241a x a x -== ).)()((3)(442

2a x a x a x x

x f -++=

' x

),(4a --∞

)0,(4a -

),0(4a

),(4+∞a

)(x f '

+

-

-

+

从上表中)(x f '的符号随x 取值的变化规律发现,此时)(x f 的单调区间是

),(4a --∞和),(4+∞a ,单调减区间是)0,(4a -和),0(4a .

② 当0=a 时, .03)(2

≥='x x f 此时)(x f 的定义域为).,(+∞-∞

因此3

)(x x f =在),(+∞-∞内单调递增.

③ 当0

(3)(2

4x f x

a x x f >-='定义域为).,0()0,(+∞?-∞

此时单调区间是)0,(-∞和).,0(+∞没有单调减区间.

评注:用传统数学教材中的知识与方法往往难以研究象例2、例3这种函数问题的单调性、极值与最值,导数无疑为这类问题的解决提供了方法.掌握可导函数的单调区间、极值与最值的求解方法是解题的关键.

类型3——已知函数的单调性,反过来确定函数式中特定字母的值或范围.

例4 (2000年全国高考试题) 设函数)(x f =,12ax x -+其中,0>a 求a 的取值范围,使函数)(x f 在区间),0[+∞上是单调函数.

解:.1

)(2

a x x x f -=+=

'函数)(x f 在),0[+∞上是单调函数,即0)(≥'x f 或

0)(≤'x f 在),0[+∞上恒成立.

由0)(≥'x f ,得≤a 1

2

+x x 在),0[+∞上

1

2

+x x 的最小值是0,所以,0≤a 此

与题设0>a 矛盾. ②

由0)(≤'x f ,得≥

a ),(11111

2

2

+∞→→+

=

+x x x x

在),0(+∞上

2

111x +

连续递增,且所有值都小于1,所以.1≥a

综合①②可知,当1≥a 时,函数)(x f 在区间),0[+∞上是单调函数.

评注:可导函数)(x f 在(a,b)上是单调递增(或单调递减)函数的充要条件是:对于任意

),,(b a x ∈都有0)(≥'x f (或0)(≤'x f ),且)(x f '在(a,b)的任意子区间上都不恒为零.在高

中阶段.主要出现的是有一个或多个(有限个)使0)(='x f 的点x 的情况.像例4这种逆向设置问题,是今后高考命题的一种趋向,它充分体现了高考”能力立意”的思想.对此,复习中应引起高度重视.

类型4——利用导数处理含参数的恒成立的不等式问题

例5 (2003年安庆市高考模拟题) 已知不等式0222

4

>+-+a ax x 对任意实数x 恒成立,求实数a 的取值范围.

解: 令).(444)(,22)(2

3

2

4

a x x ax x x f a ax x x f +=+='+-+= ①

当0≥a 时,由,0)(='x f 得.0=x 且当0>x 时,0)(>'x f 当0

.0)(<'x f

2)0(+-=∴a f 是)(x f 的最小值.

0)(>x f 在),(+∞-∞上恒成立,02)0(>+-=?a f 即

.

20.

2<≤∴

② 当0

+4.4x+1.6=-52(15x 2

-11x-4)=0,得x 1=1,x 2=-5

2(不合题意,舍去). 因为在)(x V ' 在(0,1.6)内只有一个极值点,而实际问题又必有最大容积,因此,当x=1(米)时,时候V(x)有最大值V(1)=1*1.5*1.2=1.8(米3

),此时h=1.2(米).

答:当高为1.2米时,长方体容器的容积最大,且最大容积为1.8米3

.

评注:这是一道实际生活中的优化问题,建立的目标函数是三次函数,用过去的知识求其最值往往没有一般方法,即使能求出,也要涉及到较高的技能技巧.而运用导数知识,求三次目标函数的最值就变得非常简单,对于实际生活中的优化问题,如果其目标函数为高次多项式函数,简单的分式函数,简单的无理函数,简单的指数,对数函数,或他们的复合函数,均可用导数法求其最值.可见,导数的引入,大大拓宽了中学数学知识在实际优化问题中的应用空间.

由此可见,导数作为高考的热点问题,估计今年的高考在求函数的导数、用导数判断或证明单调性、求函数的极值和最值、利用导数解决实际问题等方面拟题。

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y =的定义域为( C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞,, B .(1)(01)-∞-, , C .(1)(1)-∞-+∞, , D .(10)(01)-,, 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A B C D

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

导数题型总结(12种题型)

导数题型总结 1.导数的几何意义 2.导数四则运算构造新函数 3.利用导数研究函数单调性 4.利用导数研究函数极值和最值 5.①知零点个数求参数范围②含参数讨论零点个数 6.函数极值点偏移问题 7.导函数零点不可求问题 8.双变量的处理策略 9.不等式恒成立求参数范围 10.不等式证明策略 11.双量词的处理策略 12.绝对值与导数结合问题 导数专题一导数几何意义 一.知识点睛 导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。 二.方法点拨: 1.求切线 ①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导

数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0). ②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。 2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上 三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习 1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是 2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.3 3.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= 4.(2014江西)若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是 5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2 + x b (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=2 1e x 上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B. 2(1-ln2) C.1+ln2 D.2(1+ln2) 7.若存在过点(1,0)的直线与曲线y=x 3 和y=ax 2 + 4 15 x-9都相切,则a 等于 8.抛物线y=x 2 上的点到直线x-y-2=0的最短距离为 A. 2 B.8 27 C. 2 2 D. 1

导数综合大题分类

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?????0,12,求h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2 ,

2017至2018年北京高三模拟分类汇编之导数大题

2017至2018年北京高三模拟分类汇编之导数大题,20创新题 精心校对版 △注意事项: 1.本系列试题包含2017年-2018年北京高考一模和二模真题的分类汇编。 2.本系列文档有相关的试题分类汇编,具体见封面。 3.本系列文档为北京双高教育精心校对版本 4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科 一 、解答题(本大题共22小题,共0分) 1.(2017北京东城区高三一模数学(文))设函数ax x x x f +-=232131)(,R a ∈. (Ⅰ)若2=x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性; (Ⅱ)已知函数3221)()(2+-=ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围; (Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由. 2.(2017北京丰台区高三一模数学(文)) 已知函数1()e x x f x +=,A 1()x m ,,B 2()x m ,是曲线()y f x =上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围; (Ⅱ)证明:120x x +>. 3.(2017北京丰台区高三二模数学(文)) 已知函数ln ()x f x ax =(0)a >. (Ⅰ)当1a =时,求曲线()y f x =在点(1(1)),f 处的切线方程; 姓名:__________班级:__________考号:__________ ●-------------------------密--------------封------------ --线------ --------内------ ------- -请------- -------不-------------- 要--------------答--------------题-------------------------●

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值范围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

2009至2018年北京高考真题分类汇编之导数大题

2009至2018年北京高考真题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共10小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。2.(2012年北京高考真题数学(文))已知函数2()1(0)f x ax a ,3()g x x bx .(Ⅰ)若曲线()y f x 与曲线()y g x 在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a ,9b 时,若函数()()f x g x 在区间[,2]k 上的最大值为28,求k 的取值范围.3.(2011年北京高考真题数学(文))已知函数()()x f x x k e . (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值. 4.(2009年北京高考真题数学(文))姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

(word完整版)高中数学导数练习题(分类练习)讲义

导数专题 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22 y x =+,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1 (1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线32 242y x x x =--+在点(1 3)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(1 3)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。

解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02 030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在() 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴ 2632302 0020+-=+-x x x x , 整理得:03200=-x x ,解得:2 3 0=x 或00=x (舍),此时,830- =y ,41-=k 。所以,直线l 的方程为x y 4 1 -=,切点坐标是?? ? ??-83,23。 答案:直线l 的方程为x y 41- =,切点坐标是?? ? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为()163'2 -+=x ax x f 。对于R x ∈都有()0'a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在 R 上不是单调递减函数。 综合(1)(2)(3)可知3-≤a 。

(完整word版)北京高考导数大题分类.doc

导数大题分类 一、含参数单调区间的求解步骤: ① 确定定义域(易错点) ②求导函数 f ' (x) ③对 f ' ( x) 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理 . ④ f ' ( x) 中 x 的最高次系数是否为 0,为 0 时求出单调区间 . 例 1: f ( x) a x 3 a 1 x 2 x ,则 f ' ( x) (ax 1)( x 1) 要首先讨论 a 0 情况 3 2 ⑤ f ' ( ) 最高次系数不为 0,讨论参数取某范围的值时, 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递增; x 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递减 . 例 2: f (x) a x 2 ln x ,则 f ' ( x) = ax 2 1 , ( x 0) ,显然 a 0时 f ' ( x) 0 ,此时 f (x) 的 2 x 单调区间为 (0, ) . ⑥ f ' ( ) 最高次系数不为 0,且参数取某范围的值时,不会出现 f ' (x) 0 或者 f ' ( x) 0 的情况 x 求出 f ' ( x) =0 的根,(一般为两个) x 1 , x 2 ,判断两个根是否都在定义域内 . 如果只有一根在定义域 内,那么单调区间只有两段 . 若两根都在定义域内且一根为常数,一根含参数 . 则通过比较两根大小分三种情况讨论单调区间, 即 x 1 x 2 , x 1 x 2 , x 1 x 2 . 例 3: 若 f ( x) a x 2 (a 1)x ln x, (a 0) ,则 f ' ( x) ( ax 1)( x 1) , (x 0) 解方程 f ' ( x) 2 1 x 0 得 x 1 1, x 2 a a 0时,只有 x 1 1 在定义域内 . a 0 时 , 比较两根要分三种情况: a 1,0 a 1, a 1 用所得的根将定义域分成几个不同的子区间,讨论 f ' ( x) 在每个子区间内的正负,求得 f (x) 的单调区间。

导数各类题型方法总结(含答案)

导数各种题型方法总结 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0) 0302(3) 09330g m g m <-??<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)023011(2)0230F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-=

近五年高考试题分类汇编-导数部分(附答案解析)

2018年全国高考试题分类汇编-导数部分(含解析) 1.(2018·全国卷I 高考理科·T5)同(2018·全国卷I 高考文科·T6)设函数f (x )=x3+(a -1)x2+ax.若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为( ) A.y=-2x B.y=-x C.y=2x D.y=x 2.(2018·全国卷II 高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为 3.(2018·全国卷II 高考文科·T13)曲线y=2lnx 在点(1,0)处的切线方程为 4.(2018·全国Ⅲ高考理科·T14)曲线y=(ax +1)ex 在点(0,1)处的切线的斜率为-2,则a= . 5.(2018·天津高考文科·T10)已知函数f(x)=exlnx,f ′(x)为f(x)的导函数,则f ′(1)的值为 . 6.(2018·全国卷I 高考理科·T16)已知函数f (x )=2sinx+sin2x,则f (x )的最小值是 . 7.(2017·全国乙卷文科·T14)曲线y=x 2 + 1 x 在点(1,2)处的切线方程为 . 8.(2017·全国甲卷理科·T11)若x=-2是函数f (x )=(2x +ax-1)1x e -的极值点,则f (x )的极小值为 ( ) A.-1 B.-23e - C.53e - D.1 9.(2017 10.(2017递增,则称f (x )A.f (x )=2-x 11.(2017数a 12.(2017则称f (x )具有M ①f (x )=2-x ;②f (x

13.(2017·全国乙卷理科·T16)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O.D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3 )的最大值为 . 14.(2017·天津高考文科·T10)已知a ∈R ,设函数f (x )=ax-lnx 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为 . 15.(2016·全国卷Ⅰ高考文科·T12)若函数f (x )=x-1 3 sin2x+asinx 在(-∞,+∞)上单调递增,则a 的取值范围是( ) A.[-1,1] B.11,3 ? ? -?? ?? C.11,33??- ???? D.11,3? ? --???? 16.(2016·四川高考理科·T9)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的 切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 17.(2016·四川高考文科·T6)已知a 为函数f (x )=x 3 -12x 的极小值点,则a=( ) A.-4 B.-2 C.4 D.2 18.(2016·四川高考文科·T10)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的切线,l 1 与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 ( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 19.(2016·山东高考文科·T10)同(2016·山东高考理科·T10) 若函数y=f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f (x )具有T 性质.下列函数中具有T 性质的是 ( ) A.y=sinx B.y=lnx C.y=e x D.y=x 3 20.(2016·全国卷Ⅱ理科·T16)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= .

导数大题方法总结

导数大题方法总结 一总论 一般来说,导数的大题有两到三问。每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。 二主流题型及其方法 *(1)求函数中某参数的值或给定参数的值求导数或切线 一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x = k时取得极值,试求所给函数中参数的值;或者是f(x)在(a , f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是: 先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x = k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。 注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。 *(2)求函数的单调性或单调区间以及极值点和最值 一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。这类问题的方法是: 首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。 极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。 最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。 注意:①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。没有注意定义域问题很严重。②分类要准,不要慌张。③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下

2017年高考真题分类汇编(理数)专题2导数(解析版)

2017年高考真题分类汇编(理数):专题2 导数 一、单选题(共3题;共6分) 1、(2017?浙江)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是() A、 B、 C、 D、 2、(2017?新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为() A、﹣1 B、﹣2e﹣3 C、5e﹣3 D、1 3、(2017?新课标Ⅲ)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=() A、﹣ B、 C、 D、1 二、解答题(共8题;共50分)

4、(2017?浙江)已知函数f(x)=(x﹣)e﹣x(x≥ ). (Ⅰ)求f(x)的导函数; (Ⅱ)求f(x)在区间[ ,+∞)上的取值范围. 5、(2017?山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(13分) (Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.6、(2017?北京卷)已知函数f(x)=e x cosx﹣x.(13分) (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,]上的最大值和最小值. 7、(2017·天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个 零点x0, g(x)为f(x)的导函数. (Ⅰ)求g(x)的单调区间; (Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0, 2],满足| ﹣x0|≥ . 8、(2017?江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (Ⅰ)求b关于a的函数关系式,并写出定义域; (Ⅱ)证明:b2>3a; (Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围. 9、(2017?新课标Ⅰ卷)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(12分) (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 10、(2017?新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0. (Ⅰ)求a; (Ⅱ)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 11、(2017?新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx. (Ⅰ)若 f(x)≥0,求a的值; (Ⅱ)设m为整数,且对于任意正整数n,(1+ )(1+ )…(1+ )<m,求m的最小值.

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1 x -a . 若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ???? 0,1a 时,f ′(x )>0; 当x ∈? ?? ?? 1a ,+∞时,f ′(x )<0, 所以f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ?? ??1a =ln 1 a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ?? 1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.

(完整版)导数的综合大题及其分类.(可编辑修改word版)

a - a 2-4 2 a + a 2-4 2 导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1) 单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点 的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2) 极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3) 最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极 值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数 f (x )=x 1 g (x )=a ln x (a ∈R ). - , x (1) 当 a ≥-2 时,求 F (x )=f (x )-g (x )的单调区间; (2) 设 h (x )=f (x )+g (x ),且 h (x )有两个极值点为 x ,x ,其中 x ∈ 1 ,求 h (x )-h (x )的最 1 2 1 (0, ] 1 2 2 小值. [审题程序] 第一步:在定义域内,依据 F ′(x )=0 根的情况对 F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立 x 1、x 2 及 a 间的关系及取值范围; 第四步:通过代换转化为关于 x 1(或 x 2)的函数,求出最小值. [规范解答] (1)由题意得 F (x )=x 1 a ln x , - - x x 2-ax +1 其定义域为(0,+∞),则 F ′(x )= , x 2 令 m (x )=x 2-ax +1,则 Δ=a 2-4. ①当-2≤a ≤2 时,Δ≤0,从而 F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当 a >2 时,Δ>0,设 F ′(x )=0 的两根为 x 1= ,x 2= ,

2017年北京高三模拟题分类汇编之导数大题

2017年北京高三模拟题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2017北京市各城区一模二模真题。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共12小题,共0分)1.(2017北京东城区高三一模数学(文))设函数ax x x x f 232131)(,R a .(Ⅰ)若2x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性;(Ⅱ)已知函数3221)()(2ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围;(Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由.2.(2017北京丰台区高三一模数学(文))已知函数1()e x x f x ,A 1()x m ,,B 2()x m ,是曲线()y f x 上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围;(Ⅱ)证明:120x x . 3.(2017北京丰台区高三二模数学(文))已知函数ln ()x f x ax (0)a . (Ⅰ)当1a 时,求曲线()y f x 在点(1(1)),f 处的切线方程;姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

高考导数大题大全理科答案

一、解答题 1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,'11 2()e ln e e e .x x x x a b b f x a x x x x --=+-+ 由题意可得' (1)2,(1) e.f f ==故1,2a b ==. (Ⅱ)由(Ⅰ)知1 2e ()e ln ,x x f x x x -=+ 从而()1f x >等价于2 ln e .e x x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1 (0,)e x ∈时,' ()0g x <; 当1 (,)e x ∈+∞时,' ()0g x >,故()g x 在1(0,)e 单调递减,在1(,)e +∞单调递增, 从而()g x 在(0,)+∞的最小值为1 1().e e g =-. 设函数2 ()e e x h x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >; 当(1,)x ∈+∞时,' ()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在(0,)+∞的最大值为1(1)e h =- . 综上,当0x >时,()()g x h x >,即()1f x >. 2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解. 解析(1)2/ 22 2(2)24(1) ()1(2)(1)(2)a x x ax a f x ax x ax x +-+-=-=++++ (*) 当1a ≥时,/ ()0f x >,此时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,由/ ()0f x = 得1 x = (2x =-舍去). 当1(0,)x x ∈时,/()0f x <;当1(,)x x ∈+∞时,/ ()0f x >. 故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,()f x 在区间(0, 上单调递减,在区间)+∞上单调递增. 由(*)式知,当1a ≥时,/ ()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点, 必有01a <<.又()f x 的极值点只可能是1 x = 和2x =-,且由定义可知,1 x a >- 且2x ≠- ,所以1a ->- 且2-≠-,解得1 2 a ≠- 此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而 令21a x -=,则01a <<且12a ≠-知:当102 a <<时,10x -<<;当112a <<时,01x <<. 记2 2 ()ln 2g x x x =+-, (Ⅰ)当10x -< <时,2()2ln()2g x x x =-+-,所以/22 2222 ()0x g x x x x -=-=< 因此,()g x 在区间(1,0)-上单调递减,从而()(1)40g x g <-=-<,故当1 02 a << 时, 12()()0f x f x +<. (Ⅱ)当01x <<时,2()2ln 2g x x x =+ -,所以/222222 ()0x g x x x x -=-=< 因此,()g x 在区间(0,1)上单调递减,从而()(1)0g x g >=,故当时 1 12 a <<,12()()0f x f x +>. 综上所述,满足条件的a 的取值范围为1 (,1)2. 3. (1)证明:因为对任意x ∈R ,都有() ()e e e e ()x x x x f x f x -----=+=+=,所以f (x )是R 上的偶函数. (2)解:由条件知(e e 1)e 1x x x m --+-≤-在(0,+∞)上恒成立. 令t = e x (x >0),则t >1,所以m ≤211 11111 t t t t t -- =--+-++-对于任意t >1成立. 因为11111t t -+ +≥- = 3,所以1113111 t t - ≥--++-, 当且仅当t = 2,即x = ln2时等号成立.

相关主题
文本预览
相关文档 最新文档