当前位置:文档之家› 航母电磁飞机弹射系统

航母电磁飞机弹射系统

航母电磁飞机弹射系统
航母电磁飞机弹射系统

即将登场的航母电磁飞机弹射系统

院系:

班级:

学号:

学生姓名:

火炮、火箭等发射装置大多属于化学发射器,它们在军事领域占有重要的地位。随着科学技术的发展, 产生了电磁发射技术EML ( Elect romagneticLaunch) 。电磁推进技术的原理早在19 世纪初就已有人提出,后经过几十年的探索与研究,人们相继研制出了各种电磁感应原理的直线发射装置或模型,但由于受相关研究领域技术的影响,上述模型的性能距工程实用尚存在着较大的差距。70 年代以后,超大功率脉冲技术和电子技术的飞速发展使电磁发射技术有了重大突破。1978 年澳大利亚的马歇尔等人用550MJ单极发电机作为电源和采用等离子体电枢在5m长的导轨炮上把3 g重的聚碳酸脂弹丸加速到了5. 9km/ s 的初速度。这个具有划时代意义的研究成果证明了用电磁力可以把较重的弹丸推进到高速的可能性,使世界各地的科学家受到极大的鼓舞和启发,由此也将电磁发射技术的研究推向了一个新阶段。

直线电磁发射器(又叫电炮) 按照其工作原理或工作方式可分为导轨型、线圈型和重接型。在线圈型原理的基础上,又发展出了电磁弹射技术。

一弹射器的原理和发展前景

1 线圈型电磁发射器的原理和特点

线圈型电磁发射器早期又称“同轴加速器”,一般是指用序列脉冲或交流电流产生运动磁场从而驱动带有线圈的弹丸或磁性材料弹丸的发射装置。由于工作的机理是利用驱动线圈和被加速物体之间的耦合磁场,因此线圈型电磁发射器的本质可以理解成直线电动机。

一个简单结构的线圈型电磁发射器的模型如图

1a 所示。一单匝的驱动线圈和一发射线圈同轴排列。发射线圈上以永磁或电励磁方式建立一恒定磁场,两个线圈之间的互感M 如图1b 所示。当驱动线圈中通以图1c 规律的电流时,发射线圈上始终要受到一个轴向力F ,从而使其加速,沿着X 轴的正方向前进。

一般地,为了减少加速力F 的波动和延长其加速行程,上述的驱动线圈和发射线圈都做成多匝结构,一个多匝线圈型电磁发射器的原理结构示意图如图2 所示。根据发射线圈上磁场的形成机理和驱动线圈的结构与控制方式,线圈型电磁发射器可分为多种类型,相应的特点如下表所示.

美国海军航母目前使用的飞机蒸汽弹射器不仅体积笨重、噪音大,而且能量效率低下,因此美国海军曾多次研究新原理的弹射器去取代它,但均由于某些技术原因而陆续放弃。20世纪90年代,美国海军开始设计下一代航母(显示CVN-21,后来定为CVN-78)是提出了一个非常先进的概念——全电军舰。它要求航母的动力传输都将以电力为基础,而不再采用蒸汽、液压等传统的机械手段,其中最重要的技术飞跃之一就是蒸汽弹射器将被电磁弹射器所取代。

2 电磁弹射器的研究现状

弹射的要领在射击武器中是指被发射的物体不启用自身的动力装置而靠发射器赋予的起动力而实施起飞的一种发射方式。弹射是发射技术的一种特例,具体特点有:

(1) 弹射的对象与发射相比一般都是大载荷物体。作为电磁炮的电磁发射器中发射的弹丸一般都是几克到几百克,最大也不过上千克;而弹射器的弹射对象则是小到几千克的航空模型大到几十吨的战机。

(2) 弹射器的速度与发射器相比不是很高。一般情况下,发射器的弹丸可以达到每秒几千米到几十千米,理论上可以达到上百千米;而弹射器则不要求很高的速度,每秒几十米到几百米就可以满足要求。

(3) 弹射器的发射频率远低于发射器。在电磁发射器中,防空电磁炮要求每分钟发射500 发,反导电磁炮要求每秒发射60 发;而电磁弹射器则可以几分钟,甚至于几十分钟做一次弹射。

(4) 从结构上说,电磁炮的发射体一般都在发射管内部,而电磁弹射器在载荷由于相对较大,一般都是“骑”在驱动器之上的。由此可见,电磁弹射的主要应用范围是大载荷的短程加速,在军事上比较典型的是航空母舰上的舰载飞机起飞弹射。现在电磁发射技术在全世界范围内都处于实验研究阶段,电磁弹射虽起步稍晚,但由于其潜在的应用前景,该项技术的研究还是备受重视,1988 年美国海军与卡曼航空航天公司曾计划联合研制航母舰载电磁弹射器模型,指标是在3s 的加速时间内,把重达36T 的全载F - 14 战机加速到150 节。

据估计,这种电磁弹射器的重量只有现役的蒸汽弹射器的十分之一,而且省去许多管道,这对于舰船的安全运行和减重提速都具有重要意义。英国国防部正着手准备一个开发与试验计划,研究在未来两艘航母上加装一种新型电磁弹射系统的可能性。与此同时,其他国家也对电磁弹射技术产生了浓厚的兴趣。4 电磁弹射技术的发展趋势展望应该说,无论是在军事领域的航母舰载飞机弹射,还是在民用领域的电磁列车等方面,以加速大载荷为特征的电磁弹射技术拥有广阔的应用空间。在工业技术领域中一些行程较短、以直线运动为主的驱动或传动环节上也可能会大有作为。以下几方面是该项技术发展的几个关键问题。

3 电磁弹射技术的发展趋势展望

(1) 导电材料

在普通电机中用的导电材料以铜居多,但在电磁弹射技术中却至少存在二个问题。其一,从物理过程上看发射线圈的导体材料密度强烈地影响其速度和加速度,铜的密度太大;其二,在数以兆焦耳能量的发射过程中电流可能达到几兆安培,这在发射线圈与驱

动线圈中都会产生数量可观的欧姆损失。解决此问题的方法是采用超导材料,发射线圈采用铝、镁等轻材料或采用特殊的结构,如等离子体电枢等,当然这些特殊材料大多只适宜于军事上的应用。

(2) 驱动线圈的同步控制

为了获得均匀而持久的加速,驱动线圈在包括发射线圈在内的发射物体上产生的加速力也应当是均匀而持久的,这就要求驱动部分要根据发射物体的具体位置进行同步控制,就象无刷直流电动机的电子换向一样。这个问题的解决是最困难的,相比而言,在工业或民用技术领域应用的场合,无刷直流电动机型的电磁弹射技术应该具有很好的应用前景。

(3) 铁磁材料的影响

在作为电磁炮的发射技术中,被发射物体一般质量较小,不含有铁磁材料。使用铁磁材料的优点是可以减小等效气隙,增加磁场强度,提高效率;缺点是有非线性,铁心损耗,而且普通铁磁材料的饱和磁密较低。在一般的民用或工业领域采用普通的铁磁材料和永磁材料是比较合理和可行的。

二美国弹射器的发展和成果

早在1945年,美国海军就和西屋公司在夏威夷机场上一起建造了一台电磁弹射器,它可以在178米的距离上把4吨重的飞机加速到180千米/小时。但这个能力较之当时主流的液压弹射器还有很大的距离,并且制造时需要消耗大量的铜,使用时也需要非常强大的电能供应,因此这台弹射器尽管非常可靠和耐用,但并没有获得什么发展。50年过去了,已经可以跨出实质性的一步了,于是美国海军在1992年和卡曼电磁系统公司签订风险承包合同,要求其为新一代航母CVN-21研制全新的、性能非凡的飞机电磁弹射系统。

电磁弹射器的优点:

美军为何要采用电磁弹射器?这是因为这种弹射器有很多优点,首先是加速均匀且力量可控。C-13-1型蒸汽弹射器发射是最大国在可以达到6g,,而整个行程的平均加速度仅有2g多一点,F/A-18战斗攻击机飞行员常产调侃C-13-1弹射器在后段往往没有飞机自身的发动机加速得快。随着速度和气缸容积的增加,过热蒸汽的膨胀绝大多数能量用于蒸汽本身的加速和推动上了,而体积增加后气体膨胀所需蒸汽的比例成立方关系增加。目前的蒸汽弹射器厂度和气缸容积几乎达到极限,到弹射冲程的末端,蒸汽基本上只能加速活塞,对飞机的帮助不大。电磁弹射器的推力启动段没有蒸汽那种突发爆炸性的冲击,峰值过载从6g 可以降低到3g,这不仅对飞机结构和寿命有着巨大的好处,对飞行员的身体承受能力也是一个不错的改善。此外,由于电磁弹射的加速和弹射器的长度没有关系,除了受到气动阻力和摩擦阻力的影响外,弹射初段到末段的基本加速度不会出现太大的波动,这就比蒸汽弹射的逐步下降来得更有效率。根据计算,平均加速度一样时,电磁弹射器可以比蒸汽弹射击让飞机多载重8%~15%。

另一个比较重要的好处在于电磁弹射器具有很大的能量输出调节范围。蒸汽弹射器的功率输出依靠一个叫速率阀的东西,利用控制蒸汽流量的方式控制弹射器的功率输出,机械的可调节性能输出达到1:6差不多就是极限了;而电磁弹射的功率输出是由电路系统控制的,从大功率民用变电的经验可知1:100以内的变化是相当容易的。美国海军未来将会大量使用轻重不一的无人机,目前的蒸汽弹射器很难适应这个要求。对航母的设计是和海军操作人员来说,电磁弹射器是一个大福音,它不仅将机库甲板的占用面积缩减到原来的1/3,而且

重量还轻了一半。大幅减轻高过重心位置的重量对航母的稳性设计是个很有益的举措,同时既不用再为复杂的蒸汽管道迷宫所困扰,也不用再为灼热的蒸汽泄漏和四处污溅、难以清洁的润滑油所发愁。

电磁弹射器的结构

美军研发的电磁弹射器由三大主要部件构成,分别是线性同步电动机、盘式交流发电机和大功率数字循环变频器。

线性同步电动机是电磁弹射器的主体,它是20世纪80年代末期研究的电磁线圈炮的放大版。电磁线圈炮也叫电磁线圈抛射器,1831年法拉弟发现电磁现象以后就有人开始设想电磁线圈炮。1845年,有科学家在理论试验中将一个金属柱抛出20米;1895年,美国有项专利设计了理论上能够将炮弹抛射230千米的线圈炮;1900年,挪威物理学教授克里斯坦·勃兰登获得三项关于电磁炮的专利;1901年,勃兰登在实验室制造了一座长10米、口径65毫米的模型,可以把10千克的金属块加速到100米/秒,这引起了挪威政府、德国政府的注意。德国著名的火炮生产厂商克虏伯公司为勃兰登教授提供了5万马克的研究经费,勃兰登设计了一门长27米、口径380毫米的巨炮,预计可以将2吨重的炮弹发射到50千米远,弹丸速度可以达到900米/秒。为了实现这个目的,勃兰登设计了3800多个线圈,重量达到30吨。使用这门大炮需要3千伏、600千安的直流电源。当时的技术条件根本不可能提供这种直流电源,因此该炮最后被废弃,炮上所用的大量铜丝在后来的战争中被作为重要战略物资回收。

从电磁线圈炮的发展历史来看,阻碍电磁弹射器的现实化并不是线性电机本身,而是强大而稳定的瞬发能源。美国航母上采用20世纪90年NASA为电磁炮、激光武器发展的惯性储能装置研制而来的盘式交流发电机。新设计的盘式交流发电机重约8.7吨,如果不算附加的安全壳体设备,其重量只有6.9吨。盘式交流发电机的转子绕水平轴旋转,重约5177千克,使用镍铬铁的铸件经热处理而成,上面用镍镉钛合金箍固定2对扇形轴心磁场的钕铁硼永磁体。镍镉钛合金箍具有很大的弹性预应力,可确保固定高速旋转中的磁体。转子旋转速度为6400转/分,一个转子可存储121兆焦的能量,储能密度比蒸汽弹射器的储气罐高一倍多。一部弹射器由4台盘式交流发电机供电,安装时一般采用成对布置,转子反向旋转,可减少因高速旋转飞轮带来的陀螺效应和单项扭矩。弹射一次仅使用每台发电机所储备能量的22.5%,飞轮转盘的转动速度从6400转/分下降到5200转/分,能量消耗可以在弹射循环的45秒间歇中从主动力输出中获得补充。四蓄能发电机结构允许弹射器在其中一台发电机没有工作的情况下正常使用。由于航母装备4部弹射器,每两部弹射器的动力组会安装到一起,集中管理并允许其动力交联,因而出现6台以上发动机故障而影响弹射的事故每300年才会重复一次。盘式交流发电机采用双定子设计,分别处于盘的两侧,每一个定子由280个线圈绕组的放射性槽构成,槽间是支撑结构和液体冷却板。采用双定子结构,每台发电机的输出电源是6相的,最大输出电压1700伏,峰值电流高达6400安,输出的匹配载荷为8.16万千瓦,输出为2133~1735赫兹的变频交流电。盘式储能交流发电机的设计效率为89.3%,这已经通过缩比模型进行了验证,也就是说每一次弹射将会有127千瓦的能量以热量形式消耗掉。发电机定子线圈的电阻仅有8.6毫欧,这么大的功率会迅速将定子线圈加温数百度,所以设计了定子强制冷却。冷却板布置在定子的外侧,铸铝板上安装不锈钢管,内充WEG 混和液,采用流量为151升/分的泵强制散热。根据1/2模型测试可知,上述设计可以保证45秒循环内铜芯温度稳定在84摄氏度,冷却板表面温度61度。

真正最为关键、技术难度最大的部件是高功率循环变频器。这个技术是电磁弹射器的真正技术瓶颈。EMALS现在正处于关键性部件工程验证阶段,循环变频器仅仅是完成了计算机

模拟,还没有开始发展工程样机。从设计上看,循环变频器是通过串联或者并联多路桥式电路来获得叠加和控制功率输出的,它不使用开关和串联电容器,省略了电流分享电抗器,实现了完全数字化管理的无电弧电能源变频管理输出。其每一相的输出能力为0~1520伏,峰值电流6400安,可变化频率为0~4、644赫兹。循环变频器设计非常复杂,它不仅需要将4台交流发电机的24相输入电能准确地将正确的相位输入到正确的模块端口,还必须准确的管理298个直线电机的电磁模块,在滑块组运行到来前0.35秒内让电磁体充电,而在滑组经过后0.2秒之内停止送电并将电能输送到下一个模块。循环变频器工作时间虽然不长,每次弹射仅需工作10~15秒,但热耗散非常大,一组循环变频器需要528千瓦的冷却功率,冷却剂是去离子水,流量高达1363升/分,注入温度35摄氏度的情况下可确保系统温度低于84摄氏度。目前,美国对这一核心部件的保密工作非常重视,除了基本原理外,几乎没有任何的模型结构、工程图片披露。2003年,美国海军和通用电气公司签订合同,要求花费7年时间完成这一部件的实体工作。

到目前为止,美国在海军航母电磁弹射器上花费了28年的时间和32亿美金的经费,预计将在2014年服役的CVN-78航母上正式使用这一设备。从设计和工程实现的关键性部件的性能来看,成功地按时间表投入使用的可能性非常大。目前的主要技术问题出在线形同步电机上,18米所必模型所显示的效率仅为58%,而50米1/2模型显示的效率仅有63.2%,这证明能量利用率还不足,热功率也成倍增加,以目前的设计是不能完成散热需求的。另外一个问题在于军用系统的防火要求,永磁体对温度比较敏感,存在退磁临界温度,一般在100~200摄氏度之间,航母的火工品较多,火灾事故并不罕见,如何保证磁体的磁强度不受大的影响还是一个很棘手的问题。电磁弹射器功率巨大,其磁场强度也非常可怕,现代战斗机上复杂的电磁设备都非常敏感,容易受到干扰,因此需要特别加强电磁弹射系统的磁屏蔽工作。由于弹射器的磁体是开槽形的,和蒸汽弹射器的蒸汽泄露一样会有很强的磁泄露,所以目前设计了复杂的磁封闭条,在离飞行甲板15厘米的高度就能将磁场强度降低到正常环境的水准。相关的电磁干扰和兼容性问题将在2012年进行专门的适应性试验

美国预期电磁弹射器达到如下指标:起飞速度:28~103米/秒;最大牵引力和平均牵引力之比:1.07;最大弹射能量:122兆焦;最短起飞循环时间:45秒;重量:225吨;体积:425立方米;补充能源需求:6350千瓦。

后记

中国在电磁弹射技术领域里一直处于理论研究和同步试验研究验证的小规模发展阶段。线圈炮方面,1996年中国曾发布了一个口径90毫米的4磁体级的样炮原型机,可以达到电能转换50%以上,瞬间能源有成熟的20兆焦和100兆焦输出级别的器件。我国是稀土永磁体生产大国,高磁强度稀土永磁体研究水平较好,但工程实际开发工作较少。在电磁弹射器方面,我国采用跟踪研究体制,如果未来一些年内中国要发展航空母舰,电磁弹射技术将会是其中的重点。

航母的基本常识介绍

航母的基本常识介绍 ☆舰岛 早期航母,象英国“百眼巨人”号和美国的“兰利”号等整个舰面是平坦的飞行甲板,没有突出部分。而现代航母基本上是把舰桥、烟囱等集中在飞行甲板的一侧,好象一个小岛,它就是“舰岛”。 从飞机起降的要求上讲,航母的飞行甲板上空空无物是最理想的。但是,航母的指挥塔、飞行控制室、航海室、雷达和通信天线等又是需要高耸在甲板上的。所以,现代航母都是把这些上层建筑设计得很紧凑,集中在飞行甲板右舷的“舰岛”上,空出甲板的绝大部分来方便飞机起降。 ☆飞行甲板 飞行甲板就是航母舰面上供舰载机起降和停放的上层甲板,又称为舰面场。早期飞机由于起降速度不大,可以从军舰首部或主炮塔上部铺设的小型甲板上起飞,从舰尾的短小甲板上着舰。但现代航母都是贯通全舰的大面积的上层甲板。需要指出的是,航母的飞行甲板要比舰体宽得多。从正面看,飞行甲板从舰体上面向两舷张出,形状很

怪异。 飞行甲板要承受飞机着舰时的强烈冲击载荷,所以要用高强度钢板制成。二战时航母飞行甲板表面要铺设一层木质甲板,而现代航母的飞行甲板表面都是金属的了。 ☆直式和斜角式飞行甲板 从航母出现直到50年代初,航母的飞行甲板都是直式的。其形状为矩形,防冲网把甲板分成前后两部分;前部供飞机起飞、停放用,后部则是飞机降落区。当防冲网放下时,前后两区合二为一,舰载机就能从舰尾向前做不用弹射器的自由测距滑跑起飞了。 随着喷气式飞机的上舰,直式甲板的局限性就显露出来了。50年代初,英国海军上校卡梅尔提出了斜角甲板设想,经试验后证明它有许多优点,遂成为现代航母的标准甲板样式。 斜角甲板分为两部分。舰前部直甲板为起飞区,后半部斜角甲板为着舰区,斜直相交处形成三角形停机区。斜式甲板的斜度以斜角甲板中线与航母首尾中线夹角来表示。斜角甲板的优点是着舰飞机未能钩住拦阻索时,可马上拉起复飞而不致于与前甲板停放的飞机相撞。另外,舰载机起飞和降落可同时进行。 ☆弹射器的工作 早期的螺旋桨式飞机由于起飞速度不大,可以轻易从甲板上自行滑跑起飞,但喷气式舰载机的重量和起飞速度急剧增大,只能通过弹射器起飞了。 1950年8月,英国在“英仙座”航母甲板中线上安装了一台动

科技模型弹射飞机调试方法

弹射模型飞机的调整试飞 一、弹射飞行原理 弹射模型飞机是利用橡筋的弹性能量作为初始动力来放飞模型的。当模型获得橡筋的弹性能量后就会被弹射出去,模型爬升到最高点后在重力作用下转为下滑,模型在下滑时由于机翼翼型的作用,可以产生一定的升力,因此,会慢慢地滑翔飞行,在滑翔过程中若遇到上升气流,则可获得较长的留空时间。 二、航空模型技术常用术语 1.翼展——机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内) 2.机身全长——模型飞机最前端到最末端的直线距离 3.重心——模型飞机各部分重力的合力作用点称为重心 4.尾力臂——机翼后缘到水平尾翼前缘的距离 5.翼型——机翼或尾翼的横剖面形状 6.前缘——翼型的最前端 7.后缘——翼型的最后端 8.翼弦——前后缘之间的连线 9.展弦比——翼展与平均翼弦长度的比值。展弦比大说明机翼狭长 三、模型飞机受力分析 1.升力——由机翼产生的向上作用力 机翼的升力是机翼上下空气压力差形成的。当模型在空中飞行时,机翼上表面的空气流速加快,压强减小;机翼下表面的空气流速减慢压强加

大。这是造成机翼上下压力差的原因。 造成机翼上下流速变化的原因有两个: (1)不对称的翼型; (2)机翼和相对气流有迎角。翼型是机翼剖面的形状。机翼剖面多为不对称形,如下弧平直上弧向上弯曲(平凸型)和上下弧都向上弯曲(凹凸型)。对称翼型则必须有一定的迎角才产生升力。 2.重力G——与升力相反的向下作用力 3.拉力P——由发动机产生的向前作用力 4.阻力Q——由空气阻力产生的向后作用力 四、试飞前的检查 组装完成后,检查重心的位置,两边上反角是否对称,机翼、水平尾翼是否扭曲。垂直尾翼是否垂直,水平尾翼是否扭曲变形,机翼的安装角是否正确 五、测定重心位置 用两手指顶在两片机翼之间,找出能使飞机平衡的某点,再对照力学中重心位置。(机翼后缘向前,在机翼的40%处左右)如发现飞机的重心不在规定的位置上,应该进行重心调整。如果整机前(后)倾,应在机身尾部(头部)粘上电工胶布(配重)。如果整机左(右)倾,应将左(右)翼磨削。 六、试飞、分两个步骤 1 手掷试飞:也就是手投模型飞机,方法是用两手指抓住机身上重心稍靠后的位置,机头稍低于水平线,逆风,沿机身方向,将模型轻轻掷出(注意手掷模型时手臂不能划弧线,而是沿机身方向的直线方向,轻轻掷出)

电磁飞机弹射系统的设计与仿真(英文版)

Design and Simulation of an Electromagnetic Aircraft Launch System D Patterson, A Monti, C Brice, R Dougal, R Pettus, D Srinivas, K Dilipchandra (Department of Electrical Engineering University of South Carolina, Swearingen Center Columbia, SC 29208 USA ) E-mail 一patters on @ieee? org Abstract—This paper describes the basic design, refinement and verification using finite element analysis (FEA), and operational Simulation using the Virtual Test Bed (VTB), of a range of can didate lin ear machines for an electromagnetic aircraft launching system (EMALS) for the aircraft carrier of the future ? Choices of basic machine format, and procedures for determining basic dimensions are presented. A detailed design is presented for a permanent magnet version, and wou nd field coil and induetion machine versions are introduced ? The long armature 一short field geometry is discussed, and in particular the impact of this geometry on the scale of the power electronic drive system is preserHed. I.INTRODUCTION A.The Project Moder n ship desig ns are in creasi ngly moving towards the use of elec trici ty to distribute, control, and deliver energy for the multiplicity of on board needs ? This trend has already resulted in large direct drive electric machines for tracti on in commercial shipping ? In some signifies nt cases, includi ng traction, adoption in military applications is rather slower, because of the comparatively low achievable power, energy and torque, per unit volume and per unit mass,of electroechanical energy convers ion systems ? However the ben efits of controllability, robust ness, reliability, damage management, operational availabilit* reduced manning etc. are undeniable ? Whilst all actuation systems are under continuous investigation, there is a high level of interest in determining the feasibility of an electromagnetic aircraft launch system (EMALS) for aircraft carriers ? Studies are being carried out at the University of South Carolina (USC) to evaluate alternative design concepts and to determine their feasibility and comparative strengths. Simulation uses the Virtual Test Bed (VTB), a new environment for Simulation and virtual prototyping of power electronic systems that includes not only Simulation of system dynamics, but also solid modeling of the system and visualization of the system dynamics [1]. EMALS also represents a challenging test case for VTB itself ? Models of the different parts of the systems will be built up from the specifications and the characteristics given by U?S. Navy, and from engineering design principles ? B.The Challenge

舰载机起飞与降落技术

舰载机起飞与降落技术 1.起飞 一、蒸汽弹射 使用一个平的甲板作为飞机跑道。起飞时一个蒸汽驱动的弹射装置带动飞机在两秒钟内达到起飞速度。目前只有美国具备生产这种蒸气弹射器的成熟技术。在工作原理上,蒸汽弹射器是以高压蒸汽推动活塞带动弹射轨道上的滑块,把与之相连的舰载机弹射出去的。它体积庞大,工作时要消耗大量蒸汽,功率浪费严重,只有约6%的蒸汽被利用。为制造和输送蒸汽,航母要备有海水淡化装置、大型锅炉和无数管线,工作维护量惊人。它的最大缺陷在于因为弹射功率太大而无法发射无人机,现役的无人机因为重量轻,在弹射时机体会被加速度扯碎。蒸汽弹射有两种弹射方式: (1)一种是前轮牵引式弹射,美国海军1964年试验成功。舰载机的前轮支架装上拖曳杆,前轮就直接挂在了滑块上,弹射时由滑块直接拉着飞机前轮加速起飞。这样就不用8-10甲板人员挂拖索和捡拖索了。弹射时间缩短,飞机的方向安全性好,但这种舰载机的前轮要专门设计。美国海军核动力航母都采用了这种起飞方式。 (2)另一种是拖索式弹射,顾名思义,就是用钢质拖索牵引飞机加速起飞,这种弹射方式比较老,各方面都不如前者好,目前只有法国的“克莱蒙梭”级航母使用。拖索式弹射时,甲板人员先用钢质拖索把飞机挂在滑块上,再用一根索引释放杆把其尾部与弹射器后端固定住。弹射时,猛力前冲的滑块拉断索引释放杆上的定力拉断栓,牵着飞机沿轨道迅速加速,在轨道末端把飞机加速到直起飞速度抛离甲板,拖索从飞机上脱落,滑块返回弹射器起点准备下一次工作。 二、斜板滑跳 有些航空母舰在其甲板前端有一个“跳台”帮助飞机起飞,即把甲板尽头做成斜坡上翘,舰载机起飞后沿着上翘的斜坡冲出甲板,形成斜抛运动。这种起飞方式不需要复杂的弹射装置,但是飞机起飞时的重量以及起飞的效率远不如蒸汽弹射技术。英国、意大利、印度和俄罗斯等国由于技术限制,无法研制真正在技术和工艺上过关的蒸汽弹射器,所以只能在本国航母上采用滑翘甲板。航空母舰都必须以20节(36公里/小时)以上的速度逆风航行,来帮助飞机起飞。

航母的起飞装置

航空母舰的主要装置
起飞装置
蒸汽弹射起飞使用一个平的甲板作为飞机跑道。起飞时一个蒸汽驱动的弹射装置带动飞机在两秒钟内达到起飞速度。目前只有美国具备生产这种蒸气弹射器的成熟技术。在工作原理上,蒸汽弹射器是以高压蒸汽推动活塞带动弹射轨道上的滑块,把与之相连的舰载机弹射出去的。它体积庞大,工作时要消耗大量蒸汽,功率浪费严重,只有约6%的蒸汽被利用。为制造和输送蒸汽,航母要备有海水淡化装置、大型锅炉和无数管线,工作维护量惊人。它的最大缺陷在于因为弹射功率太大而无法发射无人机,现役的无人机因为重量轻,在弹射时机体会被加速度扯碎。 
?? 蒸汽弹射起飞
蒸汽弹射有两种弹射方式: 
一种是前轮牵引式弹射,美国海军1964年试验成功。舰载机的前轮支架装上拖曳杆,前轮就直接挂在了滑块上,弹射时由滑块直接拉着飞机前轮加速起飞。这样就不用8-10甲板人员挂拖索和捡拖索了。弹射时间缩短,飞机的方向安全性好,但这种舰载机的前轮要专门设计。美国海军核动力航母都采用了这种起飞方式。&nb sp;
另一种是拖索式弹射,顾名思义,就是用钢质拖索牵引飞机加速起飞,这种弹射方式比较老,各方面都不如前者好,目前只有法国的“克莱蒙梭”级航母使用。拖索式弹射时,甲板人员先用钢质拖索把飞机挂在滑块上,再用一根索引释放杆把其尾部与弹射器后端固定住。弹射时,猛力前冲的滑块拉断索引释放杆上的定力拉断栓,牵着飞机沿轨道迅速加速,在轨道末端把飞机加速到直起飞速度抛离甲板,拖索从飞机上脱落,滑块返回弹射器起点准备下一次工作。& nbsp;
斜板滑跳起飞 
?? 
斜板滑跳起飞
有些航空母舰在其甲板前端有一个“跳台”帮助飞机起飞,即把甲板的前头部分做成斜坡上翘,舰载机以一定的尚未达到其飞速度的速度滑跑后沿着上翘的斜坡冲出甲板,形成斜抛运动,在刚脱离母舰的一段(几十米)距离内继续在空中加速以达到起飞速度。这种起飞方式不需要复杂的弹射装置,但是飞机起飞时的重量不如蒸汽弹射起飞,使得舰载机的载油量、载弹量、航程以及作战半径等受到一定的制约。英国、意大利、印度和俄罗斯等国由于技术限制,无法研制真正在技术和工艺上过关的蒸汽弹射器,所以只能在本国航母上采用滑翘甲板。采用滑跃起飞舰载机的航空母舰在载机起飞时都必须以20节(36公里/小时)以上的速度逆风航行,以加大载机相对速度来帮助舰载机起飞。 
垂直起飞 
垂直起飞技术顾名思义就是飞机不需要滑跑就可以起飞和着陆的技术。它是从20世纪50年代末期开始发展的一项航空技术。英国、美国、俄罗斯的一些航空母舰采用这种技术。 
使用垂直起降技术的飞机机动灵活,具有常规飞机无可比拟的优点: 
首先,具有垂直起降能力的飞机不需要专门的机场和跑道,降低了使用成本。其次,垂直起降飞机只需要很小的平地就可以起飞和着陆,所以在战争中飞机可以分散配置,便于伪装,不易被敌方发现,大大提高了飞机的战场生存率。最后,由于垂直起降飞机即使在被毁坏的机场跑道上或者是前线的简易机场上也可以升空作战,所以出勤率也大幅提高,并且对敌方的打击具有很高的突然性。 
但使用垂直起降技术的飞机同时也有许多重大的缺点: 
首先是航程短,由于要实现垂直起降,飞机的起飞重量只能是发动机推力的83%-85%,这就使飞机的有效载荷大大受到限制,影响了飞机的载油量和航程。同时,飞机垂直起飞时发动机工作在最大状态,耗油量极大,也限制了飞机的作战半径。例如“鹞”式飞机的载重量为1060千克时,作战半径只有92公里。所以在实际使用中,“鹞”式飞机尽量使用短距起飞的方式,以延长飞机的航程。因此,垂直起落

即将登场的航母电磁飞机弹射系统

即将登场的航母电磁飞机弹射系统 这是名为《即将登场的航母电磁飞机弹射系统》一文摘录,配图也是里面的,来源网上。有兴趣的自己去搜全文,极好的科普文章 从线圈电磁炮的发展历史来看,其实阻碍电磁弹射器的现实化并不是线性电机本身,而是强大而稳定的瞬发能源。美国航母上采用90年代nasa为电磁炮,激光类武器发展的惯性储能装置发展而来的盘式交流发电机。新设计的盘式交流发电机重约8.7吨,如果不算附加安全壳体设备重量只有6.9吨。盘式交流发电机的转子采用绕水平轴向的旋转,转子重约5177公斤,使用镍铬铁的铸件经热处理而成,上面用镍铬钛合金箍固定2对扇形轴心磁场的钕铁硼永磁体,镍铬钛合金箍具有很大的弹性预应力,确保稳定固定高速旋转中的磁体。转子旋转速度为6400转/分,一个转子可存储121兆焦的能量,储能密度比蒸汽弹射器得储气罐高一倍多,一台弹射器由4台盘式交流发电机供电,安装时一般采用成对布置,转子反向旋转,减小因高速旋转飞轮带来的陀螺效应和单向扭矩。弹射一次仅使用每一台发电机所储备的能量的22.5%,让飞轮转盘的转动速度从6400转/分下降到5200转/分,能量消耗可以在弹射循环的45s间歇中从主动力输出中获得补充。4蓄能发电机结构可以允许弹射器在其中一台发电机没有工作的情况下正常使用,由于航母装备4台弹射器,每两台弹射器的动力组会安装到一起,集中管理并允许其动力交联,出现6台以上发电机故障而影响弹射几率每300年才会重复一次。盘式交流发电机采用双定子设计,分别处于盘的两侧,每一个定子由280个线圈绕组的放射性槽构成,槽间是支撑结构和液体冷却板,由于采用双定子结构,每台发电机输出电源是6相的,最大输出电压1700伏,峰值电流高达6400安培,输出的匹配载荷为8.16万千瓦,输出为2133-1735赫兹的变频交流电。盘式储能交流发电机的设计效率为89.3%,这已经通过缩比模型验证,也就是说每一次弹射将会有127千瓦的能量以热量形式消耗掉了,发电机的定子线圈的电阻仅有8.6毫欧,这么大的功率会迅速将定子线圈加温数百度,所以设计了定子强制冷却。冷却板布置在定子的外侧,铸铝板上安转不锈钢管,内充WEG 混合液,采用流量为151升/分的泵强制散热,根据1/2模型试验测试所知,可以保证45s循环内铜芯温度稳定在84摄氏度,冷却板表面温度61度。 真正最为关键,技术难度最大的部件是高功率的循环变频器,这个技术是电磁弹射器的真正技术瓶颈,EMALS现在正处于关键性部件工程验证阶段,循环变频器仅仅是完成了计算机模拟,还没有开始发展工程样品,从设计而言,循环变频器是一个多路的桥式电路通过串联或者并联多路桥式电路来获得叠加和控制功率输出,他不使用开关和串联电容器,省略了电流分享电抗器,实现了完全数字化管理的无电弧的电能源变频管理输出。她每一相的输出能力为0到1520伏,峰值电流6400安培,可变化频率为0-644赫兹。循环变频器设计非常复杂,它不仅需要将4台交流发电机的24相输入电能准确的将正确的相位输入到正确的模块端口,还必须准确的管理298个直线电机的电磁模块,在滑动组运行到来前0.35秒内让电磁体充电,而在滑组经过后0.2秒之内停止送电并将电能输送到下一个模块。循环变频器工作时间虽然不长,每次弹射仅需工作10-15秒,但热耗

航母舰载机的起飞方式

航母舰载机的起飞方式 起飞方式是航母固定翼舰载机需要解决的重要课题,目前世界航母固定翼舰载机起飞方式有三种:大型航母通常采用弹射方式,英国的轻型航母采用的是滑跃和垂直起降混合方式,俄罗斯中型航母则采用大型固定翼战斗机滑跃式起飞。弹射起飞又分蒸汽弹射和电磁弹射两种,其中蒸汽弹射技术最为成熟。蒸汽弹射器最早是英国人根据德国人的技术发明的,美国海军后来购买了英国人的专利,并最终将其发展成熟;其原理是,以高压蒸汽推动活塞带动弹射轨道上的滑块,把联结于其上的舰载机投射出去。 张教授还介绍说,美国从最新型“福特”级航母开始,就放弃了蒸汽弹射技术而改用更先进的电磁弹射。美国是经历了六七十年以后才开始搞电磁弹射的,目前除了美国航空母舰,世界上只有法国“戴高乐”号航母从美国采购了弹射器。对美国而言,这是绝对不能随便输出的核心技术。至于英国采用的滑跃和垂直起降混合方式,则必须配合垂直起降式战斗机。这三种舰载机起飞方式中,俄罗斯的滑跃式起飞方式对舰载机性能要求最高。 张召忠少将说,20世纪70年代,苏联专家在落实蒸汽弹射起飞构想遇到诸多困难之后,开始研究大推重比、高机动性舰载机航母甲板水平起降技术。从方案提出到最终成功落实到“库兹涅佐夫”号航母上,苏联用了10多年时间,耗费了大量人力物力。所以说,苏

联航母舰载机滑跃起飞技术来之不易。而售前已完工70%的“瓦良格”号,其滑跃甲板与“库兹涅佐夫”号航母滑跃甲板几何参数相近,这对中方研究苏联航母设计经验,探索解决舰载机航母水平起降这一难题的途径,是个不错的参照物。另外,相较美国航母舰载机先进却复杂的蒸汽弹射起飞方式,苏联航母的滑跃起飞技术简单实用,其技术研发成本和风险控制成本相对较低,这也许是中国航母计划会考虑的因素。

航母弹射飞机起飞

航母弹射飞机起飞 目前,航母弹射飞机起飞的装置,使用最多的还是蒸汽弹射装置。考虑弹射问题,做了一点点初步的估算。这仅仅是一个粗线条的概算,有关结果,可能提供参考。 1,弹射过程加速度估算: 弹射末速度80 米/ 秒,相当时速288公里(160节),假设弹射加速长度100米(美国C—13—2弹射器), 按照V = (2aS)EXP0.5公式计算, 80 米/ 秒=(2a100米)EXP0.5 加速度 a =32 米/ 秒2=3.26 g (此处的g代表重力加速度,g =9.8米/ 秒2) 2,弹射运动时间估算: S = 0.5at2 S = 100米,a = 32 米/ 秒2 ,t = 2.6 秒 3,弹射过程功率估算: 30吨飞机,加速度为1g情况下需要30吨即30000公斤弹射力,100米弹射距离,做功3000000公斤米。弹射时间粗略视为3秒,则功率1000000公斤米/ 秒=13300马力(9790千瓦)。实际上弹射需要的加速度超过3g(按照前面1的估算),相应的功率约为3万千瓦。

一艘航母配备两条到四条弹射道,2-4个弹射器,最紧张时,四个弹射器都要投入工作。 4,弹射力估算: 弹射加速度a = 32 米/ 秒2 ,被弹射飞机起飞重量30吨情况下,由于弹射加速度a = 32 米/ 秒2 = 3.27 g,弹射力为30吨X 3.27 = 98吨。 5,美国C—13—2弹射器,轨道长度324英尺(99米),冲程306英尺(93米),气缸直径21英寸,冲程容积1527立方英尺,活塞与牵引器重量6350磅,里根号航母装备四套。蒸汽弹射 器每次弹射最大输出能量可达到95兆焦耳(95兆瓦秒,若弹 射在3秒内完成,则功率为32000千瓦,此数值与前面3的估 算结果接近),弹射器最短工作周期为45秒,平均每次弹射 耗用近700公斤蒸汽。 6,弹射气缸蒸汽压力估算: 设弹射力为98 吨,弹射气缸活塞直径为21 英寸(美国C—13 —2弹射器情况),换算为公制,活塞直径为21 X 2.54 = 53.3 厘米,活塞面积为2231 厘米2,使用双气缸,活塞面积加倍, 弹射蒸汽压强应当是22 公斤/ 厘米2,按照过去习惯的单位 就是22 大气压。工程上,22 大气压的参数,对于航母弹射装 置所需要的锅炉以及气缸,从技术层面来看是能够实现的。 下面是弹射器剖面示意图和实际结构照片。

航母电磁飞机弹射系统

即将登场的航母电磁飞机弹射系统 院系: 班级: 学号: 学生姓名:

火炮、火箭等发射装置大多属于化学发射器,它们在军事领域占有重要的地位。随着科学技术的发展, 产生了电磁发射技术EML ( Elect romagneticLaunch) 。电磁推进技术的原理早在19 世纪初就已有人提出,后经过几十年的探索与研究,人们相继研制出了各种电磁感应原理的直线发射装置或模型,但由于受相关研究领域技术的影响,上述模型的性能距工程实用尚存在着较大的差距。70 年代以后,超大功率脉冲技术和电子技术的飞速发展使电磁发射技术有了重大突破。1978 年澳大利亚的马歇尔等人用550MJ单极发电机作为电源和采用等离子体电枢在5m长的导轨炮上把3 g重的聚碳酸脂弹丸加速到了5. 9km/ s 的初速度。这个具有划时代意义的研究成果证明了用电磁力可以把较重的弹丸推进到高速的可能性,使世界各地的科学家受到极大的鼓舞和启发,由此也将电磁发射技术的研究推向了一个新阶段。 直线电磁发射器(又叫电炮) 按照其工作原理或工作方式可分为导轨型、线圈型和重接型。在线圈型原理的基础上,又发展出了电磁弹射技术。 一弹射器的原理和发展前景 1 线圈型电磁发射器的原理和特点 线圈型电磁发射器早期又称“同轴加速器”,一般是指用序列脉冲或交流电流产生运动磁场从而驱动带有线圈的弹丸或磁性材料弹丸的发射装置。由于工作的机理是利用驱动线圈和被加速物体之间的耦合磁场,因此线圈型电磁发射器的本质可以理解成直线电动机。 一个简单结构的线圈型电磁发射器的模型如图

1a 所示。一单匝的驱动线圈和一发射线圈同轴排列。发射线圈上以永磁或电励磁方式建立一恒定磁场,两个线圈之间的互感M 如图1b 所示。当驱动线圈中通以图1c 规律的电流时,发射线圈上始终要受到一个轴向力F ,从而使其加速,沿着X 轴的正方向前进。 一般地,为了减少加速力F 的波动和延长其加速行程,上述的驱动线圈和发射线圈都做成多匝结构,一个多匝线圈型电磁发射器的原理结构示意图如图2 所示。根据发射线圈上磁场的形成机理和驱动线圈的结构与控制方式,线圈型电磁发射器可分为多种类型,相应的特点如下表所示. 美国海军航母目前使用的飞机蒸汽弹射器不仅体积笨重、噪音大,而且能量效率

【CN109747856A】一种混合动力舰载机弹射器【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910167076.6 (22)申请日 2019.03.06 (71)申请人 银世德 地址 253408 山东省德州市宁津县杜集镇 银家村 (72)发明人 银世德  (51)Int.Cl. B64F 1/06(2006.01) (54)发明名称 一种混合动力舰载机弹射器 (57)摘要 本发明提供一种混合动力舰载机弹射器, 其特征是:将一个磁浮悬电磁弹射器单元和另一个 具有蒸汽弹射、气压弹射、炸药弹射、燃气弹射的 弹射器单元组合为一体,它的优点是:舰载机在 使用电磁弹射时,如果出现故障造成动力不足 时,通过计算机迅速打开蒸汽弹射、气压弹射、炸 药弹射和燃气弹射其中的一种,就能给舰载机瞬 间助力,使舰载机安全起飞升空,如果电磁弹射 器出现故障不能弹射时,也可以用后一种弹射方 法弹射, 将舰载机安全弹射起飞。权利要求书1页 说明书5页 附图4页CN 109747856 A 2019.05.14 C N 109747856 A

权 利 要 求 书1/1页CN 109747856 A 1. 一种混合动力舰载机弹射器,在飞行甲板牵引槽的下面两边各安装导轨(6),在导轨(6)上安装滑车(5)和横担(43),在横担(43)中间安装牵引器和挂钩(41),在牵引器和挂钩(41)下面,安装立杆(4), 在立杆(4)下面两个导轨(6)的中间,安装95m长的管形外气缸(15),并设置长90m,宽6cm的管形外气缸牵引槽(7),在管形外气缸(15)的后盖(2)中间,设置轴承孔,在轴承孔旁边设置输入口(22),在管形外气缸(15)周围设置若干个滚珠调整螺丝(16),设置注油孔(12),在管形内气缸(18)的上面,开一个宽6cm的螺旋管形内气缸牵引槽(9)长槽,在管形内气缸牵引槽(7)的两侧,设置一个长方形内密封槽(25)和长方形外密封槽(26),制造各两个波浪式片弹簧(30)和长方形铝合金密封条(29),将波浪式片弹簧(30)和长方形铝合金密封条(29),放入长方形密封槽(25)内,用螺丝钉对准长方形铝合金密封条(29)上的螺钉固定孔(33) 固定,管形内气缸(18)后端外圆上,设置环形密封槽和环形密封件(28),在管形内气缸(18)后端,安装大轴(1)和管形内气缸进气孔(21),管形内气缸(18)放入管形外气缸(15)内,大轴(1)用轴承固定在管形外气缸(15)后盖(2)上,在管形内气缸(18)内,以次放入减速弹簧(14)、减速弹簧盖(11)、归位弹簧(8)和活塞(3),将甲板牵引槽(44)、管形外气缸牵引槽(7)和管形内气缸牵引槽(9)后端对齐,并能使立杆(4) 前后移动,齿轮(24)与电动机变速齿轮啮合,电动机变速齿轮连接控制系统,在活塞将要到达弹射器上止点时,在活塞后端位置所对应的管形外气缸(15)和管形内气缸(18)的一侧,开一个前排气口(17),并安装排气管和消声器,固定好后盖(2)和前盖(13),安装好第一单元和第二单元的冷却系统,在立杆(4)两侧靠近牵引槽的位置,安装滚柱(31),在活塞(3)内设置排气涵道(35)、导管孔(36)、气门(23),在气门导杆(19)上设置卡簧槽(38),卡簧调整螺丝(37) 将钢柱(45)、卡簧(46)抵在在卡簧槽(38)上,在管形内气缸牵引槽(7)的两侧,设置一个长方形内密封槽(25)和长方形外密封槽(26),制造各两个波浪式片弹簧(30)和长方形铝合金密封条(29),将波浪式片弹簧(30)和长方形铝合金密封条(29),放入长方形密封槽(25)内,用螺丝钉对准长方形铝合金密封条(29)上的螺钉固定孔(33) 固定。 2

美国CVN 21航母与飞机弹射系统概述 转

美国CVN 21航母与飞机弹射系统概 述转 原文地址:美国CVN--21航母与飞机弹射系统概述(转)作者:一见如故 美国CVN-21航母与飞机弹射系统概述 选自[全球军事快讯] 合众国际社报道,标准的美国"尼米兹"级航空母舰每艘的造价约为六十亿美元,美国的下一代航空母舰CVN-21的造价大约是这个数字的两僧。后面还有战机、舰员培训以及支援和保护航空母舰的其它水面舰只的费用。 从理论上说,中国可能对美国海军在太平洋的传统优势构成挑战。有人认为,建造航空母舰会使中国的预算无法承受,但是,这种观点不能完全令人信服。 报道认为,如果中国选择这样做,他们可能会得到美国海军的帮助。基廷上将访华时曾说,如果中国决定这样做,美国将愿意助一臂之力。 美国有一派的观点欢迎中国投巨资建造航空母舰,理由是中国人可能会需要长达二十年的时间才能造出这些舰只和飞机,培训舰上人员,学习操作航空母舰的战术,他们将很难赶上已经有八十年航空母舰经验的美国海军。 另一些人认为,引诱中国建设这样一支海军是一个聪明的财政陷阱,会在未来几十年里使中国的国防预算无法承受并使之扭曲,未来中国的航母对美国占优势的隐形攻击潜艇来说也是巨大的目标。 还有一种观点认为,在隐形潜艇以及快速鱼雷和精密制导武器的时代,大型航空母舰已经过时。 有人认为,建造航空母舰会使中国的预算无法承受,但是,这种观点不能完全令人信服。

基廷指出,美国在这方面的经验领先全球,但美国海军在设计、建造航空 母舰、配备飞机和训练航海船员及飞行人员,仍要花十年以上的时间。基廷说:"如果中国要做这件事,将会是个非常艰难的工程。" 目前,蒸汽弹射器、阻拦索及大型升降机等关键技术,就算是海军强国也 很难掌握建造航母所有关键领域的技术,法国建造的"戴高乐"号核动力航母, 其蒸汽弹射器也是从美国进口的。 蒸汽弹射器实际就是一台往复式蒸汽机,只不过其动力冲程很长。蒸汽弹 射器由发射系统、蒸汽系统、拖索张紧系统、润滑及控制系统等部分组成。工 作时,由锅炉产生高压蒸汽,并把这种高压蒸汽储存在蒸汽室里,弹射前,用 拖索将舰载机钩在往复车上,一旦将高压蒸汽充入汽缸筒,蒸汽的巨大压力推 动活塞,活塞带动往复车,往复车带动舰载机飞速向前滑动,从而将飞机弹射 出去。如美国的C-13型蒸汽弹射器,可将36.3吨重的舰载机以185节(即339 公里/小时)的高速弹射出去。目前,美国海军的航空母舰弹射一架飞机仅需30 秒种。 为与发射系统配套,航空母舰的甲板上还设有喷气偏流板。(就是挡板)这 种安装在弹射台后方的偏流板又称为燃气导流板。飞机在起飞前,将支起这个 偏流板,用以挡住起飞时马力开得最大的喷气式舰载机向后喷射出的高温燃气流,以防对人员和甲板造成危害。每个弹射器后面有一组共3块偏流板。单发 动机的航母舰载机起飞时需支起3块偏流板。为防止高温燃气烧坏挡板,挡板 还装有供循环冷却水流动的格状水管。目前美国使用的这种水冷式喷气偏流板,当正在升起时能承受94.4千牛的喷气推力,若完全升起后,能承受400千牛的喷气推力。该板放下后与飞行甲板齐平,能承受31.572吨重的飞机在中等海况下从上面通过或静止不动地压在板上。在恶劣情况下,飞机一般不允许压在该 板上。 航母的蒸汽弹射器是一根70米长的钢管。当然是很多节接起来的。当它在工作的时候,蒸汽推动活塞在70米的距离上高速运行,把一架40吨质量的重 型舰载机在不到100米的距离上加速到足以升空的250千米每小时的速度,尽 管母舰航行的35节的速度和逆风获得的相速度可以减轻一些蒸汽弹射器的负担,但是毫无疑问,蒸汽弹射器就是一套高速高压长距离的气动活塞系统。

相关主题
文本预览