当前位置:文档之家› 数据结构-实验报告生成树

数据结构-实验报告生成树

数据结构-实验报告生成树
数据结构-实验报告生成树

(封面)

学生实验报告

学院:国际经贸学院

课程名称:数据结构

专业班级: 09电子商务

姓名:

学号:

学生实验报告

(经管类专业用)

一、实验目的及要求:

1、目的

学习并掌握深度优先搜索遍历和广度优先搜索遍历的形成过程,并了解生成树的相关概念及性质,学习如何画出深度优先生成树和广度优先生成树,并编写相关程序。

2、内容及要求

1)了解深度优先搜索(DFS)遍历与广度优先搜索(BFS)遍历的过程;

2)由深度优先遍历得到深度优先生成树,由广度优先遍历得到广度优先生成树;

3)学会编写构造相关生成树的程序并运行成功。

二、仪器用具:

三、实验方法与步骤:

1)编写能够输出从下图(无向图G)顶点3出发生成的深度优先生成树和广度优先生成树的程序代码;

无向图G

2)编写MAIN函数;

3)运行并判断结果;

4)整理并完成实验报告;

5)总结实验,提出建议。

四、实验结果与数据处理:

1)编写程序代码如下:

#include

#include

#include "graph.h"

extern void MatToList(MGraph,ALGraph *&);

extern void DispAdj(ALGraph *);

int visited[MAXV];

void DFS(ALGraph *G,int v)

{

ArcNode *p;

visited[v]=1;

p=G->adjlist[v].firstarc;

while (p!=NULL)

{

if (visited[p->adjvex]==0)

{

printf("<%d,%d> ",v,p->adjvex);

DFS(G,p->adjvex);

}

p=p->nextarc;

}

}

void BFS(ALGraph *G,int v)

{

ArcNode *p;

int queue[MAXV],front=0,rear=0;

int visited[MAXV];

int w,i;

for (i=0;in;i++)

visited[i]=0;

visited[v]=1;

rear=(rear+1)%MAXV;

queue[rear]=v;

while (front!=rear)

{

front=(front+1)%MAXV;

w=queue[front];

p=G->adjlist[w].firstarc;

while (p!=NULL)

{

if (visited[p->adjvex]==0)

{

printf("<%d,%d> ",w,p->adjvex);

visited[p->adjvex]=1;

rear=(rear+1)%MAXV;

queue[rear]=p->adjvex;

}

p=p->nextarc;

}

}

printf("\n");

}

2)根据无向图G以及题目要求编写MAIN函数代码如下:

void main()

{

int i,j;

MGraph g;

ALGraph *G;

int A[MAXV][11];

g.vexnum=11;g.arcnum=13;

for (i=0;i

for (j=0;j

A[i][j]=0;

A[0][3]=1;A[0][2]=1;A[0][1]=1;

A[1][5]=1;A[1][4]=1;

A[2][6]=1;A[2][5]=1;A[2][3]=1;

A[3][7]=1;

A[6][9]=1;A[6][8]=1;A[6][7]=1;

A[7][10]=1;

for (i=0;i

for (j=0;j

A[j][i]=A[i][j];

for (i=0;i

for (j=0;j

g.edges[i][j]=A[i][j];

G=(ALGraph *)malloc(sizeof(ALGraph));

MatToList(g,G);

printf("\n");

printf("图G的邻接表:\n");

DispAdj(G);

printf("\n");

for (i=0;i

visited[i]=0;

printf("深度优先生成树:");

DFS(G,3);printf("\n");

for (i=0;i

visited[i]=0;

printf("广度优先生成树:");

BFS(G,3);printf("\n");

}

3)如图所示:

4)运行结果如下图所示:

五、讨论与结论

生成树是一个连通图G的一个极小连通子图。其包含G的所有n个顶点,但只有n-1条边,并且是连通的。生成树可由遍历过程中所经过的边组成。由深度优先遍历得到的生成树称为深度优先生成树,由广度优先遍历得到的生成树称为广度优先生成树。

要注意分清相关概念,谨慎编写代码,最后通过MAIN函数调用子函数运行即可得到结果。

六、指导教师评语及成绩:

评语:

成绩:指导教师签名:

批阅日期:

数据结构实验报告格式

《数据结构课程实验》大纲 一、《数据结构课程实验》的地位与作用 “数据结构”是计算机专业一门重要的专业技术基础课程,是计算机专业的一门核心的关键性课程。本课程较系统地介绍了软件设计中常用的数据结构以及相应的存储结构和实现算法,介绍了常用的多种查找和排序技术,并做了性能分析和比较,内容非常丰富。本课程的学习将为后续课程的学习以及软件设计水平的提高打下良好的基础。 由于以下原因,使得掌握这门课程具有较大的难度: (1)内容丰富,学习量大,给学习带来困难; (2)贯穿全书的动态链表存储结构和递归技术是学习中的重点也是难点; (3)所用到的技术多,而在此之前的各门课程中所介绍的专业性知识又不多,因而加大了学习难度; (4)隐含在各部分的技术和方法丰富,也是学习的重点和难点。 根据《数据结构课程》课程本身的技术特性,设置《数据结构课程实验》实践环节十分重要。通过实验实践内容的训练,突出构造性思维训练的特征, 目的是提高学生组织数据及编写大型程序的能力。实验学时为18。 二、《数据结构课程实验》的目的和要求 不少学生在解答习题尤其是算法设计题时,觉得无从下手,做起来特别费劲。实验中的内容和教科书的内容是密切相关的,解决题目要求所需的各种技术大多可从教科书中找到,只不过其出现的形式呈多样化,因此需要仔细体会,在反复实践的过程中才能掌握。 为了帮助学生更好地学习本课程,理解和掌握算法设计所需的技术,为整个专业学习打好基础,要求运用所学知识,上机解决一些典型问题,通过分析、设计、编码、调试等各环节的训练,使学生深刻理解、牢固掌握所用到的一些技术。数据结构中稍微复杂一些的算法设计中可能同时要用到多种技术和方法,如算法设计的构思方法,动态链表,算法的编码,递归技术,与特定问题相关的技术等,要求重点掌握线性链表、二叉树和树、图结构、数组结构相关算法的设计。在掌握基本算法的基础上,掌握分析、解决实际问题的能力。 三、《数据结构课程实验》内容 课程实验共18学时,要求完成以下六个题目: 实习一约瑟夫环问题(2学时)

最小生成树实验报告

数据结构课程设计报告题目:最小生成树问题 院(系):计算机工程学院 学生姓名: 班级:学号: 起迄日期: 指导教师: 2011—2012年度第 2 学期 一、需求分析

1.问题描述: 在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。存储结构采用多种。求解算法多种。 2.基本功能 在n个城市之间建设网络,只需要架设n-1条线路,建立最小生成树即可实现最经济的架设方法。 程序可利用克鲁斯卡尔算法或prim算法生成最小生成树。 3.输入输出 以文本形式输出最小生成树,同时输出它们的权值。通过人机对话方式即用户通过自行选择命令来输入数据和生成相应的数据结果。 二、概要设计 1.设计思路: 因为是最小生成树问题,所以采用了课本上介绍过的克鲁斯卡尔算法和 prim算法两种方法来生成最小生成树。根据要求,需采用多种存储结构,所以我选择采用了邻接表和邻接矩阵两种存储结构。 2.数据结构设计: 图状结构: ADT Graph{ 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。 数据关系R:R={VR} VR={|v,w∈V且P(v,w),表示从v到w的弧, 谓词P(v,w)定义了弧的意义或信息} 基本操作: CreateGraph( &G, V, VR ) 初始条件:V是图的顶点集,VR是图中弧的集合。 操作结果:按V和VR的定义构造图G。 DestroyGraph( &G ) 初始条件:图G存在。 操作结果:销毁图G。 LocateVex( G, u ) 初始条件:图G存在,u和G中顶点有相同特征。 操作结果:若G中存在顶点u,则返回该顶点在图中位置;否则返 回其它信息。 GetVex( G, v ) 初始条件:图G存在,v是G中某个顶点。

哈夫曼树 实验报告

计算机科学与技术学院数据结构实验报告 班级2014级计算机1班学号20144138021 姓名张建华成绩 实验项目简单哈夫曼编/译码的设计与实现实验日期2016.1.5 一、实验目的 本实验的目的是进一步理解哈夫曼树的逻辑结构和存储结构,进一步提高使用理论知识指导解决实际问题的能力。 二、实验问题描述 利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码,此实验即设计这样的一个简单编/码系统。系统应该具有如下的几个功能: 1、接收原始数据。 从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存于文件hfmtree.dat中。 2、编码。 利用已建好的哈夫曼树(如不在内存,则从文件hfmtree.dat中读入),对文件中的正文进行编码,然后将结果存入文件codefile.dat中。 3、译码。 利用已建好的哈夫曼树将文件codefile.dat中的代码进行译码,结果存入文件textfile.dat中。 4、打印编码规则。 即字符与编码的一一对应关系。 5、打印哈夫曼树, 将已在内存中的哈夫曼树以直观的方式显示在终端上。 三、实验步骤 1、实验问题分析 1、构造哈夫曼树时使用静态链表作为哈夫曼树的存储。 在构造哈夫曼树时,设计一个结构体数组HuffNode保存哈夫曼树中各结点的信息,根据二叉树的性质可知,具有n个叶子结点的哈夫曼树共有2n-1个结点,所以数组HuffNode的大小设置为2n-1,描述结点的数据类型为: Typedef strcut { Int weight;/*结点权值*/ Int parent; Int lchild; Int rchild; }HNodeType; 2、求哈夫曼编码时使用一维结构数组HuffCode作为哈夫曼编码信息的存储。 求哈夫曼编码,实质上就是在已建立的哈夫曼树中,从叶子结点开始,沿结点的双亲链域回退到根结点,没回退一步,就走过了哈夫曼树的一个分支,从而得到一位哈夫曼码值,由于一个字符的哈夫曼编码是从根结点到相应叶子结点所经过的路径上各分支所组成的0、1序列,因此先得到的分支代码为所求编码的低位码,后得到的分支代码位所求编码的高位码,所以设计如下数据类型:

数据结构实验报告

数据结构实验报告 一.题目要求 1)编程实现二叉排序树,包括生成、插入,删除; 2)对二叉排序树进行先根、中根、和后根非递归遍历; 3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。 4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明在什么情况下二叉排序树效率高,为什么? 二.解决方案 对于前三个题目要求,我们用一个程序实现代码如下 #include #include #include #include "Stack.h"//栈的头文件,没有用上 typedefintElemType; //数据类型 typedefint Status; //返回值类型 //定义二叉树结构 typedefstructBiTNode{ ElemType data; //数据域 structBiTNode *lChild, *rChild;//左右子树域 }BiTNode, *BiTree; intInsertBST(BiTree&T,int key){//插入二叉树函数 if(T==NULL) { T = (BiTree)malloc(sizeof(BiTNode)); T->data=key; T->lChild=T->rChild=NULL; return 1; } else if(keydata){ InsertBST(T->lChild,key); } else if(key>T->data){ InsertBST(T->rChild,key); } else return 0; } BiTreeCreateBST(int a[],int n){//创建二叉树函数 BiTreebst=NULL; inti=0; while(i

霍夫曼树实验报告

实验二二叉树的遍历及霍夫曼编码 班级:计科1101班 学号:0909101605 姓名:杜茂鹏 2013年5月22日

一、实验目的 掌握二叉树的建立及遍历操作,霍夫曼编码基本操作及存储结构表示 二、实验内容 1. 系统要求包含以下功能 1)初始化:从终端读入字符集大小n,以及n个字符和n个权值(或者读入字符集和频度数据文件),建立哈夫曼树,并将哈夫曼树存入到文件HfmTree 中。 2)编码:利用已建好的哈夫曼树(如果不在内存中,则从文件中读入),从文件ToBeTran中读入原文,对原文进行编码,将编码后的结果存入文件CodeFile 中。 3)译码:利用已建好的哈夫曼树将文件CodeFile中的代码进行译码,结果存入文件TextFile中。 4)打印:打印输出哈夫曼树,显示ToBeTran, TextFile和CodeFile文件的内容。 三、实验要求 1.在上机前写出全部源程序; 2.能在机器上正确运行程序; 3.用户界面友好。 四、概要设计 1)首先动态分配数组存储霍夫曼树及存储霍夫曼编码表,然后从终端或文件读入霍夫曼树的字符变量及其频度,初始化建立霍夫曼树并将其写入文件HfmTree.txt中。 2)从指定的文件succe.txt中读入原文,利用已经编好的霍夫曼树对其编码,将编码结果写入文件Coding.txt保存。 3)利用已建好的哈夫曼树将文件Coding.txt中的代码进行译码,结果存入文件decoding.txt中。

五、测试数据: 2.原文内容“THIS IS MY PROGRAM” 六、详细设计 实验内容(原理、操作步骤、程序代码) //建立霍夫曼树,对原文进行编码、译码 #include #include #include #include typedef struct tree { char ch; int weight;//权值 int parent,lchild,rchild; }HTNode,*HuffmanTree;//动态分配数组存储霍夫曼树typedef char **HuffmanCode;//动态分配数组存储霍夫曼编码表void Select(HuffmanTree &HT,int* s1,int* s2,int n) { int j; int min1=10000; for(j=1;j<=n;j++) { if(HT[j].parent==0&&min1>HT[j].weight)

最小生成树的Prim算法提高型实验报告

黄冈师范学院 提高型实验报告 实验课题最小生成树的Prim算法 (实验类型:□综合性■设计性□应用性) 实验课程算法程序设计 实验时间 2010年12月24日 学生姓名周媛鑫 专业班级计科 0801 学号 200826140110

一.实验目的和要求 (1)根据算法设计需要, 掌握连通网的灵活表示方法; (2)掌握最小生成树的Prim算法; (3)熟练掌握贪心算法的设计方法; 二.实验条件 (1)硬件环境:实验室电脑一台 (2)软件环境:winTC 三.实验原理分析 (1)最小生成树的定义: 假设一个单位要在n个办公地点之间建立通信网,则连通n个地点只需要n-1条线路。可以用连通的无向网来表示n个地点以及它们之间可能设置的通信线路,其中网的顶点表示城市,边表示两地间的线路,赋于边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以表示一个通信网。其中一棵使总的耗费最少,即边的权值之和最小的生成树,称为最小生成树。 (2)构造最小生成树可以用多种算法。其中多数算法利用了最小生成树的下面一种简称为MST的性质:假设N=(V,{E})是一个连通网,U是顶点集V的一个非空子集。若(u,v)是一条具有最小权值(代价)的边,其中u∈U,v∈V-U,则必存在一棵包含边 (u.v)的最小生成树。 (3)普里姆(Prim)算法即是利用MST性质构造最小生成树的算法。算法思想如下: 假设N=(V,{E})和是连通网,TE是N上最小生成树中边的集合。算法从U={u0}( u0∈V),TE={}开始,重复执行下述操作:在所有u∈U,v∈V-U的边(u, v) ∈E 中找一条代价最小的边(u0, v0)并入集合TE,同时v0并入U,直到U=V为止。此时TE中必有n-1条边,则T=(V,{TE})为N的最小生成树。 四.实验步骤 (1)数据结构的设计: 采用邻接矩阵的存储结构来存储无向带权图更利于实现及操作: 邻接矩阵的抽象数据结构定义: #define INFINITY INT_MAX //最大值 #define MAX_ERTEX_NUM 20 //最大顶点数 typedef enum {DG,DN,UDG,UDN}GraphKind;//{有向图,有向网,无向网,无向图} typedef struct Arc Cell{ VRType adj ; // VRType 是顶点关系的类型。对无权图用1和0表示相邻否;InfoType * info; //该弧相关信息的指针 }ArcCell ,AdjMatrix [ MAX_VERTEX_NUM][MAX_VERTEX_NUM]; Typedef struct { VertexType vexs [ MAX_VERTEX_NUM] ; //顶点向量

数据结构实验报告全集

数据结构实验报告全集 实验一线性表基本操作和简单程序 1.实验目的 (1)掌握使用Visual C++ 6.0上机调试程序的基本方法; (2)掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。 2.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)认真阅读和掌握本章相关内容的程序。 (3)上机运行程序。 (4)保存和打印出程序的运行结果,并结合程序进行分析。 (5)按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果 实验代码: 1)头文件模块 #include iostream.h>//头文件 #include//库头文件-----动态分配内存空间 typedef int elemtype;//定义数据域的类型 typedef struct linknode//定义结点类型 { elemtype data;//定义数据域 struct linknode *next;//定义结点指针 }nodetype; 2)创建单链表

nodetype *create()//建立单链表,由用户输入各结点data域之值,//以0表示输入结束 { elemtype d;//定义数据元素d nodetype *h=NULL,*s,*t;//定义结点指针 int i=1; cout<<"建立一个单链表"<> d; if(d==0) break;//以0表示输入结束 if(i==1)//建立第一个结点 { h=(nodetype*)malloc(sizeof(nodetype));//表示指针h h->data=d;h->next=NULL;t=h;//h是头指针 } else//建立其余结点 { s=(nodetype*) malloc(sizeof(nodetype)); s->data=d;s->next=NULL;t->next=s; t=s;//t始终指向生成的单链表的最后一个节点

哈夫曼树的实验报告1

一、需求分析 1、本演示程序实现Haffman编/译码器的作用,目的是为信息收发站提供一个编/译系统, 从而使信息收发站利用Haffman编码进行通讯,力求达到提高信道利用率,缩短时间,降低成本等目标。系统要实现的两个基本功能就是:①对需要传送的数据预先编码; ②对从接收端接收的数据进行译码; 2、本演示程序需要在终端上读入n个字符(字符型)及其权值(整形),用于建立Huffman 树,存储在文件hfmanTree.txt中;如果用户觉得不够清晰还可以打印以凹入表形式显示的Huffman树; 3、本演示程序根据建好的Huffman树,对文件的文本进行编码,结果存入文件CodeFile 中;然后利用建好的Huffman树将文件CodeFile中的代码进行译码,结果存入文件TextFile中;最后在屏幕上显示代码(每行50个),同时显示对CodeFile中代码翻译后的结果; 4、本演示程序将综合使用C++和C语言; 5、测试数据: (1)教材例6-2中数据:8个字符,概率分别是0.05,0.29,0.07,0.08,0.14,0.23,0.03, 0.11,可将其的权值看为5,29,7,8,14,23,3,11 (2)用下表给出的字符集和频度的实际统计数据建立Haffman树,并实现以下报文的编码和 一、概要设计 1、设定哈夫曼树的抽象数据类型定义 ADT Huffmantree{ 数据对象:D={a i| a i∈Charset,i=1,2,3,……n,n≥0} 数据关系:R1={< a i-1, a i >| a i-1, a i∈D, i=2,3,……n} 基本操作: Initialization(&HT,&HC,w,n,ch) 操作结果:根据n个字符及其它们的权值w[i],建立Huffman树HT,用字符数组ch[i]作为中间存储变量,最后字符编码存到HC中; Encodeing(n) 操作结果:根据建好的Huffman树,对文件进行编码,编码结果存入到文件CodeFile 中 Decodeing(HT,n) 操作结果:根据已经编译好的包含n个字符的Huffman树HT,将文件的代码进行翻译,结果存入文件TextFile中 } ADT Huffmantree

赫夫曼树实验报告

实验报告 实验原理: 霍夫曼编码(Huffman Coding)是一种编码方式,是一种用于无损数据压缩的熵编码(权编码)算法。1952年,David A. Huffman在麻省理工攻读博士时所发明的。 在计算机数据处理中,霍夫曼编码使用变长编码表对源符号(如文件中的一个字母)进行编码,其中变长编码表是通过一种评估来源符号出现机率的方法得到的,出现机率高的字母使用较短的编码,反之出现机率低的则使用较长的编码,这便使编码之后的字符串的平均长度、期望值降低,从而达到无损压缩数据的目的。 例如,在英文中,e的出现机率最高,而z的出现概率则最低。当利用霍夫曼编码对一篇英文进行压缩时,e极有可能用一个比特来表示,而z则可能花去25个比特(不是26)。用普通的表示方法时,每个英文字母均占用一个字节(byte),即8个比特。二者相比,e使用了一般编码的1/8的长度,z则使用了3倍多。倘若我们能实现对于英文中各个字母出现概率的较准确的估算,就可以大幅度提高无损压缩的比例。 霍夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树。所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数)。树的路径长度是从树根到每一结点的路径长度之和,记为WPL=(W1*L1+W2*L2+W3*L3+...+Wn*Ln),N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,...n)。 可以证明霍夫曼树的WPL是最小的。 实验目的: 本实验通过编程实现赫夫曼编码算法,使学生掌握赫夫曼树的构造方法,理解树这种数据结构的应用价值,并能熟练运用C语言的指针实现构建赫夫曼二叉树,培养理论联系实际和自主学习的能力,加强对数据结构的原理理解,提高编程水平。 实验内容: (1)实现输入的英文字符串输入,并设计算法分别统计不同字符在该字符串中出现的次数,字符要区分大小写;

数据结构实验报告模板

2009级数据结构实验报告 实验名称:约瑟夫问题 学生姓名:李凯 班级:21班 班内序号:06 学号:09210609 日期:2010年11月5日 1.实验要求 1)功能描述:有n个人围城一个圆圈,给任意一个正整数m,从第一个人开始依次报数,数到m时则第m个人出列,重复进行,直到所有人均出列为止。请输出n个人的出列顺序。 2)输入描述:从源文件中读取。 输出描述:依次从显示屏上输出出列顺序。 2. 程序分析 1)存储结构的选择 单循环链表 2)链表的ADT定义 ADT List{ 数据对象:D={a i|a i∈ElemSet,i=1,2,3,…n,n≧0} 数据关系:R={< a i-1, a i>| a i-1 ,a i∈D,i=1,2,3,4….,n} 基本操作: ListInit(&L);//构造一个空的单链表表L ListEmpty(L); //判断单链表L是否是空表,若是,则返回1,否则返回0. ListLength(L); //求单链表L的长度 GetElem(L,i);//返回链表L中第i个数据元素的值; ListSort(LinkList&List) //单链表排序 ListClear(&L); //将单链表L中的所有元素删除,使单链表变为空表 ListDestroy(&L);//将单链表销毁 }ADT List 其他函数: 主函数; 结点类; 约瑟夫函数 2.1 存储结构

[内容要求] 1、存储结构:顺序表、单链表或其他存储结构,需要画示意图,可参考书上P59 页图2-9 2.2 关键算法分析 结点类: template class CirList;//声明单链表类 template class ListNode{//结点类定义; friend class CirList;//声明链表类LinkList为友元类; Type data;//结点的数据域; ListNode*next;//结点的指针域; public: ListNode():next(NULL){}//默认构造函数; ListNode(const Type &e):data(e),next(NULL){}//构造函数 Type & GetNodeData(){return data;}//返回结点的数据值; ListNode*GetNodePtr(){return next;}//返回结点的指针域的值; void SetNodeData(Type&e){data=e;}//设置结点的数据值; void SetNodePtr(ListNode*ptr){next=ptr;} //设置结点的指针值; }; 单循环链表类: templateclass CirList { ListNode*head;//循环链表头指针 public: CirList(){head=new ListNode();head->next=head;}//构造函数,建立带头节点的空循环链表 ~CirList(){CirListClear();delete head;}//析构函数,删除循环链表 void Clear();//将线性链表置为空表 void AddElem(Type &e);//添加元素 ListNode *GetElem(int i)const;//返回单链表第i个结点的地址 void CirListClear();//将循环链表置为空表 int Length()const;//求线性链表的长度 ListNode*ListNextElem(ListNode*p=NULL);//返回循环链表p指针指向节点的直接后继,若不输入参数,则返回头指针 ListNode*CirListRemove(ListNode*p);//在循环链表中删除p指针指向节点的直接后继,且将其地址通过函数值返回 CirList&operator=(CirList&List);//重载赋

实验报告

算法与数据结构 实验报告 系(院):计算机科学学院 专业班级:软工11102 姓名:潘香杰 学号: 201104449 班级序号: 18 指导教师:詹泽梅老师 实验时间:2013.6.17 - 2013.6.29 实验地点:4号楼5楼机房

目录 1、课程设计目的...................................... 2、设计任务.......................................... 3、设计方案.......................................... 4、实现过程.......................................... 5、测试.............................................. 6、使用说明.......................................... 7、难点与收获........................................ 8、实现代码.......................................... 9、可改进的地方.....................................

算法与数据结构课程设计是在学完数据结构课程之后的实践教学环节。本实践教学是培养学生数据抽象能力,进行复杂程序设计的训练过程。要求学生能对所涉及问题选择合适的数据结构、存储结构及算法,并编写出结构清楚且正确易读的程序,提高程序设计基本技能和技巧。 一.设计目的 1.提高数据抽象能力。根据实际问题,能利用数据结构理论课中所学到的知识选择合适的逻辑结构以及存储结构,并设计出有效解决问题的算法。 2.提高程序设计和调试能力。学生通过上机实习,验证自己设计的算法的正确性。学会有效利用基本调试方法,迅速找出程序代码中的错误并且修改。 3.初步了解开发过程中问题分析、整体设计、程序编码、测试等基本方法和技能。二.设计任务 设计一个基于DOS菜单的应用程序。要利用多级菜单实现各种功能。内容如下: ①创建无向图的邻接表 ②无向图的深度优先遍历 ③无向创建无向图的邻接矩阵 ④无向图的基本操作及应用 ⑤图的广度优先遍历 1.有向图的基本操作及应用 ①创建有向图的邻接矩阵 ②创建有向图的邻接表 ③拓扑排序 2.无向网的基本操作及应用 ①创建无向网的邻接矩阵 ②创建无向网的邻接表 ③求最小生成树 3.有向网的基本操作及应用 ①创建有向网的邻接矩阵 ②创建有向网的邻接表 ③关键路径 ④单源最短路径 三.设计方案 第一步:根据设计任务,设计DOS菜单,菜单运行成果如图所示:

哈夫曼树实验报告

哈夫曼树实验报告 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

计算机科学与技术学院数据结构实验报告 班级 2014级计算机1班学号姓名张建华成绩 实验项目简单哈夫曼编/译码的设计与实现实验日期一、实验目的 本实验的目的是进一步理解哈夫曼树的逻辑结构和存储结构,进一步提高使用理论知识指导解决实际问题的能力。 二、实验问题描述 利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码,此实验即设计这样的一个简单编/码系统。系统应该具有如下的几个功能: 1、接收原始数据。 从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存于文件中。 2、编码。 利用已建好的哈夫曼树(如不在内存,则从文件中读入),对文件中的正文进行编码,然后将结果存入文件中。 3、译码。 利用已建好的哈夫曼树将文件中的代码进行译码,结果存入文件中。 4、打印编码规则。 即字符与编码的一一对应关系。 5、打印哈夫曼树, 将已在内存中的哈夫曼树以直观的方式显示在终端上。 三、实验步骤 1、实验问题分析 1、构造哈夫曼树时使用静态链表作为哈夫曼树的存储。 在构造哈夫曼树时,设计一个结构体数组HuffNode保存哈夫曼树中各结点的信息,根据二叉树的性质可知,具有n个叶子结点的哈夫曼树共有2n-1个结点,所以数组HuffNode的大小设置为2n-1,描述结点的数据类型为: Typedef strcut { Int weight;/*结点权值*/ Int parent; Int lchild; Int rchild; }HNodeType; 2、求哈夫曼编码时使用一维结构数组HuffCode作为哈夫曼编码信息的存储。 求哈夫曼编码,实质上就是在已建立的哈夫曼树中,从叶子结点开始,沿结点的双亲链域回退到根结点,没回退一步,就走过了哈夫曼树的一个分支,从而得到一位哈夫曼码值,由于一个字符的哈夫曼编码是从根结点到相应叶子结点所经过的路

最小生成树-实验报告

实验五最小生成树 一、需求分析 1、本程序の目の是要建设一个最经济の网,,输出相应の最小生成树。在这里都用整型数来代替。 2、测试数据 见下程序。 二、概要设计 主程序: int main() { 初始化; while (条件) { 接受命令; 处理命令; } return 0; } 三、详细设计 #include//头文件 using namespace std; #define MAX_VERTEX_NUM 20//最大结点数 #define MAX 200 typedef struct Close//结构体

{ char adjvex; int lowcost; }Close,close[MAX_VERTEX_NUM]; typedef struct ArcNode { int adjvex; ArcNode *nextarc; int info; }ArcNode; typedef struct VNode { char data; ArcNode *firstarc; }VNode,AdjList[MAX_VERTEX_NUM]; typedef struct { AdjList verties; int vexnum,arcnum; }ALGraph; ALGraph G;//对象G int LocateVek(ALGraph ,char );//返回结点位置 int minimum(close);//返回最小数 void MinSpanTree_PRIM(ALGraph,char);//最小生成树 void Create(ALGraph &);//创建邻接表 int main() { char a;int i=1; Create(G); /*for(int i=1;i<=G.vexnum;i++) { for(s=G.verties[i].firstarc;s!=NULL;s=s->nextarc) cout<adjvex].data<<"===="<info<>a; MinSpanTree_PRIM(G,a); cout<<"如果结束输入'0',否则输入'1':"; cin>>i; } return 0; }

离散数学 最小生成树

实验五 实验名称: 得到最小生成树 实验目的: 1.熟悉地掌握计算机科学技术常用的离散数学中的概念、性质和运算;通过实验提高学生编写实验报告、总结实验结果的能力;使学生具备程序设计的思想,能够独立完成简单的算法设计和分析。 2.掌握图论中的最小生成树及Prim 和 Kruskal 算法等,进一步能用它们来解决实际问题。 实验内容: 输入一个图的权矩阵,得到该图的生成树,用Kruskal算法的最小生成树,用Prim算法的最小生成树。

Kruskal算法 假设T中的边和顶点均涂成红色,其余边为白色。开始时G中的边均为白色。 1)将所有顶点涂成红色; 2)在白色边中,挑选一条权最小的边,使其与红色边不形成圈,将该白色边涂红; 3)重复2)直到有n-1条红色边,这n-1条红色边便构成最小生成树T的边集合。 Prim算法 假设V是图中顶点的集合,E是图中边的集合,TE为最小生成树中的边的集合,则prim算法通过以下步骤可以得到最小生成树: 1)初始化:U={u 0},TE={f}。此步骤设立一个只有结点u 0的结点集U和一个空的边集TE作为最小生成树的初始形态,在随后的算法执行中,这个形态会不断的发生变化,直到得到最小生成树为止。 2)在所有u∈U,v∈V-U的边(u,v)∈E中,找一条权最小的边(u 0,v 0),将此边加进集合TE中,并将此边的非U中顶点加入U中。此步骤的功能是在边集E中找一条边,要求这条边满足以下条件:首先边的两个顶点要分别在顶点集合U和V-U 中,其次边的权要最小。找到这条边以后,把这条边放到边集TE中,并把这条边上不在U中的那个顶点加入到U中。这一步骤在算法中应执行多次,每执行一次,集合TE和U都将发生变化,分别增加一条边和一个顶点,因此,TE和U是两个动态的集合,这一点在理解算法时要密切注意。 3)如果U=V,则算法结束;否则重复步骤2。可以把本步骤看成循环终止条件。我们可以算出当U=V时,步骤2共执行了n-1次(设n为图中顶点的数目),TE中也增加了n-1条边,这n-1条边就是需要求出的最小生成树的边。

哈夫曼树实验报告

数据结构实验报告 实验名称:实验三哈夫曼树 学生姓名: 班级: 班内序号: 学号: 日期: 程序分析: 存储结构:二叉树 程序流程: template class BiTree { public: ) 1.初始化链表的头结点

2.获得输入字符串的第一个字符,并将其插入到链表尾部,n=1(n记录的是链 表中字符的个数) 3.从字符串第2个字符开始,逐个取出字符串中的字符 将当前取出的字符与链表中已经存在的字符逐个比较,如果当前取出的 字符与链表中已经存在的某个字符相同,则链表中该字符的权值加1。 如果当前取出的字符与链表中已经存在的字符都不相同,则将其加入到 链表尾部,同时n++ =n(tSize记录链表中字符总数,即哈夫曼树中叶子节点总数) 5.创建哈夫曼树 6.销毁链表 源代码: void HuffmanTree::Init(string Input) { Node *front=new Node; 建哈夫曼树(void HuffmanTree::CreateCodeTable(Node *p)) 算法伪代码: 1.创建一个长度为2*tSize-1的三叉链表 2.将存储字符及其权值的链表中的字符逐个写入三叉链表的前tSize个结点 的data域,并将对应结点的孩子域和双亲域赋为空 3.从三叉链表的第tSize个结点开始,i=tSize 3.1从存储字符及其权值的链表中取出两个权值最小的结点x,y,记录其 下标x,y。 3.2将下标为x和y的哈夫曼树的结点的双亲设置为第i个结点 3.3将下标为x的结点设置为i结点的左孩子,将下标为y的结点设置为 i结点的右孩子,i结点的权值为x结点的权值加上y结点的权值,i 结点的双亲设置为空 4. 根据哈夫曼树创建编码表

数据结构实验报告及心得体会

2011~2012第一学期数据结构实验报告 班级:信管一班 学号:201051018 姓名:史孟晨

实验报告题目及要求 一、实验题目 设某班级有M(6)名学生,本学期共开设N(3)门课程,要求实现并修改如下程序(算法)。 1. 输入学生的学号、姓名和 N 门课程的成绩(输入提示和输出显示使用汉字系统), 输出实验结果。(15分) 2. 计算每个学生本学期 N 门课程的总分,输出总分和N门课程成绩排在前 3 名学 生的学号、姓名和成绩。 3. 按学生总分和 N 门课程成绩关键字升序排列名次,总分相同者同名次。 二、实验要求 1.修改算法。将奇偶排序算法升序改为降序。(15分) 2.用选择排序、冒泡排序、插入排序分别替换奇偶排序算法,并将升序算法修改为降序算法;。(45分)) 3.编译、链接以上算法,按要求写出实验报告(25)。 4. 修改后算法的所有语句必须加下划线,没做修改语句保持按原样不动。 5.用A4纸打印输出实验报告。 三、实验报告说明 实验数据可自定义,每种排序算法数据要求均不重复。 (1) 实验题目:《N门课程学生成绩名次排序算法实现》; (2) 实验目的:掌握各种排序算法的基本思想、实验方法和验证算法的准确性; (3) 实验要求:对算法进行上机编译、链接、运行; (4) 实验环境(Windows XP-sp3,Visual c++); (5) 实验算法(给出四种排序算法修改后的全部清单); (6) 实验结果(四种排序算法模拟运行后的实验结果); (7) 实验体会(文字说明本实验成功或不足之处)。

三、实验源程序(算法) Score.c #include "stdio.h" #include "string.h" #define M 6 #define N 3 struct student { char name[10]; int number; int score[N+1]; /*score[N]为总分,score[0]-score[2]为学科成绩*/ }stu[M]; void changesort(struct student a[],int n,int j) {int flag=1,i; struct student temp; while(flag) { flag=0; for(i=1;ia[i+1].score[j]) { temp=a[i]; a[i]=a[i+1]; a[i+1]=temp; flag=1; } for(i=0;ia[i+1].score[j]) { temp=a[i]; a[i]=a[i+1]; a[i+1]=temp; flag=1;

哈夫曼树及其操作-数据结构实验报告(2)

电子科技大学 实验报告 课程名称:数据结构与算法 学生姓名:陈*浩 学号:************* 点名序号: *** 指导教师:钱** 实验地点:基础实验大楼 实验时间: 2014-2015-2学期 信息与软件工程学院

实验报告(二) 学生姓名:陈**浩学号:*************指导教师:钱** 实验地点:科研教学楼A508实验时间:一、实验室名称:软件实验室 二、实验项目名称:数据结构与算法—树 三、实验学时:4 四、实验原理: 霍夫曼编码(Huffman Coding)是一种编码方式,是一种用于无损数据压缩的熵编码(权编码)算法。1952年,David A. Huffman在麻省理工攻读博士时所发明的。 在计算机数据处理中,霍夫曼编码使用变长编码表对源符号(如文件中的一个字母)进行编码,其中变长编码表是通过一种评估来源符号出现机率的方法得到的,出现机率高的字母使用较短的编码,反之出现机率低的则使用较长的编码,这便使编码之后的字符串的平均长度、期望值降低,从而达到无损压缩数据的目的。 例如,在英文中,e的出现机率最高,而z的出现概率则最低。当利用霍夫曼编码对一篇英文进行压缩时,e极有可能用一个比特来表示,而z则可能花去25个比特(不是26)。用普通的表示方法时,每个英文字母均占用一个字节(byte),即8个比特。二者相比,e使用了一般编码的1/8的长度,z则使用了3倍多。倘若我们能实现对于英文中各个字母出现概率的较准确的估算,就可以大幅度提高无损压缩的比例。 霍夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树。所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数)。树的路径长度是从树根到每一结点的路径长度之和,记为WPL=(W1*L1+W2*L2+W3*L3+...+Wn*Ln),N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,...n)。 可以证明霍夫曼树的WPL是最小的。

Prim最小生成树算法实验报告材料

算法分析与设计之Prim 学院:软件学院学号:201421031059 :吕吕 一、问题描述 1.Prim的定义 Prim算法是贪心算法的一个实例,用于找出一个有权重连通图中的最小生成树,即:具有最小权重且连接到所有结点的树。(强调的是树,树是没有回路的)。 2.实验目的 选择一门编程语言,根据Prim算法实现最小生成树,并打印最小生成树权值。 二、算法分析与设计 1.Prim算法的实现过程 基本思想:假设G=(V,E)是连通的,TE是G上最小生成树中边的集合。算法从U ={u0}(u0∈V)、TE={}开始。重复执行下列操作: 在所有u∈U,v∈V-U的边(u,v)∈E中找一条权值最小的边(u0,v0)并入集合TE中,同时v0并入U,直到V=U为止。 此时,TE中必有n-1条边,T=(V,TE)为G的最小生成树。 Prim算法的核心:始终保持TE中的边集构成一棵生成树。 2.时间复杂度 Prim算法适合稠密图,其时间复杂度为O(n^2),其时间复杂度与边得数目无关,N 为顶点数,而看ruskal算法的时间复杂度为O(eloge)跟边的数目有关,适合稀疏图。 三、数据结构的设计 图采用类存储,定义如下: class Graph { private: int *VerticesList; int **Edge; int numVertices; int numEdges; int maxVertices; public: Graph(); ~Graph(); bool insertVertex(const int vertex); bool insertEdge(int v1,int v2,int cost); int getVertexPos(int vertex); int getValue(int i); int getWeight(int v1,int v2); int NumberOfVertices();

数据结构实验报告图实验

图实验 一,邻接矩阵的实现 1.实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现 2.实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历 3.设计与编码 #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ } void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; int vertexNum, arcNum; }; #endif #include using namespace std; #include "" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0;

相关主题
文本预览
相关文档 最新文档