当前位置:文档之家› 数学物理方程复习资料

数学物理方程复习资料

数学物理方程复习资料
数学物理方程复习资料

数学物理方法学习心得

竭诚为您提供优质文档/双击可除数学物理方法学习心得 篇一:数学物理方程的感想 数学物理方程的感想 通过对数学物理方程一学期的学习,我深深的感受到数学的伟大与博大精深。 当应用数学发展到一定高度时,就会变得越来越难懂,越来越抽象,没有多少实际的例子来说明;物理正好也要利用数学来进行解释和公式推导,所以就出现了数学物理方法。刚开始到结束这门课程都成了我的一大问题。很难理解它的真正意义(含义),做题不致从何入手,学起来越来越费劲。让我很是绞尽脑汁。 后来由于老师耐心的指导与帮助下我开始有了点理解。用数学物理方法来解释一些物理现象,列出微分方程,当然这些微分方程是以物理的理论列出来的,如果不借助于物理方法,数学也没有什么好办法来用于教学和实践,而物理的理论也借助于数学方法来列出方程,解出未知的参数。这就是数学物理方法的根本实质所在。真正要学好数学物理方程

不仅要数学好物理也不能够太差。 接下来我想先对数学物理方程做一个简单的介绍与解 释说明。数学物理方程——描述许多自然现象的数学形式都可以是偏微分方程式 特别是很多重要的物理力学及工程过程的基本规律的 数学描述都是偏微分方程,例如流体力学、电磁学的基本定律都是如此。这些反映物理及工程过程的规律的偏微分方程人们对偏微分方程的研究,从微分学产生后不久就开始了。例如,18世纪初期及对弦线的横向振动研究,其后,对热传导理论的研究,以及和对流体力学、对位函数的研究,都获得相应的数学物理方程信其有效的解法。到19世纪中叶,进一步从个别方程的深入研究逐渐形成了偏微分的一般理论,如方程的分类、特征理论等,这便是经典的偏微分方程理论的范畴。 然而到了20世纪随着科学技术的不断发展,在科学实践中提出了数学物理方程的新问题,电子计算机的出现为数学物理方程的研究成果提供了强有力的实现手段。又因为数学的其他分支(如泛函分析、拓扑学、群论、微分几何等等)也有了迅速发 展,为深入研究偏微分方程提供了有力的工具。因而,20世纪关于数学物理方程的研究有了前所未有的发展,这些发展呈如下特点和趋势:

数学物理方法期末复习笔记

《热力学统计物理》期末复习 一、简答题 1、写出焓、自由能、吉布斯函数的定义式及微分表达式(只考虑体积变化功) 答:焓的定义H=U+PV,焓的全微分dH=TdS+VdP; 自由能的定义F=U-TS,自由能的全微分dF=-SdT-PdV; 吉布斯函数的定义G=U-TS+PV,吉布斯函数的全微分dG=-SdT+VdP。 2、什么是近独立粒子和全同粒子?描写近独立子系统平衡态分布有哪几种? 答:近独立子系统指的是粒子之间的相互作用很弱,相互作用的平均能量远小于单个粒子的平均能量,因而可以忽略粒子之间的相互作用。全同粒子组成的系统就是由具有完全相同的属性(相同的质量、电荷、自旋等)的同类粒子组成的系统。描写近独立子系统平衡态分布有费米-狄拉克分布、玻色-爱因斯坦分布、玻耳兹曼分布。 3、简述平衡态统计物理的基本假设。 答:平衡态统计物理的基本假设是等概率原理。等概率原理认为,对于处于平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的。它是统计物理的基本假设,它的正确性由它的种种推论都与客观实际相符而得到肯定。 4、什么叫特性函数?请写出简单系统的特性函数。 答:马休在1869年证明,如果适当选择独立变量(称为自然变量),只要知道一个热力学函数,就可以通过求偏导数

而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。这个热力学函数称为特性函数。简单系统的特性函数有内能U=U (S 、V ),焓H=H (S 、P ),自由能F=F (T 、V ),吉布斯函数G=G (T 、P )。 5、什么是μ空间?并简单介绍粒子运动状态的经典描述。 答:为了形象的描述粒子的运动状态,用r r p p q q ,,,,11 ;共2r 个变量为直角坐标,构成一个2r 维空间,称为μ空间。粒子在某一时刻的力学运动状态()r r p p q q ,,,,11 ;可用μ空间的一个点表示。 6、试说明应用经典能量均分定理求得的理想气体的内能和热容量中哪些结论与实验不符(至少例举三项)。 答:第一、原子内的电子对气体的热容量为什么没有贡献;第二、双原子分子的振动在常温范围内为什么对热容量没有贡献;第三、低温下氢的热容量所得结果与实验不符。这些结果都要用量子理论才能解释。 7、写出玻耳兹曼关系,并据此给出熵函数的统计意义。 答:玻耳兹曼关系:S=k lnΩ 熵函数的统计意义:微观态数的多少反映系统有序程度的高低。微观态数增加就是有序程度的降低或是混乱程度增加,相应地熵增加;反之,微观态数减少就是有序程度的增加或混乱度减少,相应地熵减少。“熵是度量系统有序程度的量”有了明确定量意义。 8、 简述开系、闭系以及孤立系的定义。 答:热力学研究的对象是由大量微观粒子(分子或其它粒子)组成的宏观物质系统。与系统发生相互作用的其它物

数学学习方法及经验总结

数学学习方法及经验总结 数学学习方法及经验总结 一、预习、上课 用不用预习,实在话,可预习也可不预习。我一般有时间有兴趣就看看,或者把要点扫一遍。我是赞同预习的,教授的课一般观点比较高,思维跳跃比较大,只有预习了才能更准确地把握所要讲述的内容(或论题)。预习可以采取随意的方式,可以提前几天,几周,一、两个月预习,可以看一节,一章或一本书。不过一般提前几天,几节课的预习方式是 fast-reading 或 scanning ,即浏览一下,不必深究,大概有个整体印象就行。 上课要眼到,耳到,手到,脑到,心到。即认真看老师板书,认真听讲,认真做好记录,脑子里记着,心里认真体会、领悟。 上课我是记笔记的,记的主要是老师的思路,分析问题的角度以及方法,对某个问题的见解,还有的是好记性不如个烂笔头,多写一遍,记忆深刻些。不过记得要快,一边写一边想。大一老师给了充足的时间让我们记笔记,还是写一下好。后来除了记老师补充的问题外,还要记一下老师的思路、思维方式(想法)。 二、自学能力及功夫修炼(重要) 1、读书问题 ①教材:学校发一套,自己每门课应当再选一两套作为伴随教材,若有余力可以再选择几套外国教材作为补充教材。教材应当作为主要的书来读,一字一句考虑理解清楚,不能模棱两可。定义定理固然重要,但是证明和例题同样重要,所以都要彻底掌握。教材课后题是要做的,而且最好能独立完成其中一半以上。最好是正文看完就做这节的习题,思考整理一下,处理完了再走下一节。做习题是重要的一环,我们要锻炼分析问题解决问题的能力,这主要由做习题来实现,同时遇到问题快点下手解决,不要大眼瞪小眼,KCB齿轮油泵迟迟不动作,干想。做习题过程如下:

数学物理方程谷超豪版第二章课后答案

第 二 章 热 传 导 方 程 §1 热传导方程及其定解问题的提 1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律 dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。 解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。记杆的截面面积4 2 l π为S 。 由假设,在任意时刻t 到t t ?+内流入截面坐标为x 到x x ?+一小段细杆的热量为 t x s x u k t s x u k t s x u k dQ x x x x ????=???-???=?+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。由假设,在时刻t 到t t ?+在截面为 x 到x x ?+一小段中产生的热量为 ()()t x s u u l k t x l u u k dQ ??-- =??--=11 1124π 又在时刻t 到t t ?+在截面为x 到x x ?+这一小段内由于温度变化所需的热量为 ()()[]t x s t u c x s t x u t t x u c dQ t ????=?-?+=ρρ,,3 由热量守恒原理得: ()t x s u u l k t x s x u k t x s t u c x t ??-- ????=????11 2 24ρ 消去t x s ??,再令0→?x ,0→?t 得精确的关系: ()11 224u u l k x u k t u c -- ??=??ρ 或 ()()11 22 2112244u u l c k x u a u u l c k x u c k t u --??=--??=??ρρρ 其中 ρ c k a =2 2. 试直接推导扩散过程所满足的微分方程。 解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt n u D dM ??-=,其中D 为扩散系数,得 ?????= 2 1 t t s dsdt n u D M 浓度由u 变到2u 所需之溶质为 ()()[]???????????ΩΩΩ ??=??=-=2 12 1121,,,,,,t t t t dvdt t u C dtdv t u C dxdydz t z y x u t z y x u C M 两者应该相等,由奥、高公式得: ????????Ω Ω??==????????? ??????+???? ??????+??? ??????=2 12 11t t t t dvdt t u C M dvdt z u D z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。一般情形1=C 。由于21,,t t Ω的任意性即得方程: ?? ? ??????+???? ??????+??? ??????=??z u D z y u D y x u D x t u C 3. 砼(混凝土)内部储藏着热量,称为水化热,在它浇筑后逐渐放出,放热速度和它所储藏的 水化热成正比。以()t Q 表示它在单位体积中所储的热量,0Q 为初始时刻所储的热量,则 Q dt dQ β-=,其中β为常数。又假设砼的比热为c ,密度为ρ,热传导系数为k ,求它在浇后温度u 满足的方程。 解: 可将水化热视为一热源。由Q dt dQ β-=及00Q Q t ==得()t e Q t Q β-=0。由假设,放 热速度为 t e Q ββ-0 它就是单位时间所产生的热量,因此,由原书71页,(1.7)式得 ??? ? ??-=+??? ? ????+??+??=??-ρρββc k a e c Q z u y u x u a t u t 20222222 2 4. 设一均匀的导线处在周围为常数温度0u 的介质中,试证:在常电流作用下导线的温度满足微分方程 ()2201224.0ρω ρωρc r i u u c P k x u c k t u +--??=?? 其中i 及r 分别表示导体的电流强度及电阻系数,表示横截面的周长,ω表示横截面面积,而k 表示导线对于介质的热交换系数。 解:问题可视为有热源的杆的热传导问题。因此由原71页(1.7)及(1.8)式知方程取形式为

高等数学物理方程

高等数学物理方程 一、课程编码:1800005 课内学时: 64 学分: 4 二、适用学科专业:理论物理、凝聚态物理 三、先修课程:常微分方程、复变函数、数学物理方法 四、教学目标 通过本课程的学习使研究生 1. 了解数学物理方程的物理基础; 2. 了解数学物理方程的基本内容和最新发展概况; 3. 了解数学物理的基本方法和一些必要的技巧; 4. 掌握求解最重要的边值或边值初值问题的关键步骤和方法以及对解的检验。 五、教学方式 课堂讲授。 六、主要内容及学时分配 1. 偏微分方程的分类 10 学时1.1 一般概念 1.2 柯西问题、柯西-柯娃列夫斯卡娅定理 1.3 柯西问题的推广、特征的概念(*) 1.4 含一个未知函数的二阶方程在一点的标准型及其分类 1.5 两个自变量的二阶偏微分方程在一点的邻域内的标准型 2. 双曲型方程 20 学时2.1 (一维)波动方程的导出(物理起源)及定解条件 2.2 其他双曲型方程(*) 2.3 (一维)波动方程的柯西问题及其传播波法 2.4 (一维)波动方程的混合问题及其分离变量法 2.5 高维波动方程的柯西问题 3. 椭圆型方程 21 学时3.1 拉普拉斯方程(包括物理起源、定解条件、曲线坐标系下的拉氏方程等) 3.2 调和函数的一般性质(包括格林公式、极值原理、解的唯一性与稳定性等) 3.3 最简单区域的边界问题的分离变量法 3.4 源函数 3.5 势论与积分方程 3.6 双调和方程(*) 4. 抛物型方程 8 学时4.1 热传导方程的物理起源 4.2 定解问题的提法 4.3 热传导方程的求解 4.4 极值原理、定解问题解的唯一性与稳定性 5. 特殊函数与正交多项式 5 学时5.1 特殊函数的方程及边界问题的提法 5.2 柱函数(*)

含有阻尼项的弦振动方程及其仿真

含有阻尼项的弦振动方程及其仿真 内容提要: 本文通过对古典吉他的琴弦振动情况建立数学物理方程,得到一个含有阻尼项的双 曲型方程的初边值问题,对解用Matlab进行仿真。最后依据弦振动方程的结果,列举 了在这种情况下几种泛音的位置,并结合该方程,对右手给出指导。 关键词 数学物理方程,Matlab,驻波。 引言: 在弦乐器表演中常用到泛音这样的一个技巧,即左手虚按琴弦,滤掉一部分波在琴 弦上形成驻波。比如在弦的三分点进行滤波,则波长的三倍不能被弦长整除的波,将会 被滤掉。但是在拨弦乐器的教学中,关于泛音的位置一直是老师们口口相传。而且某些 泛音准确位置并不在拨弦乐器的品(山口)上,所以缺乏理论指导。 在国内的研究领域中,韩佩琪《弦乐器泛音的分析及应用》一文中只是对弹拨乐器 的空弦状态下进行求解而且忽略了空气的阻力,而且并没有结合列出的解给出演奏技巧 上的指导。而邱桂明《阻尼作用下的弦振动研究》的初边值条件并不符合乐器的条件。另外在周伟《古典吉他演奏教程》以及相关的一些吉他教学视频中只是提及了左手虚按 的位置,关于右手的位置没有给出一个指导。综上来看,国内研究领域,对定弦振动泛 音的理论研究尚处于一个盲区。然而一维双曲型微分方程的理论已经比较完善给本文提 供了理论依据,给研究带来了可行性。 一、模型建立: 如图所示:琴弦的初始状态: 1

其中h是弹拨弦与初始位置间的距离,b是弹拨点距离原点的距离,l表示弦的长度。 弦的两端是静止不动的,从而边值条件:为u(0,t)=u(l,t)=0 其中t表示振动时间。 列出方程: 其中:错误!未找到引用源。,而T表示琴弦松弛时的张力,错误!未找到引用源。表示琴弦线密度。 边值条件: 初值条件: 二、问题的求解 从物理上知道,一个复杂的振动往往可以分解成许多简单的振动的叠加。如弦振动所发出的声音可以分解成各种不同频率的单音叠加。相应于每种单音,弦振动时波形保持不变,从而当时间变化是个点的振幅做同步的变化,所以可以有如下形式: 带入到原方程会得到: 分离变量: 等式左右两边相等,左边仅是t的函数,右边仅是x的函数,左右两边要相等,只有等于同一个常数才可能。设此常数为错误!未找到引用源。。则得到两个常微分方程。 得到以下通解: 因为阻尼系数很小,所以 2

数学物理方程第二版答案解析(平时课后知识题作业任务)

数学物理方程第二版答案 第一章. 波动方程 §1 方程的导出。定解条件 4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。 解:如图2,设弦长为l ,弦的线密度为ρ,则x 点处的张力)(x T 为 )()(x l g x T -=ρ 且)(x T 的方向总是沿着弦在x 点处的切线方向。仍以),(t x u 表示弦上各点在时刻t 沿垂直于x 轴方向的位移,取弦段),,(x x x ?+则弦段两端张力在u 轴方向的投影分别为 )(sin ))(();(sin )(x x x x l g x x l g ?+?+--θρθρ 其中)(x θ表示)(x T 方向与x 轴的夹角 又 . sin x u tg ??=≈θθ 于是得运动方程 x u x x l t u x ???+-=???)]([22ρ∣x u x l g x x ??--?+][ρ∣g x ρ 利用微分中值定理,消去x ?,再令0→?x 得 ])[(2 2x u x l x g t u ??-??=??。 5. 验证 2 221),,(y x t t y x u --= 在锥2 22y x t -->0中都满足波动方程 222222y u x u t u ??+??=??证:函数2221),,(y x t t y x u --=在锥2 22y x t -->0内对变量t y x ,,有

二阶连续偏导数。且 t y x t t u ?---=??-2 3 222)( 22 52222 32222 2) (3) (t y x t y x t t u ?--+---=??- - )2()(2 2223 222y x t y x t ++?--=- x y x t x u ?--=??- 23 222)( ()() 225222232222 23x y x t y x t x u - ---+--=?? ( )()222 252222y x t y x t -+- -=- 同理 ()()222 25 2222 22y x t y x t y u +---=??- 所以 ()() .22 22 2225222222 2t u y x t y x t y u x u ??=++--=??+ ??- 即得所证。 §2 达朗贝尔公式、 波的传抪 3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) ??? ? ???==??=??=+=-).()(0022222x u x u x u a t u at x at x ψ? ())0()0(ψ?= 解:u(x,t)=F(x-at)+G(x+at) 令 x-at=0 得 )(x ?=F (0)+G (2x ) 令 x+at=0 得 )(x ψ=F (2x )+G(0)

《数学物理方程讲义》课程教学大纲

《数学物理方程讲义》课程教学大纲第一部分大纲说明 一、课程的作用与任务 本课程教材采用的是由高等教育出版社出版第二版的《数学物理方程讲义》由姜礼尚、陈亚浙、刘西垣、易法槐编写 《数学物理方程讲义》课程是中央广播电视大学数学与应用数学专业的一门限选课。数学物理方程是工科类及应用理科类有关专业的一门基础课。通过本课程的学习,要求学生了解一些典型方程描述的物理现象,使学生掌握三类典型方程定解问题的解法,重点介绍一些典型的求解方法,如分离变量法、积分变换法、格林函数法等。本课程涉及的内容在流体力学、热力学、电磁学、声学等许多学科中有着广泛的应用。为学习有关后继课程和进一步扩大数学知识面奠定必要的数学基础。该课程所涉内容,不仅为其后续课程所必需,而且也为理论和实际研究工作广为应用。它将直接影响到学生对后续课的学习效果,以及对学生分析问题和解决问题的能力的培养。数学物理方程又是一门公认的难度大的理论课程。 二、课程的目的与教学要求 1 了解下列基本概念: 1) 三类典型方程的建立及其定解问题(初值问题、边值问题和混合问题)的提法,定解条件的物理意义。 2) 偏微分方程的解、阶、维数、线性与非线性、齐次与非齐次的概念,线性问 题的叠加原理。 3) 调和函数的概念及其基本性质(极值原理、边界性质、平均值定理)。 2 掌握下列基本解法

1) 会用分离变量法解有界弦自由振动问题、有限长杆上热传导问题以及矩形域、 圆形域内拉普拉斯方程狄利克雷问题;会用固有函数法解非齐次方程的定值问题,会用辅助函数和叠加原理处理非齐次边值问题; 2) 会用行波法(达郎贝尔法)解无界弦自由振动问题,了解达郎贝尔解的物理 意义;了解齐次化原理及其在解无界弦强迫振动问题中的应用; 3) 会用傅立叶变换法及拉普拉斯变换法解无界域上的热传导问题及弦振动问 题; 4) 了解格林函数的概念及其在求解半空间域和球性域上位势方程狄利克雷问题中的应用; 5)掌握二阶线性偏微分方程的分类 二、课程的教学要求层次 教学要求层次:有关定义、定理、性质等概念的内容按“知道、了解、理解”三个层次要求;有关计算、解法、公式和法则等方法的内容按“会、掌握、熟练掌握” 三个层次要求。 第二部分学时、教材与教学安排一、学时分配 本课程共3学分,讲授54学时(包括习题课)学时分配如下: 项目内容学时电视学时 IP课学时 第一章方程的导出和定解条件 6 第二章波动方程 14 第三章热传导方程 14 第四章位势方程 14 第五章二阶线性偏微分方程的分类 6 合计 54 二、教学安排

《物理学的进化》读书笔记

《物理学的进化》读书笔记 你可能听过一句鸡汤”10块钱的电子表和100万的劳力士,时间都是一样的转。”但这句话真的正确吗?一个现代物理学家会反驳,理由有两点1;机械表的误差会稍大于电子表。2;根据相对论,任何物体的速度都无法超过真空中的光速,那么显然,如果一个戴着劳力士的人以光速移动,他的表就会停转,不然秒针的速度一定会超过光速。 1589的一天,伽利略登上了比萨斜塔,完成了”比萨斜塔实验”。尽管不是第一个自由落体实验,但这是最有影响力的一个实验。这一实验帮助伽利略冲破了亚里士多德思想的枷锁,一脚踹开了物理学的大门。不久,经典物理学舞台上的主角—牛顿,登场了。他的登场伴随着经典物理学最重要也是最基础的定律—惯性定律(总结了伽利略的成果)这帮助当时人们理解了运动(至少是直线运动)的本质。P1(附图1) 牛顿又通过实验揭示了其余两大经典物理学定律: F=m.a→物体加速度,加速方向与受力方向相同

力的作用是相互的。 这便启发了物理学家们去研究”力”或者应该叫”能”。能——无处不在。 球于等高线h处释放,停在不同坡度的不同位置(停指速度为0)。球释放后到达A点前的路程,将重力势能转化成为动能。而到达A点后则反之,这个实验同样可以推理出惯性定律。物体重力势能、弹性势能、动能的总和被称之为机械能。我们注意到图中球停止后位置比等高线h要低,说明整个能量转换的过程中,机械能有损耗,而损耗又去了哪儿?很简单,摩擦阻碍了运动,而摩擦生热,而热...... 能量的国际通用单位—焦耳,如果你说他是位伟大的(有杰出贡献的)物理学家,那么你只对了一半,错因是焦耳—他只是一个酿啤酒的,对物理感兴趣,所以偶尔研究。但是多亏了他,我们又发现了一个物质的性质,并用它来揭穿”热”的神秘面纱。”热”可是经典物理学道路上的一块大岩石,焦耳用实验凿开了这块巨石,得出了”热是一种能,热不具有质量”的这一结论。同时,我们还给这种能起了一个简单的名字—”内能”。由于内能是分子间的作用力产生,所以一个物体一定具有内能。 植物学家布朗的新发现以及后续的实验,被总结成

数学物理方程 答案 谷超豪

第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 (2)若l x =为自由端,则杆在l x =的张力x u x E t l T ??=) (),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若0=x 为自由端,则相应的边界条件为 x u ??∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的 偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --==

泛函分析读书笔记

《泛函分析》读书笔记 Reading Notes about Functional Analysis 崔继峰 所谓的泛函呢,就是一般函数,泛函分析当然就是一般函数的分析研究。在学习泛函之前,需要有扎实的《实变函数》知识。大学期间,曾用半年时间学过由南开大学刘炳初教授编著,科学出版社出版的《泛函分析》,讲课的是哈尔滨工业大学的包革军教授,他讲泛函的最大特点是把泛函与几何图形有机结合,把艰深的纯理论讲的惟妙惟肖。在进入研究生学习阶段,《泛函分析》作为计算数学研究生的基础理论课程,是必选的。我们选用的教材是由武汉大学刘培德教授主编,武汉大学出版社出版的《泛函分析(第二版)》,该教材是面向本科生的,系里之所以考虑选择此教材,是由于考虑到有些学生在本科阶段没有或者很粗浅的认识了《泛函分析》这门课程,主讲该课程的是高云兰博士,她的方向就是算子方面的研究,所以讲解该课程那是轻车熟路了。课时大约是48学时(粗略估计)。由于以下两方面的原因:1)对于《泛函分析》认识很粗浅;2)第一次写读书笔记(尤其是专业课类),不知道如何从略。所以读书笔记可能从在诸多问题,希望老师见谅!下面我从几个方面写本学期学习《泛函分析》的感受和认识。我本着这样态度写该笔记:1)了解泛函是什么,泛函的发展(很多教材把这个从略)2)把空间的理论知识系统学习,对于其他理论的学习作抛砖引玉之用。3)学习泛函的实际作用(也就是附录里的滤波器理论的应用)。 泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。它是20世纪30年代形成的。从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法研究分析学的课题,可看作无限维的分析学。 一、泛函分析的产生 十九世纪以来,数学的发展进入了一个新的阶段。这就是,由于对欧几里德第五公设的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论。这些新的理论都为用统一的观点把古典分析的基本概念和方法一般化准备了条件。 本世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作中,出现了把分析学一般化的萌芽。随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究。到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念。 由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方。比如,代数方程求根和微分方程求解都可以应用逐次逼近法,并且解的存在和唯一性条件也极其相似。这种相似在积分方程论中表现得就更为突出了。泛函分析的产生正是和这种情况有关,有些乍看起来很不相干的东西,都存在着类似的地方。因此它启发人们从这些类似的东西中探寻一般的真正属于本质的东西。

物理书籍整理

科普: 《定性与半定量物理学》赵凯华 《边缘奇迹:相变和临界现象》于渌 《QED: A Strange Theory about Light and Matter》Feynman 《大宇之形》丘成桐 《Gauge Fields, Knots and Gravity》Baez 《趣味力学》别莱利曼 《趣味刚体力学》刘延柱(小书,挺有意思) 考研习题集用超星图书里的那本清华大学编写的普通物理学考研辅导教材(大约这个名字) 数学分析: 书目: 《数学分析教程》常庚哲 《数学分析新讲》张筑生 《数学分析》卓里奇 《数学分析八讲》辛钦 《数学分析讲义》陈天权 《数学分析习题课讲义》谢惠民等 《数学分析习题集》北大版? 《特殊函数概论》王竹溪 线性代数Linear Algebra 内容:行列式、矩阵代数、线性方程组、线性空间、线性变换、欧几里得空间、n元实二次型等。 书目: 《高等代数简明教程》蓝以中 《Linear Algebra and Its Applications》Gilbert Strang 《Linear Algebra and Its Applications》Peter D. Lax 《Linear Algebra and Its Applications》David C. Lay 力学Mechanics 先修课程:高等数学 内容:质点运动学、质点动力学、动量定理和动量守恒定律、功和能及碰撞问题、角动量、刚体力学、固体的弹性、振动、波动和声、流体力学、相对论简介。 书目: 《力学》赵凯华 《力学》舒幼生 《经典力学》朗道 《An Introduction To Mechanics》Daniel Kleppner、Robert Kolenkow 狭义相对论:《狭义相对论》刘辽 《The Principle of Relativity》Einstein 广义相对论:《Einstein Gravity in a Nutshell》Zee 《Spacetime and Geometry》Carroll

数学、物理笔记

寻找隐藏的维度: 分形:自相似性 艺术和数学有许多地方是相通的,只是他们用了不同的语言。 迭代 海岸线就是一个分形。分形越粗糙,分形维数就越高。 朱丽叶集;曼德尔布洛特集 健康的心跳具有分形的结构。 肿瘤的脉管网络是无序的,纠缠的,紊乱的,看上去像灌木丛。 扭曲时空,让目的地趋近。 曲速引擎 Despite its relentless march towards destruction and decay, the arrow of time created the very thing of the universe - the beauty and wonder, and it gives our chance to live. 混沌理论:混乱和有序就像同一架钢琴上发出的低音和高音。自然界中的不规则:自相似性,不断地在更微小的尺度上重复自己-自我重复性是一种全新几何学的基础-分形。 曼德勃罗集合:上帝的指纹。自反馈性的公式:每一次输出都成为下一次计算的输入。 图灵图案,贝洛索夫的化学反应,曼德勃罗的分形-极其简单的法则会产生出复杂的现象。当你看到复杂的现象时,你应该想到,驱使它产生的不过是简单的法则。 自我进化的软件。

伟大的设计并不需要一个伟大的设计者,这是宇宙固有的本性。宇宙间所有的复杂性,所有的多样性,都源于一些简单而毫无目的的法则的不断繁衍的结果。尽管这个过程力量无比,它却具有固有的不可预测性。即使我可以充满信心的告诉你,未来精彩无限,但我仍要负责任的告诉你,未来会发生什么却是不为人知的。 优雅的宇宙: 弦理论:它认为宇宙万物,不论是最微波的粒子还是最遥远的星球,都是由同一种元素组成,一种小到无法想像的带能振动细丝,也叫做弦。就如大提琴上的弦一样,可以奏出大量不同的音符。在弦理论中,这种微小的弦以大量不同的方式振动着,从而组成了自然界的万事万物。整个世界就如同一支浩大无比的交响乐。在一切这种细小能量丝振动发出的各种音符中,轰然作响。 如果太阳蒸发: 根据牛顿理论:星体会脱离轨道,倾斜着飞向宇宙空间,他认为引力是超越任何距离瞬间作用的,我们会马上感到太阳消失带来的效果。爱因斯坦发现,光并非瞬时传播,太阳射到地球上大约需要8分钟。没有任何事物可以比光速快,哪怕是引力,所以地球怎么会在没有因为太阳的消失的影响陷入黑暗之前就从自己的轨道上脱离呢? 爱因斯坦构造的四维时空,时间一维,空间三维,就像蹦床的表面一样,这种统一的结构可以被质量大的物体如星球弯曲或延展,而正是这种扭曲或弧形的时空,造成了我们所感觉到的引力。

最新结构力学经典考研复习笔记-强力推荐-吐血推荐

第一章绪论 一、教学内容 结构力学的基本概念和基本学习方法。 二、学习目标 ?了解结构力学的基本研究对象、方法和学科内容。 ?明确结构计算简图的概念及几种简化方法,进一步理解结构体系、结点、支座的形式和内涵。 ?理解荷载和结构的分类形式。 在认真学习方法论——学习方法的基础上,对学习结构力学有一个正确的认识,逐步形成一个行之有效的学习方法,提高学习效率和效果。 三、本章目录 §1-1 结构力学的学科内容和教学要求 §1-2 结构的计算简图及简化要点 §1-3 杆件结构的分类 §1-4 荷载的分类 §1-5 方法论(1)——学习方法(1) §1-6 方法论(1)——学习方法(2) §1-7 方法论(1)——学习方法(3) §1-1 结构力学的学科内容和教学要求 1. 结构 建筑物和工程设施中承受、传递荷载而起骨架作用的部分称为工程结构,简称结构。例如房屋中的梁柱体系,水工建筑物中的闸门和水坝,公路和铁路上的桥梁和隧洞等。 从几何的角度,结构分为如表1.1.1所示的三类: 表1.1.1

2. 结构力学的研究内容和方法 结构力学与理论力学、材料力学、弹塑性力学有着密切的关系。 理论力学着重讨论物体机械运动的基本规律,而其他三门力学着重讨论结构及其构件的强度、刚度、稳定性和动力反应等问题。 其中材料力学以单个杆件为主要研究对象,结构力学以杆件结构为主要研究对象,弹塑性力学以实体结构和板壳结构为主要研究对象。学习好理论力学和材料力学是学习结构力学的基础和前提。 结构力学的任务是根据力学原理研究外力和其他外界因素作用下结构的内力和变形,结构的强度、刚度、稳定性和动力反应,以及结构的几何组成规律。包括以下三方面内容: (1) 讨论结构的组成规律和合理形式,以及结构计算简图的合理选择; (2) 讨论结构内力和变形的计算方法,进行结构的强度和刚度的验算; (3) 讨论结构的稳定性以及在动力荷载作用下的结构反应。 结构力学问题的研究手段包含理论分析、实验研究和数值计算,本课程只进行理论分析和数值计算。结构力学的计算方法很多,但都要考虑以下三方面的条件: (1) 力系的平衡条件或运动条件。

学好初中物理方法和技巧

学好初中物理方法和技巧 谁不想做一个学习好的学生呢,但是要想成为一名真正学习好的学生,第一条就要好好学习。第二条就是要会学习。作为一名学生在学习上存在的如下几个环节:制定计划→课前预习→专心上课→及时复习→独立作业→解决疑难→系统总结→课外学习。这里每个环节中,存在着不同的学习方法,下面就针对物理的特点,针对就“如何学好初中物理”,这一问题提出几点具体的学习方法和技巧。 一、死记硬背?要得!基本概念要清楚,基本规律要熟悉,基本方法要熟练。课文必须熟悉,知识点必须记得清楚。至少达到课本中的插图在头脑中有清晰的印象,不必要记得在多少多少页,但至少知道在左页还是右页,它是讲关于什么知识点的,演示的是什么现象,得到的是什么结论,并能进行相关扩展领会。 二、独立完成一定量作业。要独立地(指不依赖他人),保质保量地做一些题。题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。任何人学习数理化不经过这一关是学不好的。独立解题,可能有时慢一些,有时要走弯路,有时甚至解不出来,但这些都是正常的,是任何一个初学者走向成功的必由之路。把不会的题目搞会,并进行知识扩展识记,会收获颇丰。 三、重视物理过程,重视辅助作图。要对物理过程一清二楚,不管是理论过程,还是实践过程,物理过程弄不清必然存在解题的隐患。题目不论难易都要尽量画图,有的画草图就可以了,有的要画精确图,要动用圆规、三角板、量角器等,以显示几何关系。画图能够变抽象

思维为形象思维,更精确地掌握物理过程。有了图就能作状态分析和动态分析,状态分析是固定的、死的、间断的,而动态分析是活的、 连续的。 四、全力上课,专心听讲。上课要认真听讲,不走神。不要自以为是,要虚心向老师学习,向同学学习。不要以为老师讲得简单而放弃听讲,如果真出现这种情况可以当成是复习、巩固。尽量与老师保持一致、同步,不同看法下课后再找老师讨论,不能自搞一套,否则就等于是完全自学了。入门以后,有了一定的基础,则允许有自己一定的活动空间,也就是说允许有一些自己的东西,学得越多,自己的 东西越多。 五、坚持做笔记。上课以听讲为主,还要有一个笔记本,有些东西要记下来。知识结构,好的解题方法,好的例题,听不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。笔记本不只是记上课老师讲的,还要作一些读书摘记,自己在作业中发现的好题、好的解法也要记在笔记本上,就是同学们常说的“好题本”。辛辛苦苦建立起来的笔记本要进行编号,以后要经学看,要能做到爱不释手,终生保存。 六、整理好学习资料。学习资料要保存好,作好分类工作,还要作好记号。学习资料的分类包括练习题、试卷、实验报告等等。作记号是指,比方说对练习题吧,一般题不作记号,好题、有价值的题、易错的题,分别作不同的记号,比如*、?、※、◎等等,以备今后 阅读,作记号可以节省不少时间。

初中物理学习方法及做笔记技巧

初中物理学习方法及做笔记技巧 物理作为一门研究物质结构、物质相互作用和运动规律的自然科学,具有很强的逻辑性,同时,它和生活息息相关,又具有一定的趣味性。 大多数同学都是从八年级开始接触物理的,刚开始的时候,对物理都是充满了好奇,拿到物理课本,都会迫不及待地翻开看一看,课本里新鲜的概念,有趣的实验,都深深地吸引着大家。 对于这门新鲜的学科,有的同学是满怀期待、做好准备,大伸拳脚想有一番作为;有的同学则是畏手畏脚,从一开始就担心自己不能够适应物理的学习。 在学习的过程中,有的同学会因为没有掌握学习物理的方法,刚开始的时候就一蹶不振,从而丧失了学习的兴趣。 学习物理,光是注意概念,了解实验,并不能学得很扎实,应试着整理课本中的知识结构,找出逻辑,让自己更了解初中物理究竟学的是什么。 如果你可以完成对课本知识的整理,你就会发现,自己能站在一个比较高的角度,全面地看待初中物理的知识,也能很好地理解各章节之间知识的内在联系。 做到这一点以后,看起书来,做起题来,都会顺畅很多,原因便在于:心中有了全局的观念后,便不再拘泥于一章一节的单个知识点,而是能运用庞大而完整的物理知识体系去解决问题,自然得心应手。 由此看来,初中物理说难不难,这是因为,学的内容都与生活息息相关;但另一方面,又说易不易,因为要真正做到对物理知识有透彻的了解,融会贯通,还要花费一定的时间和功夫。

翻开你的第一本物理课本,你会发现,物理是一门基于实验和逻辑的学科,想要学好物理,一定要记住四个“多”。 物理研究的是物质的结构和相互作用,这些在我们日常生活中也时常能见到,要学好物理,首先就要学会多观察。 多留意身边的各种现象,比如闪电,彩虹,灯泡的发光,镜子的反射…… 如此种种,都是物理学研究的问题。只有多去观察,才能对这些现象的细节有更深入的了解,为下面的方法打好基础。 除了观察身边的物理现象外,我们还需要注意观察课本中和老师在课堂上给出的物理现象,如课本中提出的问题、给出的图片、实验及教师的演示实验等。 仔细观察当中的物理现象或事实,产生的条件,表现的形式(如运动、变形、温度变化等)以及结果。 物理作为自然学科,其内在逻辑十分严谨,这就要求我们多去开动脑筋,多想几个“为什么”。 思考的过程,是不断解决疑问,同时不断产生新的疑问的过程。只有经过自己的思考,才能从本质上理解观察所得的物理现象及其成因,这样才能更好地把物理学的逻辑理顺。 “多思”更要注意学习和总结物理学科解决问题的方法,帮助自己逐渐提高思维能力。我们的课本在讲述物理概念、定律、公式时,是按物理学科解决问题的步骤在进行的。 一般是先提出问题,再通过实验研究、观察、分析推理、概括总结等步骤进行的。

数学物理方程第一章答案

第一章 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与 +x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两 端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其 相 对 伸 长 等 于 ) ,()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克 定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于 是 得 运 动 方 程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=) (x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条 件为 .0),(,0) ,0(==t l u t u (2)若 l x =为自由端,则杆在 l x =的张力 x u x E t l T ??=)(),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若 0=x 为自由端,则相应的边界条件为 x u ??∣ 00 ==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某 点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支 承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --== 其中k 为支承的刚度系数。由此得边界条件 )( u x u σ+??∣ ) (t f l x == 其中 E k = σ 特别地,若支承固定于一定点上,则,0)(=t v 得边界条件 )( u x u σ+??∣0==l x 。 同理,若0=x 端固定在弹性支承上,则得边界条件 x u E ??∣)](),0([0t v t u k x -== 即 )(u x u σ-??∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为

相关主题
文本预览
相关文档 最新文档