当前位置:文档之家› 专题练习40 波粒二象性

专题练习40 波粒二象性

专题练习40 波粒二象性
专题练习40 波粒二象性

专题练习(四十)波粒二象性

1.(2012·上海高考)根据爱因斯坦的“光子说”可知()

A.“光子说”本质就是牛顿的“微粒说”

B.光的波长越大,光子的能量越小

C.一束单色光的能量可以连续变化

D.只有光子数很多时,光才具有粒子性

3.利用光子说对光电效应的解释,下列说法正确的是()

A.金属表面的一个电子只能吸收一个光子

B.电子吸收光子后一定能从金属表面逸出,成为光电子

C.金属表面的一个电子吸收若干个光子,积累了足够的能量才能从金属表面逸出

D.无论光子能量大小如何,电子吸收光子并积累了能量后,总能逸出成为光电子

解析:根据光子说,金属的一个电子一次只能吸收一个光子,若所吸收的光子频率大于金属的极限频率,电子逃离金属表面,成为光电子,且光子的吸收是

瞬时的,不需要时间的积累,若所吸收的光子能量小于逸出功(光子频率小于金属的极限频率),则电子不能逃离金属表面,不能成为光电子.

答案:A

4.(2011·上海高考)用一束紫外线照射某金属时不能产生光电效应,可能使该金属产生光电效应的措施是()

A.改用频率更小的紫外线照射

B.改用X射线照射

C.改用强度更大的原紫外线照射

D.延长原紫外线的照射时间

解析:发生光电效应的条件是入射光的频率大于金属的极限频率,与入射光的强度和照射时间无关,故选项A、C、D错误;X射线的频率大于紫外线的频率,可能使该金属发生光电效应,故选项B正确.

答案:B

5.(2011·江苏高考)下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射实验规律的是()

解析:黑体辐射的强度随着温度的升高,一方面各种波长的辐射强度都增加,另一方面辐射强度的极大值向着波长较短的方向移动,所以A正确.答案:A

6.用不同频率的紫外线分别照射钨和锌的表面而产生光电效应,可得到光电子最大初动能E k随入射光频率ν变化的E k-ν图象,已知钨的逸出功是3.28 eV,锌的逸出功是3.34 eV,若将二者的图线画在同一个E k-ν坐标系中,如图所示中用实线表示钨,虚线表示锌,则正确反映这一过程的是()

解析:依据光电效应方程E k =hν-W 可知,E k -ν图线的斜率代表普朗克常量h ,因此钨和锌的E k -ν图线应该平行.图线的横截距代表极限频率ν0,而ν0=W h ,因此钨的ν0小些.综上所述,A 图正确.

答案:A

7.在光电效应实验中,下列结果正确的是( )

A .当光照时间增大为原来的两倍时,光电流强度也增大为原来的两倍

B .当入射光频率增大为原来的两倍时,光电子的最大初动能也增大为原来的两倍

C .当入射光的波长增大为原来的两倍时,可能不产生光电效应

D .当入射光的强度增大为原来的两倍时,单位时间内发射光电子的数量也增大为原来的两倍

解析:光电流强度决定于单位时间内的光电子数,与时间无关;由hν=W 0+E k 知,光电子的最大初动能随频率的增大而增大,但是两者并不成正比例关系;入射光的波长增大为原来的两倍,则频率为原来的1/2,可能低于极限频率;光频率一定时,光的强度决定于单位时间内的光子数,所以单位时间内的光电子数(光电流)与光强成正比.

答案:CD

8.用a 、b 两种不同频率的光分别照射同一金属板,

发现当a 光照射时验电器的指针偏转,b 光照射时指

针未偏转,以下说法正确的是( )

A .增大a 光的强度,验电器的指针偏角一定减

B .a 光照射金属板时验电器的金属小球带负电

C .a 光在真空中的波长小于b 光在真空中的波长

D .若a 光是氢原子从n =4的能级向n =1的能级跃迁时产生的,则b 光可能是氢原子从n =5的能级向n =2的能级跃迁时产生的

9.如图所示的实验电路,K 为光电管的阴极,A 为阳极.当用黄光照射光电管中的阴极K 时,毫安表的指针发生了偏转.若将电路中的滑动变阻器的滑片P 向左移动到某一位置时,毫安表的读数恰好减小到零,此时电压表读数为U .

若增加黄光的强度,则毫安表______(选填“有”或“无”)示数;若用几种能使光电管中的阴极K 发生光电效应的不同频率ν的光照射到光电管的阴极K ,分别测出能使毫安表的读数恰好减小到零时的不同的电压值U .通过U 和ν的几组对应数据,就可作出U -ν的图象,图象的斜率为k ,则普朗克常量h =______(电子的电荷量为e ).

解析:发生光电效应时,光电子的最大初动能只由射入光的频率决定,而与入射光的强度无关,若仅增加黄光的强度,则毫安表仍无示数.当毫安表的读数恰好减小到零时,满足E k =Ue ,由光电效应方程得E k =hν-W ,联立得Ue =hν

-W ,U =h e ν-W e ,可知U -ν图象的斜率为k =h e ,则普朗克常量为h =ke .

答案:无 ke

10.(2011·新课标全国高考)在光电效应实验中,某金属的截止频率相应的波长为λ0,该金属的逸出功为__________.若用波长为λ(λ<λ0)的单色光做该实验,则其遏止电压为__________.(已知电子的电荷量、真空中的光速和普朗克常量分别为e 、c 和h )

解析:由爱因斯坦光电效应方程E k =h c λ-W 0得,W 0=h c λ0

;由eU c =h c λ-W 0=h c λ-h c λ0

, 解得U c =hc eλλ0

(λ0-λ). 答案:h c λ0 hc eλλ0

(λ0-λ)

11.如图所示为对光电管产生的光电子进行比荷测定的原

理图,两块平行金属板间距离为d ,其中N 为锌板,受紫外

光照射后将激发出沿不同方向运动的光电子,开关S 闭合,

电流表A 有读数,若调节变阻器R ,逐渐增大极板间的电压,A 表读数逐渐减小,当电压表示数为U 时,A 表读数恰为零;断开S ,在MN 间加上垂直于纸面的匀强磁场,当磁感应强度为B 时,A 表读数也为零.求光电子的比荷e /m 的表达式.

12.普朗克常量h =6.63×10-34 J·s ,铝的逸出功W 0=6.72×10-19 J ,现用波长λ=200 nm 的光照射铝的表面(结果保留三位有效数字).

(1)求光电子的最大初动能;

(2)若射出的一个具有最大初动能的光电子正对一个原来静止的电子运动,求在此运动过程中两电子电势能增加的最大值(电子所受的重力不计).

解析:(1)由E k =hν-W 0=h c λ-W 0,代入数据解得E k =3.23×10-19 J.

(2)增加的电势能来自系统损失的动能,当两电子的速度相等时电势能最大,由动量守恒m v 0=2m v

损失的动能:

ΔE k =12m v 20-12

(2m )v 2=1.62×10-19 J 所以,电势能增加的最大值为1.62×10-19 J.

答案:(1)3.23×10

-19 J (2)1.62×10-19 J 。

(完整版)光的波粒二象性教案

光的波粒二象性 教案示例 一、教学目标 1.知识目标 (1)了解微粒说的基本观点及对光学现象的解释和所遇到的问题. (2)了解波动说的基本观点及对光学现象的解释和所遇到的问题. (3)了解事物的连续性与分立性是相对的,了解光既有波动性,又有粒子性. (4)了解光是一种概率波. 2.能力目标 培养学生对问题的分析和解决能力,初步建立光与实物粒子的波粒二象性以及用概率描述粒子运动的观念. 3.情感目标 理解人类对光的本性的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程.根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说.人类就是这样通过光的行为,经过分析和研究,逐渐认识光的本性的. 二、重点、难点分析 1、这一章的内容,贯穿一条主线——人类对光的本性的认识的发展过程.结合各节内容,适当穿插物理学史材料是必要的.这种做法不但可使课堂教学主动活泼,内容丰富,还可以对学生进行唯物辩证思想教育.本节就课本内容,十分简单,学生学起来十分枯燥.课本所提到的内容,都是结论性的,加入一些史料不仅可能而且必要. 2、本节中学生初步接触量子化、二象性、概率波等概念,由于没有直接的生活经验,所以在教学中要重点让学生体会这些概念. 三、主要教学过程 光学现象是与人类的生产和日常生活密切相关的.人类在对光学现象、规律的研究的同时,也开始了对光本性的探究. 到了17世纪,人类对光的本性的认识逐渐形成了两种学说.

(一)光的微粒说 一般,人们都认为牛顿是微粒说的代表,牛顿于1675年曾提出:“光是一群难以想象的细微而迅速运动的大小不同的粒子”,这些粒子被发光体“一个接一个地发射出来”.用这样的观点,解释光的直进性、影的形成等现象是十分方便的. 在解释光的反射和折射现象时,同样十分简便.当光射到两种介质的界面时,要发生反射和折射.在解释反射现象时,只要假设光的微粒在与介质作用时,其相互作用,使微粒的速度的竖直分量方向变化,但大小不变;水平分量的大小和方向均不发生变化(因为在这一方向上没有相互作用),就可以准确地得出光在反射时,反射角等于入射角这一与实验事实吻合的结论. 说到折射,笛卡儿曾用类似的假设,成功地得出了入射角正弦与折射角正弦之比为一常数的结论.但当光从光疏介质射向光密介质时,发生的是近法线折射,即入射角大,折射角小.这时,必须假设光在光密介质的传播速度较光在光疏介质中的传播速度大才行. 一束光入射到两种介质界面时,既有反射,又有折射.何种情况发生反射,何种情况下又发生折射呢?微粒说在解释这一点时遇到了很大的困难.为此,牛顿提出了著名的“猝发理论”.他提出:“每一条光线在通过任何折射面时,便处于某种为时短暂的过渡性结构和状态之中.在光线的前进过程中,这种状态每隔相等的间隔(等时或等距)内就复发一次,并使光线在它每一次复发时,容易透过下一个折射面,而在它(相继)两次复发之间容易被这个面所反射”,“我将把任何一条光线返回到倾向于反射(的状态)称它为‘容易反射的猝发’,而把它返回到倾向于透射(的状态)称它为‘容易透射的猝发’,并且把每一次返回和下一次返回之间所经过的距离称它为‘猝发的间隔’”.如果说“猝发理论”还能解释反射和折射的话,那么,以微粒说解释两束光相遇后,为何仍能沿原方向传播这一常见的现象,微粒说则完全无能为力了. (二)光的波动说 关于光的本性,当时还存在另一种观点,即光的波动说.认为光是某种振动,以波的形式向四周围传播.其代表人物是荷兰物理学家惠更斯.他认为,光是由发光体的微小粒子的振动在弥漫于一切地方的“以太”介质中传播过程,而不是像微粒说所设想的像子弹和箭那样的运动.他指出:“假如注意到光线向各个方向以极高的速度传播,以及光线从不同的地点甚至是完全相反的地方发出时,光射线在传播中一条光线穿过另一条光线而相互毫不影响,就能完全明白这一点:当我们看到发光的物体时,决不可能是由于从它所发生的物质,像穿过空气的子弹和箭一样,通过物质迁移所引起的”.他把光比作在水面上投入石块时产生的同心圆状波纹.发光体中的每一个微粒把振动,通过“以太”这种介质向周围传播,发出一组组同心的球面波.波面上的每一点,又可以此点为中心,再向外传播子波.当然,这样的观点解释同时发生反射和折射,比微粒说的“猝发理论”方便得多,以水波为例,水波在传播时,反射与折射可以同时发生.一列水波在与另一列水波相遇时,可以毫无影响的相互通过.

对光的波粒二象性的理解与认识(毕业论文)

2013届本科毕业论文 对波粒二象性的理解与认识 学院:物理与电子工程学院 专业班级:物理 08-8班 学生姓名:努尔麦麦提·阿不都克热木指导老师:巴哈迪尔老师 答辩日期:2013年5月11日 新疆师范大学教务处

对波粒二象性的理解与认识 摘要:波粒二象性是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。现代观察认为微观粒子,无论是光子,电子以及其它所有基本粒子,在极微小的空间内作高速运动时有时显示出波动性(这时粒子性不显著),有时显示出粒子性(这时波动性不显著).这种在不同条件下分别表现为波动和粒子的性质,或者说既具有波动性又具有粒子性,就称为波粒二象性(简称象性)。 波粒二象性理论的提出在物理学的发展史上具有重要意义,本文从人们对光本性的认识出发,到把波粒二象性推广到一切物质,比较系统地阐述了波粒二象性理论的产生和发展过程。在这个过程中探索物理学与哲学的联系,并对其中所体现的哲学观点做了尝试性总结 关键词:波粒二象性,波动性,粒子性,电子衍射,德布罗意波

目录 1.引言 (4) 2.光的波粒二象性 (5) 2.1光的波动性. (5) 2.2光的粒子性. (6) 2.3光的波粒二象性. (8) 3电子衍射实验 (10) 3.1.电子衍射实验 (10) 3.2实验数据与处理. (14) 4.波粒二象性的意义和后期成果 (15) 5.结论 (16) 参考文献 (17) 致谢 (18)

引言 1801年,杨氏进行了著名的杨氏双缝干涉实验。实验所使用的白屏上明暗相间的黑白条纹证明了光的干涉现象,从而证明了光是一种波。 1882年德国物理学家施维尔德根据新的光波学说,对光通过光栅后的衍射现象进行了成功的解释。 1887年,德国科学家赫兹发现光电效应,光的粒子性再一次被证明! 二十世纪初,普朗克和爱因斯坦提出了光的量子学说 1905年,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖 在新的事实与理论面前,光的波动说与微粒说之争以“光具有波粒二象性”而落下了帷幕。即:光既是一种波又是一种粒子!光的波动说与微粒说之争从十七世纪初笛卡儿提出的两点假说开始,至二十世纪初以光的波粒二象性告终,前后共经历了三百多年的时间。牛顿、惠更斯、托马斯.杨、菲涅耳等多位著名的科学家成为这一论战双方的主辩手。 二十世纪来临之时,这个观点面临了一些挑战。1905年由阿尔伯特·爱因斯坦研究的光电效应展示了光粒子性的一面。随后,电子衍射被预言和证实了。这又展现了原来被认为是粒子的电子波动性的一面。这个波与粒子的困扰终于在二十世纪初由量子力学的建立所解决,即所谓波粒二象性。它提供了一个理论框架,使得任何物质在一定的环境下都能够表现出这两种性质。量子力学认为自然界所有的粒子,如光子、电子或是原子,都能用一个微分方程,如薛定谔方程来描述。这个方程的解即为波函数,它描述了粒子的状态。波函数具有叠加性,即,它们能够像波一样互相干涉和衍射。同时,波函数也被解释为描述粒子出现在特定位置的几率幅。这样,粒子性和波动性就统一在同一个解释中。

【高中物理】《波粒二象性》测试题

《波粒二象性》测试题 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100,考试时间60分钟. 第Ⅰ卷(选择题共40分) 一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分.) 1.在下列各组的两个现象中都表现出光具有波动性的是() A.光的折射现象、色散现象 B.光的反射现象、干涉现象 C.光的衍射现象、偏振现象 D.光的直线传播现象、光电效应现象 解析:因为色散现象说明的是白光是由各种单色光组成的复色光,故A错;由于反射现象并非波动所独有的性质,故B错;直线传播并非波动所独有,且光电效应说明光具有粒子性,故D错;只有衍射现象和偏振现象为波动所独有的性质,所以C正确. 答案:C 2.下列说法中正确的是() A.光的干涉和衍射现象说明光具有波动性 B.光的频率越大,波长越长 C.光的波长越大,光子的能量越大 D.光在真空中的传播速度为3.0×108 m/s 解析:干涉和衍射现象是波的特性,说明光具有波动性,A对;光的频率越大,波长越短,光子能量越大,故B、C错;光真空中的速度为3.0×108 m/s,故D对. 答案:A、D 3.现代科技中常利用中子衍射技术研究晶体的结构,因为热中子的德布罗意波长与晶体中原子间距相近.已知中子质量m=1.67×10-27 kg,可以估算德布罗意波长λ=1.82×10-10 m 的热中子动能的数量级为() A.10-17 J B.10-19 J C.10-21 J D.10-24 J

解析:由p =h λ及E k =p 22m 得,E k =h 2 2mλ2= 6.6262×10-682×1.67×10-27×1.822×10-20 J ≈4×10-21 J,C 正确. 答案:C 4.下列关于光电效应的说法中,正确的是( ) A .金属的逸出功与入射光的频率成正比 B .光电流的大小与入射光的强度无关 C .用不可见光照射金属一定比用可见光照射同种金属产生的光电子的最大初动能大 D .对于任何一种金属都存在一个“最大波长”,入射光的波长大于此波长时,就不能产生光电效应 解析:逸出功与入射光无关,反映的是金属材料对电子的束缚能力;A 错误;光强越大,单位时间内入射的光子数越多,逸出的电子数也越多,光电流越大,B 错误;红外线的频率比可见光小,紫外线的频率比可见光大,由E k =hν-W 0知,C 错误;由产生光电效应的条件知,D 正确. 答案:D 5.下列有关光的说法中正确的是( ) A .光电效应表明在一定条件下,光子可以转化为电子 B .大量光子易表现出波动性,少量光子易表现出粒子性 C .光有时是波,有时是粒子 D .康普顿效应表明光子和电子、质子等实物粒子一样也具有能量和动量 解析:光电效应中,光子把能量转移给电子,而不是转化为电子,A 错误;由光的性质可知,B 正确;波动性和粒子性是光的两个固有属性,只是在不同情况下一种属性起主要作用,C 错误;康普顿效应表明光具有能量和动量,能量ε=hν,动量p =h λ ,D 正确. 答案:B 、D 6.一激光器发光功率为P ,发出的激光在折射率为n 的介质中波长为λ,若在真空中速度为c ,普朗克常量为h ,则下列叙述正确的是( ) A .该激光在真空中的波长为nλ B .该激光的频率为c λ C .该激光器在t s 内辐射的能量子数为Ptnλ hc

第十七章波粒二象性详解

第十七章波粒二象性

Ⅱ学习指导 一、本章知识结构 二、本章重点、难点分析 1.黑体和黑体辐射 如果某种物质能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。 (1)现实生活中不存在理想的黑体,实际的物体都能辐射红外线(电磁波),也都能吸收和反射红外线,绝对黑体是理想化模型。 (2)黑体看上去不一定是“黑”的,有些可看做暗黑体的物体由于自身较强的辐射,看起来还会很明亮,如炼钢炉口上的小孔、一些发光体也被当作黑体来处理。 (3)黑体辐射的特性:黑体辐射电磁波的强度按波长的分布只与黑体的温度有关。 (4)黑体辐射实验规律。 从下页右图中可以看出,随温度的升高,一方面,各种波长的辐射强度都在增加;另一方面辐射强度的极大值向波长较短的方向移动。

2.能量的量子化 宏观世界的能量是连续的,微观世界里的能量是不连续的,不是任意值,是量子化的,或者说是分立的。 1900年,德国物理学家普朗克提出能量量子化假说:振动着的带电微粒的能量只能是某一最小能量ε的整数倍,最小能量称为能量子 ε=h ν 普朗克常量:h =6.626×10- 34J ·s 3.光电效应的规律 (1)入射光越强,饱和光电流就越大,也就是单位时间内发射的光电子数越多。即光电流强度与入射光的强度成正比。 光电效应规律中“光电流的强度”指的是光电流的饱和值。因为光电流未达到饱和值之前,其大小不仅与入射光的强度有关,还与光电管两极间的电压有关。只有在光电流达到饱和值以后才和入射光的强度成正比。 (2)射出的光电子存在最大初动能,最大初动能与光强无关,只随光的频率的增大而增大。 遏止电压:使光电流减小到零的反向电压U C 2 1 2c e v m =eU c 遏止电压的存在说明光电子具有一定的初速度,遏止电压随入射光的频率改变,与光强无关。 (3)任何金属都存在截止频率,用超过截止频率的光照射这种金属才能产生光电效应,低于截止频率的光照射,无论光有多强,照射时间有多长,都不会产生光电效应。 (4)光电效应的瞬时性,产生光电效应的时间不会超过10- 9s 。 例1 光电效应中,从同一金属逸出的电子动能的最大值 A .只跟入射光的频率有关 B .只跟入射光的强度有关 C .跟入射光的频率和强度都有关 D .除跟入射光的频率和强度有关外,还和光照时间有关 说明:根据光电效应的规律可知,光电子最大初动能E k 值取决于入射光的频率ν,故选项A 正确。

对波粒二象性的理解和认识_光学小论文

对波粒二象性的理解 和认识 电子工程与信息科学系 黄金 PB11210054

从我们出生的那一刻起,光就伴随着我们。我们的生活离不开阳光,有了光,才有了我们色彩斑斓的生活。人们对光学最初的研究,也是从“人类为何能看到周围的物体开始”。经历了半个多学期的光学学习我对光又有了全新的认识。 大学以前,我们接触到的主要是几何光学,它让我们对光有了最初的认识。它让我们知道光是沿直线传播的,同时又引出了光的反射、折射等基本性质。费马定理更是让我们对光有了更为全面的认识。我们似乎觉得这好像就是光的全部。其实不然,大学又为我们开启了一扇全新的大门,让我们更进一步的认识光,了解光。 光的干涉衍射让我们知道了光是一种波。而对于光电效应和黑体辐射等问题的研究又让我们看到了光的电磁性!既能像波浪一样向前传播,又表现出粒子的特征,我们称光具有“波粒二象性”。 从光的波粒二象性的发现到发展经历了相当长的时间,也是一段无比辉煌的阶段。光一直被认为是最小的物质,虽然它是个最特殊的物质,但可以说探索光的本性也就等于探索物质的本性。历史上,整个物理学正是围绕着物质究竟是波还是粒子而展开的。17 世纪以前,人们对光的认识只停留在简单的几何光学的层面上,例如光的反射、折射等光的直线传播现象,这也是光学的初期发展。十七世纪初期,人们逐渐发现了与光的直线传播不完全符合的事实,意大利人格里马第率先观察到了光的衍射现象,接着1672-1675 年间胡克也观察到了光的衍射现象,并且和波意耳互相独立地研究了薄膜所产生的彩色干涉条纹,衍射现象,简而言之,就是光波遇到小障碍物或小孔时,绕过障碍物进入几何

阴影区继续传播,并在障碍物后的观察屏上呈现出光强的不均匀分布的现象。所有这些现象的发现都为光的波动理论的萌芽奠定了坚实的基础。17 世纪下半叶,英国物理学家牛顿以极大的兴趣和热情开始了对光学的研究。通过白光实验并根据光的直线传播的性质,他提出了光是微粒流的理论,然而他的这一理论因无法解释光在绕过障碍物之后所发生的衍射现象,遭到了以惠更斯为代表的波动学说的强烈反对。光的研究在18 世纪实际上并没有什么发展,由于牛顿在学术界的权威和盛名,大多数科学家仍在支持光的微粒学说,不过笛卡儿学派中瑞士的欧拉和法国的伯努利却捍卫并发展了光的波动理论。 人们探索的脚步永不停息。到了十九世纪,初步发展起来的波动光学的体系已经形成。杨氏(托马斯?杨)和菲涅耳的著作对光学的发展起到了决定性的作用,著名的“杨氏双缝干涉试验”还第一次成功地测定了光的波长,光学界沉闷的空气再次活跃起来。后来菲涅耳用杨氏干涉原理补充了惠更斯原理,形成人们所熟知的惠更斯--菲涅耳原理,1800年光的偏振现象的发现,更证明了光是横波的事实。1845年,法拉第发现光的振动面在强磁场中的旋转,从而揭示了光现象和电磁现象的内在联系,同时使人们认识到在研究光学现象的时候必须把光学现象同其他物理现象联系起来考虑。后来麦克斯韦在1865 年的理论研究中指出:光是一种电磁波。这一结论后来被赫兹用试验所证实。19 世纪末到20 世纪初,光的研究深入到光的发生,光和物质的相互作用的微观体系中,然而光的电磁理论却不能解释光和物质的相互作用的某些现象,例如黑体辐射中能量按波长的分布的问题;赫兹发现的光电效应等。

(完整版)波粒二象性试题汇总

用很弱的光做双缝干涉实验,把入射光减弱到可以认为光源和感光胶片之间不可能同时有两个光子存在,如图所示是不同数量的光子照射到感光胶片上得到的照片。这些照片说明() A.光只有粒子性没有波动性 B.光只有波动性没有粒子性 C.少量光子的运动显示波动性,大量光子的运动显示粒子性D.少量光子的运动显示粒子性,大量光子的运动显示波动性

2.实物粒子也具有波动性,只是因其波长太小,不易观察到,但并不能否定其具有波粒二象性。关于物质的波粒二象性,下列说法中正确的是() A.不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性 B.运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道 C.波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的 D.实物的运动有特定的轨道,所以实物不具有波粒二象性

3.电子属于实物粒子,1927年戴维逊和革末完成了电子衍射实验,该实验是荣获诺贝尔奖的重大近代物理实验之一。如图所示是该实验装置的简化图,下列说法正确的是 () A.亮条纹是电子到达概率大的地方 B.该实验说明物质波理论是正确的 C.该实验再次说明光子具有波动性 D.该实验说明实物粒子具有波动性

(2016·宁波期末)一个德布罗意波波长为λ1的中子和另一个德布罗意波波长为λ2的氘核同向正碰后结合成一个氚核,该氚核的德布罗意波波长为 A. λ1λ2 λ1+λ2B. λ1λ2 λ1-λ2 C .λ1+λ2 2D. λ1-λ2 2

1.(多选)为了验证光的波粒二象性,在双缝干涉实验中将光屏换成照相底片,并设法减弱光的强度,下列说法正确的是 A.使光子一个一个地通过双缝干涉实验装置的单缝,如果时间足够长,底片上将出现双缝干涉图样 B.使光子一个一个地通过双缝干涉实验装置的单缝,如果时间很短,底片上将出现不太清晰的双缝干涉图样C.大量光子的运动显示光的波动性 D.光只有波动性没有粒子性

达标作业 第十七章 波粒二象性

第十七章 波粒二象性 一、能量量子化 1.以下宏观概念,哪些是“量子化”的 ( ) A. 木棒的长度 B .物体的质量 C .物体的动量 D .学生的个数 2.红、橙、黄、绿四种单色光中,光子能量最小的是 ( ) A .红光 B .橙光 C .黄光 D .绿光 3.“约瑟夫森结”由超导体和绝缘体制成。若在结两端加恒定电压U ,则它会辐射频率为v 的电磁波,且与U 成正比,即v = kU 。已知比例系数k 仅与元电荷e 的2倍和普朗克常量h 有关。你可能不了解此现象为机理,但仍可运用物理学中常用的方法,在下列选项中,推理判断比例系数k 的值可能为 ( ) A . e h 2 B .h e 2 C .2eh D .eh 21 4.煤烟很接近黑体,其吸收率为99%,即投射到煤烟的辐射能量几乎全部被吸收,若把一 定量的煤烟置于阳光照射下,问它的温度是否一直上升?

二、光的粒子性 1.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针张开了一个角度,如图所示,这时 ( ) A.锌板带正电,指针带负电 B.锌板带正电,指针带正电 C.锌板带负电,指针带负电 D.锌板带负电,指针带正电 2.(多选)两种单色光a和b,a光照射某金属时有光电子逸出,b光照射该金属时没有光 电子逸出,则 ( ) A.在真空中,a光的传播速度较大 B.在水中,a光的波长较小 C.在真空中,b光光子的能量较大 D.在水中,b光的折射率较小 3.(多选)如图是光电效应中光电子的最大初动能E km与入射光频率ν的关系图线.从图可知( ) A.E km与ν成正比 B.入射光频率必须大于或等于极限频率ν0时,才能产生光电效应 C.对同一种金属而言,E km仅与ν有关 D.E km与入射光强度成正比 4.某单色光照射某金属时不能产生光电效应,则下述措施中可能使金属产生光电效应的是 ( ) A.延长光照时间 B.增大光的强度 C.换用波长较短的光照射 D.换用频率较低的光照射 5.如图所示,当电键S断开时,用光子能量为2.5eV的一束光照射阴极P,发现电流表读数不为零。合上电键,调节滑动变阻器,发现当电压表读数小于0.60V时,电流表读数仍不为零;当电压表读数大于或等于0.60V时,电流表读数为零。 (1)求此时光电子的最大初动能的大小。 (2)求该阴极材料的逸出功。

光电效应、波粒二象性测试题及解析

光电效应、波粒二象性测试题及解析 1.用很弱的光做单缝衍射实验,改变曝光时间,在胶片上出现的图像如图所示,该实验表明( ) A .光的本质是波 B .光的本质是粒子 C .光的能量在胶片上分布不均匀 D .光到达胶片上不同位置的概率相同 解析:选C 用很弱的光做单缝衍射实验,改变曝光时间,在胶片出现的图样说明光具有波粒二象性,故A 、B 错误;该实验说明光到达胶片上的不同位置的概率是不一样的,也就说明了光的能量在胶片上分布不均匀,故C 正确,D 错误。 2.(2020·滨州模拟)已知钙和钾的截止频率分别为7.73×1014 Hz 和5.44×1014 Hz ,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的( ) A .波长 B .频率 C .能量 D .动量 解析:选A 由爱因斯坦光电效应方程12m v 2m =hν-W 0,又由W 0=hν0,可得光电子的最大初动能12m v 2 m =hν-hν0,由于钙的截止频率大于钾的截止频率,所以钙逸出的光电子的最大初动能较小,因此它具有较小的能量、频率和动量,B 、C 、D 错误;又由c =λf 可知光电子频率较小时,波长较大,A 正确。 3.[多选]如图所示,电路中所有元件完好,但光照射到光电管上,灵敏电流计中没有电流通过,其原因可能是( ) A .入射光太弱 B .入射光波长太长 C .光照时间短 D .电源正、负极接反 解析:选BD 若入射光波长太长,入射光的频率低于截止频率时,不能发生 光电效应,故选项B 正确;电路中电源反接,对光电管加了反向电压,若使该电压超过了遏止电压,也没有光电流产生,故选项D 正确。 4.(2019·北京高考)光电管是一种利用光照射产生电流的装置,当入射光照在管中金属板上时,可能形成光电流。表中给出了6次实验的结果。 组 次 入射光子的能量/eV 相对光强 光电流大小/mA 逸出光电 子的最大动能/eV

人教版高二物理选修3-5第十七章波粒二象性精选习题(含答案)--资料

人教版高二物理选修3-5第十七章波粒二象性精选习题(含答案) 1.关于光电效应有如下几种叙述,其中叙述不正确的是() A.对任何一种金属都存在一个“极限频率”,入射光的频率必须大于这个频率,才能产生光电效应B.光电流强度与入射光强度的有关 C.用不可见光照射金属一定比可见光照射金属产生的光电子的初动能要大 D.光电效应几乎是瞬时发生的 2.(多选题)如图所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线,(直线与横轴的交点坐标4.27,与纵轴交点坐标0.5),由图可知() A.该金属的截止频率为4.27×1014Hz B.该金属的截止频率为5.5×1014Hz C.该图线的斜率表示普朗克常量 D.该金属的逸出功为0.5eV 3.通过学习波粒二象性的内容,你认为下列说法符合事实的是() A.宏观物体的物质波波长非常小,极易观察到它的波动性 B.光和电子、质子等实物粒子都具有波粒二象性 C.康普顿效应中光子与静止的电子发生相互作用后,光子的波长变小了 D.对于任何一种金属都存在一个“最大波长”,入射光的波长必须大于这个波长,才能产生光电效应 4.氢原子的能级如图所示.氢原子从n=4能级直接向n=1能级跃迁所放出的光 子,恰能使某金属产生光电效应,下列判断正确的是() A.氢原子辐射出光子后,氢原子能量变大 =12.75eV B.该金属的逸出功W o C.用一群处于n=3能级的氢原子向低能级跃迁时所发出的光照射该金属,该金 属仍有光电子逸出 D.氢原子处于n=1能级时,其核外电子在最靠近原子核的轨道上运动 5.用一束紫外线照射某金属时不能产生光电效应,可能使该金属产生光电效应的措施是() A.改用红光照射B.改用X射线照射 C.改用强度更大的原紫外线照射D.延长原紫外线的照射时间 6.(多选题)一含有光电管的电路如图甲所示,乙图是用a、b、c光照射光电管得到的I﹣U图线,U c1、U 表示截止电压,下列说法正确的是() c2 A.甲图中光电管得到的电压为正向电压 B.a、b光的波长相等 C.a、c光的波长相等 D.a、c光的光强相等 7.(单选)一束绿光照射某金属发生了光电效应,对此,以下

光电效应与光的波粒二象性

高中精品试题 高中精品试题 光电效应与光的波粒二象性 说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ 卷可在各题后直接作答.共100分,考试时间90分钟. 第Ⅰ卷(选择题共40分) 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有 一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不 答的得0分. 1.下列关于光电效应的说法正确的是 ( ) A.若某材料的逸出功是W ,则它的极限频率h W v 0 B.光电子的初速度和照射光的频率成正比 C.光电子的最大初动能和照射光的频率成正比 D.光电子的最大初动能随照射光频率的增大而增大 解析:由光电效应方程k E =hv -W 知,B 、C 错误,D 正确.若k E =0,得极限频率0v =h W ,故A 正确. 答案AD 2.在下列各组所说的两个现象中,都表现出光具有粒子性的是 ( ) A.光的折射现象、偏振现象 B.光的反射现象、干涉现象 C.光的衍射现象、色散现象 D.光电效应现象、康普顿效应 解析:本题考查光的性质. 干涉、衍射、偏振都是光的波动性的表现,只有光电效应现象和康普顿效应都是光的粒 子性的表现,D 正确. 答案D 3.关于光的波粒二象性的理解正确的是 ( ) A.大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性 B.光在传播时是波,而与物质相互作用时就转变成粒子 C.高频光是粒子,低频光是波 D.波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著 解析:根据光的波粒二象性知,A 、D 正确,B 、C 错误. 答案AD 4.当具有 5.0 eV 能量的光子照射到某金属表面后,从金属表面逸出的电子具有最大的初 动能是1.5 eV.为了使这种金属产生光电效应,入射光的最低能量为 ( ) A.1.5 eV B.3.5 eV

波粒二象性阶段测试题

波粒二象性阶段测试题 (时间:60分钟 满分:100分) 一、选择题(本题共8小题,每小题6分,共48分。1~6小题只有一个选项符合题目要求,7~9小题有多个选项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分) 1.爱因斯坦由光电效应的实验规律,猜测光具有粒子性,从而提出光子说,从科学研究的方法来说,这属于( ) A .等效替代 B .控制变量 C .科学假说 D .数学归纳 2.关于德布罗意波,下列说法正确的是( ) A .所有物体不论其是否运动,都有对应的德布罗意波 B .任何一个运动着的物体都有一种波和它对应,这就是德布罗意波 C .电磁波也是德布罗意波 D .只有运动着的微观粒子才有德布罗意波,对于宏观物体,不论其是否运动,都没有相对应的德布罗意波 3.关于热辐射,下列说法中正确的是( ) A .一般物体的热辐射强度只与物体的温度有关 B .黑体只吸收电磁波,不反射电磁波,所以黑体一定是黑的 C .一定温度下,黑体辐射强度随波长的分布有一个极大值 D .温度升高时,黑体辐射强度的极大值向波长增大的方向移动 4.经150 V 电压加速的电子束,沿同一方向射出来,穿过铝箔射到其后的屏上,则( ) A .所有电子的运动轨迹均相同 B .所有电子到达屏上的位置坐标均相同 C .电子到达屏上的位置坐标可用牛顿运动定律确定 D .电子到达屏上的位置受波动规律支配,无法用确定的坐标来描述它的位置 5.光子有能量,也有动量,动量p =h λ ,它也遵守有关动量的规律。如图所示,真空中,有“∞”形装置可绕通过横杆中点的竖直轴OO ′在水平面内灵活地转动,其中左边是圆形黑纸片(吸收光子),右边是和左边大小、质量相同的圆形白纸片(反射光子)。当用平行白光垂直照射这两个圆面时,关于装置开始时的转动情况(俯视),下列说法中正确的是( B )

第十七章 波粒二象性 复习教案讲课教案

第十七章 波粒二象性 复习教案 17.1 能量量子化 知识与技能 (1)了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射。 (2)了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系。 (3)了解能量子的概念。 教学重点:能量子的概念 教学难点:黑体辐射的实验规律 教学过程: 1、黑体与黑体辐射 (1)热辐射现象 固体或液体,在任何温度下都在发射各种波长的电磁波,这种由于物体中的分子、原子受到激发而发射电磁波的现象称为热辐射。所辐射电磁波的特征与温度有关。 (2)黑体 概念:能全部吸收各种波长的电磁波而不发生反射的物体,称为绝对黑体,简称黑体。 2、黑体辐射的实验规律 黑体热辐射的强度与波长的关系:随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。 提出1:怎样解释黑体辐射的实验规律呢? 在新的理论诞生之前,人们很自然地要依据热力学和电磁学规律来解释。德国物理学家维恩和英国物理学家瑞利分别提出了辐射强度按波长分布的理论公式。结果导致理论与实验规律不符,甚至得出了非常荒谬的结论,当时被称为“紫外灾难”。(瑞利--金斯线,) 3、能量子: 1900年,德国物理学家普朗克提出能量量子化假说:辐射黑体分子、原子的振动可看作谐振子,这些谐振子可以发射和吸收辐射能。但是这些谐振子只能处于某些分立的状态,在这些状态中,谐振子的能量并不象经典物理学所允许的可具有任意值。相应的能量是某一最小能量ε(称为能量子)的整数倍,即:ε, 1ε,2ε,3ε,... n ε,n 为正整数,称为量子数。对于频率为ν的谐振子最小能量为: 0 1 2 3 4 6 (μ e 实验结果

高考物理新近代物理知识点之波粒二象性基础测试题及答案(4)

高考物理新近代物理知识点之波粒二象性基础测试题及答案(4) 一、选择题 1.研究光电效应的电路如图所示.用频率相同、强度不同的光分别照射密封真空管的钠极板(阴极K),钠极板发射出的光电子被阳极A 吸收,在电路中形成光电流,下列光电流I 与A 、K 之间的电压U AK 的关系图象中,正确的是( ) A . B . C . D . 2.下列说法正确的是( ) A .只要光照射的时间足够长,任何金属都能发生光电效应 B .一群氢原子从4n =能级跃迁到基态时,能发出6种频率的光子 C .比结合能越大,原子核越不稳定 D .核反应 238234 492 902U Th He →+为重核裂变 3.如图所示是氢原子的能级图,a 、b 、c 为原子跃迁所发出的三种频率的光。用这三种频率的光分别照射同种金属,都发生了光电效应,则关于这种金属发生光电效应时光电子的最大初动能Ek 随入射光频率v 变化的图象,以及这三种频率的光产生的光电子最大初动能的大小关系,下列四个图象中描绘正确的是

A.B. C.D. 4.下列说法正确的是() A.原子核发生衰变时要遵守电荷守恒和质量守恒的规律 B.射线、射线、射线都是高速运动的带电粒子流 C.氢原子从激发态向基态跃迁只能辐射特定频率的光子 D.发生光电效应时光电子的动能只与入射光的强度有关 5.利用金属晶格(大小约10-10m)作为障碍物观察电子的衍射图样,方法是让电子通过电场加速,然后让电子束照射到金属晶格上,从而得到电子的衍射图样.已知电子质量为m、电量为e、初速度为零,加速电压为U,普朗克常量为h,则下列说法中不正确的是 ( ) A.该实验说明电子具有波动性 λ= B.实验中电子束的德布罗意波长为 2meU C.加速电压U越大,电子的衍射现象越不明显 D.若用相同动能的质子代替电子,衍射现象将更加明显 6.关于光电效应,下列说法正确的是 A.光电子的最大初动能与入射光的频率成正比 B.光的频率一定时,入射光越强,饱和电流越大 C.光的频率一定时,入射光越强,遏止电压越大 D.光子能量与光的速度成正比 7.某同学采用如图所示的实验装置研究光电效应现象。当用某单色光照射光电管的阴极K 时,会发生光电效应现象。闭合开关S,在阳极A和阴极K之间加上反向电压,通过调节滑动变阻器的滑片逐渐增大电压,直至电流计中电流恰为零,此时电压表的电压值U称为遏止电压。现分别用频率为ν1和ν2的单色光照射阴极,测量到遏止电压分别为U1和U2,设电子质量为m、电荷量为e,则下列说法中正确的是

光的波粒二象性

光的波粒二象性 作为被列入世界上十大经典物理实验之一的双缝实验,让很多物理学家和科学家们伤透脑筋。双缝实验是一种光学实验,大家一起往下看吧。 在量子力学里,双缝实验是一种演示光子或电子等等微观物体的波动性与粒子性的实验。双缝实验是一种“双路径实验”。在这种更广义的实验里,微观物体可以同时通过两条路径或通过其中任意一条路径,从初始点抵达最终点。 这两条路径的程差促使描述微观物体物理行为的量子态发生相移,因此产生干涉现象。另一种常见的双路径实验是马赫-曾德尔干涉仪实验。双缝实验还被列入了世界十大经典物理实验之中,但是有人却认为双缝实验十分的难以理解。如果电子是互不干涉地运动,穿过双缝落到黑板上是两道痕迹。如果电子是以波的形式运动,由于波之间存在干涉,穿过双缝落到黑板上是一道道痕迹。一开始实验表明电子以波的形式运动。即使一个个电子发射,黑板上还是一道道痕迹。于是科学家想知道为什么一个个电子发射也会有波的现象,于是将高速摄像机对准双缝以便观察。重点来了:当想进一步观察时,粒子却是是互不干涉地运动,穿过双缝落到黑板上是两道痕迹!!!双缝实验,著名光学实验,在1807年,托马斯·杨总结出版了他的《自然哲学讲义》,里面综合整理了他在光学方面的工作,并在里面第一次描述了双缝实验:把一支蜡烛放在一张开了一个小孔的纸前面,这样就形成了一个点光源(从一个点发出的光源)。现在在纸后面再放一张纸,不同的是第二张纸上开了两道平行的狭缝。从小孔中射出的光穿过两道狭缝投到屏幕上,就会形成一系列明、暗交替的条纹,这就是现在众人皆知的双缝干涉条纹。 试验本身没什么问题,证明了光有波粒二象性,但是科学家们想观察清楚如何会这样,于是他们在微观层面上来观察,架设高速摄像机,观察光子是如何一个一个通过缝隙形成波干涉的,这时候神奇的事情出现了,光子波的特性消失了!又变成人类最容易理解的粒子,只出现了两条条纹。这才引出了超级可怕和诡异的电子双缝干涉实验和后来石破天惊的的“延迟选择实验”,给整个人类带来了前所未有的思想冲击。单光子双缝干涉实验现在有一种仪器,每次只发射出一个光子,这时如果遮板上仍然有两个缝隙A和B(遮板与上述传统实验一样)。依照传统理论,该光子每次有且仅有以下三种情况中的一种:被遮板挡住、通过A缝、通过B缝。 因为要观察投射面的光斑分布,所以不必考虑第一种情况。也就是说,只要光子通过了遮板,要么从A缝通过,要么从B缝通过。按照这种传统理论推导,在投射面会形

人教版高中物理选修3-5第17章《光的波粒二象性》知识点总结

第十七章:波粒二象性 一、黑体辐射规律 1、黑体:只吸收外来电磁波而不反射的理想物体 2、黑体辐射的特点 黑体的辐射强度按波长分布只与温度有关,与物体的材料和表面形 状无关(一般物体的辐射强度按波长分布除与温度有关外,还与物 体的材料、表面形状有关); 3、黑体辐射规律: ① 随着温度的升高,任意波长的辐射强度都加强 ② 随着温度的升高,辐射强度的极大值向着波长减小的方向进行; 4、普朗克的量子说: 透过黑体辐射规律,普朗克认为:电磁皮的辐射和吸收,是不连续的,而是一份一份地进行的,每份叫一个能量子,能量为γεh =。爱因斯坦受其启发,提出了光子说:光的传播和吸收也是一份一份地进行的,每一份叫一个光子,其能量为νεh = 二、光电效应:说明了光具有粒子性,同时说明了光子具有能量 1、光电效应现象 紫外光照射锌板,锌板的电子获得足够的光子能量,挣脱金 属正离子引力,脱离锌板成为光电子;锌板因失去电子而带上 正电,于是与锌板相连的验电器也带上正电,金属箔张开。 2、实验原理电路图

3、规律: ① 存在饱和电流 饱和电流:在光电管两端加正向电压时,单位时间到达阳极A 的光 电子数增多,光电流越大;但当逸出的光电子全部到达阳极后,再 增加正向电压,光电流就达到最大饱和值,称为饱和电流。 ② 存在遏止电压 在光电管两端加反向电压时,单位时间内到达阳极A 的光电子数减少,光电流减小;当反射电压达到某一值U C 时,光电流减小为零,U C 就叫“遏止电压”。 ③ 存在截止频率 a 、 截止频率的定义:任何一种金属都有一个极限频率ν0,入射光的频率低于 “极限频率”ν0时,无论入射光多强,都不能发生光电效应,这个极限频率称为 截止频率。 b 、“逸出功”定义:电子从金属表面脱离金属所需克服金属正离子的引力所做的最小功。 要发生光电效应,入射光的能量(h ν)要大于 “逸出功(W )” 即: 00W hv = ④ 光电效应的“瞬时性”——因光电效应发生的时间,即为一个光子与一个电子能量交换 的时间,所以不管光强度如何,发生光电效应的时间极短,不超过10-9 s 。 4、爱因斯坦的光电效应方程: 光电子的最大初动能等于入射光光子的能量减逸出功 即:W h E K -=ν 可见“光电子的最大初动能”与入射光的强度无关,只与入射光频率有关,图象如下图

光的波粒二象性

1.了解事物的连续性与分立性是相对的. 2.了解光既具有波动性,又具有粒子性. 3.了解光是一种概率波. 【教材内容全解】 光电效应以及以后发现的康普顿效应都证明了光是一种粒子,但光的干涉现象和光的衍射现象又表明光是一种波.我们可以看出,光既具有波动性,又具有粒子性,即光具有波粒二象性. 光是一种粒子,它和物质作用是“一份一份”的,但我们无法用宏观世界的规律来描述这些粒子的运动规律,当光子数很少时,可以清楚地看到光子的痕迹,但光子的数量很多时,我们就无法把它们区分开,看起来就是连续的,正如沙堆是一颗颗沙粒组成的,但是建筑工地上的一堆沙子包含的沙子太多了,测量沙堆的体积可以认为它们是连续的.从波动性来看,单个光子的运动无法预测,但大量的光子就有了规律,它们出现在某个区域内的可能性就能看出来,这是微观世界具有的特殊规律.这样的现象表明,大量光子运动的规律表现出光的波动性,单个光子的运动表现出光的粒子性,光子在空间各点出现的可能性大小(概率)可以用波动的规律来描述,物理学中把光波叫做概率波. 光既然是一种概率波,但它和水波、绳子上的波等机械波在本质上完全不同,决定光子在空间不同位置出现概率的规律表现为波的规律.课本图21-3的实验中,光子在和感光胶片作用时的表现和通常的粒子一样,在通过狭缝时却和我们印象中的波一样,正如光子的能量E=hv 和动量λ h c hv p ==,等式的左边表示粒子性,等式右边表示波动的性质,这两种性质通过普朗克常量h 定量地联系起来,这是光的波粒二象性的体现,但不能把它简单地理解为光子以波浪式前进.从波的特性可以看出,光子波长越长,越容易看到光的干涉和衍射现象,波动性越明显;光波的频率越高,粒子性越明显,穿透本领越强. 【难题巧解点拨】 例 关于光的本性,下列说法中正确的是 ( ) A .光子说并没有否定光的电磁说 B .光电效应现象反映了光的粒子性 C .光的波粒二象性是综合了牛顿的微粒说和惠更斯的波动说得出来的 D .大量光子产生的效果往往显示出粒子性,个别光子产生的效果往往显示出波动性 解析 光既有粒子性,又有波动性,但这两种特性并不是牛顿所支持的微粒说和惠更斯提出的波动说,它体现出的规律不在是宏观粒子和机械波所表现出的规律,而是自身体现的一种微观世界特有的规律.光子说和电磁说各自能解释光特有的现象,两者构成一个统一的整体,而微粒说和波动说是互相对立的. 答案 A 、B 点拨 本章主要是对微观世界的规律进行了讲解,要对微观世界了解,就不能再以宏观世界的规律进行理解.我们的经验局限于宏观物体的运动,微观世界的某些属性与宏观世界

高中物理-波粒二象性测试题

高中物理-波粒二象性测试题 一、选择题 1、入射光照射到金属表面上发生了光电效应,若入射光的强度减弱,但频率保持不变,那么以下说法正确的是() A.从光照射到金属表面到发射出光电子之间的时间间隔明显增加 B.逸出的光电子的最大初动能减小 C.单位时间内从金属表面逸出的光电子的数目减少 D.有可能不再产生光电效应 2、爱因斯坦由光电效应的实验规律,猜测光具有粒子性,从而提出光子说。从科学研究的方法来说这属于() A.等效代替B.控制变量 C.科学假说D.数学归纳 3、如图1所示,画出了四种温度下黑体辐射的强度与波长的关系图象,从图象可以看出,随着温度的升高,则() A.各种波长的辐射强度都有增加 B.只有波长短的辐射强度增加 C.辐射强度的极大值向波长较短的方向移动 D.辐射电磁波的波长先增大后减小 4、对光的认识,以下说法正确的是() 图1 A.个别光子的行为表现为粒子性,大量光子的行为表现为波动性 B.光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的 C.光表现出波动性时,不具有粒子性;光表现出粒子性时,不具有波动性D.光的波粒二象性应理解为:在某些场合下光的波动性表现明显,在另外一些场合下,光的粒子性表现明显 5、光子打在处于静止状态的电子上,光子将偏离原来的方向而发生散射,康普顿对散射的解释为() A.虽然改变原来的运动方向,但频率保持不变 B.光子从电子处获得能量,因而频率增大 C.入射光引起物质内电子做受迫振动,而从入射光中吸收能量后再释放,释

放出的散射光频率不变 D .由于电子受碰撞后得到动量,散射后的光子频率低于入射光的频率 6、一束绿光照射某金属发生了光电效应,则下列说法正确的是( ) A .若增加绿光的照射强度,则逸出的光电子数增加 B .若增加绿光的照射强度,则逸出的光电子最大初动能增加 C .若改用紫光照射,则可能不会发生光电效应 D .若改用紫光照射,则逸出的光电子的最大初动能增加 7、用波长为λ1和λ2的单色光1和2分别照射金属1和2的表面。色光1照射 金属1和2的表面时都有光电子射出,色光2照射金属1时有光电子射出,照射金属2时没有光电子射出。设金属1和2的逸出功为W 1和W 2,则有( ) A .λ1>λ2,W 1>W 2 B .λ1>λ2,W 1W 2 D .λ1<λ2,W 1

相关主题
文本预览
相关文档 最新文档