当前位置:文档之家› 基于DSP的高频感应加热电源

基于DSP的高频感应加热电源

基于DSP的高频感应加热电源
基于DSP的高频感应加热电源

基于DSP的高频感应加热电源

摘要

感应加热表面淬火是利用感应电流通过工件产生热效应,使工件表面局部加热继之快速冷却的现代工业淬火技术。淬火后,工件心部仍保持淬火前的韧性,而表面具有高硬度和高耐磨性的优点。这种淬火技术的核心部分是智能化感应加热电源。

本文研究了适用于较大直径轴类、中大齿轮淬火的20kHz/10kW电源的设计。该电源的主电路由三相不可控整流电路和容易频繁启动的串联谐振逆变器组成。该逆变器的功率开关器件采用金属氧化物半导体晶体MOSFET,控制芯片采用TI公司的DSP芯片TMS320F2812。本文对该感应加热电源进行了整体设计并重点研究了其数字化频率跟踪和功率控制技术。

论文首先介绍了串联感应加热电源的工作原理,具体分析了串联逆变器在感性、谐振、容性三种工作情况下功率器件的开关状态,然后根据软开关技术及MOSFET的特性设计了感性移相功率控制,并具体介绍了感性状态下移相PWM功率调节的方法,还采用MATLAB/SIMULINK仿真对所设计的功率调节方法进行了验证。

在感应加热电源硬件电路设计方面,采用了以TMS320F2812为核心的控制采样电路及MOSFET驱动电路,完成了电路的整体设计。

关键词感应加热电源; MOSFET; 感性移相PWM调功; 数字锁相环;

DSP

High frequency induction heating power supply

based on DSP

Abstract

Based on the thermal effects ,induction current can heat the surface of the work piece, make the surface heat fast and then refrigerate quickly. This modern industrial quenching technology is called induction heating surface hardening. After quenching, the heart still keep the toughness while the surface changed high hardness and wear resistance. The score of the quenching technology is the induction heating power supply.

In this dissertation a power supply in 20kHz/10kW is designed, which can be used in the heating of axle and gear. In the power supply, a three-phase uncontrolled rectifier and the series resonance inverter was applied. Metal oxide semiconductor transistor MOSFET used as the inverter switching devices. The TI’s DSP chip TMS320F2812 used as the control chip. The whole induction heating power supply especially the digital frequency tracking and power control were designed.

Firstly, the principles of the series power supply system were introduced, the statues of power switch device MOSFET at three working circumstances; inductive, resonant, capacitive was concretely analyzed. On the basis of soft switch technology and the characteristics of MOSFET, inductive phase-shifted PWM power modulation was designed. Then the principle of inductive phase-shifted PWM power control was introduced. The feasibility of power control was confirmed through the MATLAB/SIMULINK.

On the hardware circuit side, the system of TMS320F2812, the sampling circuit and the driving circuit of MOSFET were designed.,and I completed the overall design of the circuit.

Keywords Induction Heating; MOSFET; Inductive Phase-shifted PWM Power Modulation; DPLL; DSP不要删除行尾的分节符,此行不会被打印

目录

摘要...................................................................................................................... I Abstract ............................................................................................................... II 第1章绪论.. (1)

1.1 课题背景 (1)

1.2 感应加热电源的理论基础 (1)

1.2.1电磁感应定律和焦耳热效应 (1)

1.2.2集肤效应 (2)

1.3 感应加热电源发展现状与趋势 (3)

1.3.1感应加热电源发展与现状 (3)

1.3.2感应加热电源发展趋势 (4)

1.4 本课题主要目的及内容 (4)

第2章高频感应加热电源的结构及原理 (6)

2.1 高频感应加热电源的原理结构分析 (6)

2.1.1整流电路和滤波电路 (7)

2.1.2逆变器电路 (7)

2.2感应加热电源谐振电路分析 (8)

2.3逆变器结构分析 (10)

2.3.1电压型串联形式逆变器 (10)

2.3.2电流型并联形式逆变器 (11)

2.3.3并联谐振逆变器和串联谐振逆变器的比较 (11)

2.4本章小结 (13)

第3章高频感应加热电源控制电路 (14)

3.1全桥移相逆变器工作原理 (14)

3.1.1软开关技术 (14)

3.1.2串联谐振逆变器的三种工作状态 (15)

3.2频率跟踪技术 (21)

3.2.1传统的相位跟踪技术 (21)

3.2.2锁相环的基本工作原理 (22)

3.3功率调节技术 (24)

3.3.1调功方式的分析与选择 (24)

3.3.2移相脉冲生成方法 (26)

3.4本章小结 (28)

第4章感应加热电源电路参数设计及仿真 (29)

4.1主电路参数设计 (29)

4.1.2逆变器及负载参数设计 (31)

4.2感应加热电源仿真及仿真分析 (32)

4.2.1MATLAB/SIMULINK简介 (32)

4.2.2系统仿真模型 (33)

4.3本章小结 (35)

第5章感应加热电源整体设计 (36)

5.1 TMS320F2812控制系统硬件设计 (37)

5.1.1DSP芯片的特点 (37)

5.1.2 DSP外围电路设计 (38)

5.2MOSFET驱动电路 (40)

5.2.1IR2110芯片功能介绍 (40)

5.2.2 IR2110驱动电路设计 (41)

5.3负载电压、电流取样检测电路 (42)

5.4 感应加热电源的软件设计 (43)

5.4.1 软件开发环境 (43)

5.4.2 主程序设计 (44)

5.5数字PID控制 (44)

5.5.1 PID控制原理 (44)

5.5.2 PID控制程序 (46)

5.5.3 有功功率计算 (47)

5.5.4 有功功率计算程序 (48)

结论 (50)

致谢 (51)

参考文献 (52)

附录A英文文献 (54)

附录B翻译文献 (70)

第1章绪论

1.1课题背景

感应加热是利用电磁感应原理把电能转化为热能的一种加热方式,是非接触式加热。与传统的使用煤气或石油为能源的直接加热装置相比较,感应加热具有诸如速度快,效率高,向外界空气散发的热量少,加热品质好,受环境制约小,易于进行局部加热自动化程度高,节能环保,等等优点。迄今为止,感应加热己经广泛用于金属熔炼、透热、焊接、弯管、表面淬火等热加工和热处理行业。对于不同工件,不同工艺,需要不同的电源工作频率和输出功率。在某些应用场合:如淬火、热处理等,希望工件的发热层即透入深度越薄越好。透入深度是由电磁场的集肤效应决定的,交流电流的频率越高,产生的集肤效应越严重。这就要求感应加热电源的频率要提高,所以,研究感应加热电源的高频化具有实际意义。

1.2感应加热电源的理论基础

感应加热是相对于传统电阻的电流热效应加热和火焰加热而言的一种新型加热方式,是一种高效、节能、环保、安全的加热方式,所谓感应加热,就是将被加热物体置于高频交变磁场(如通以交变电流的环形线圈)中,构成磁场的磁力线切割处于磁场中的加热物体,在垂直于磁力线的截面上,根据法拉第电磁感应定律产生涡流,感生涡流(感应电流)在导电物体上依据焦耳热效应产生热能对工件进行加热。

1.2.1电磁感应定律和焦耳热效应

图1-1 感应加热原理

中频计算公式

中频炉系列透热炉构造: 中频透热炉一般由感应器、中频电源、变压器、电容等组成。 中频透热炉特点: (1)加热速度快、生产效率高、氧化脱炭少、节省材料与锻模成本 由于中频感应加热的原理为电磁感应,其热量在工件内自身产生,普通工人用中频电炉上班后十分钟即可进行锻造任务的连续工作,不需烧炉专业工人提前进行烧炉和封炉工作。不必担心由于停电或设备故障引起的煤炉已加热坯料的浪费现象。由于该加热方式升温速度快,所以氧化极少,每吨锻件和烧煤炉相比至少节约钢材原材料20-50千克,其材料利用率可达95%。由于该加热方式加热均匀,芯表温差极小,所以在锻造方面还大大的增加了锻模的寿命,锻件表面的粗糙度也小于50um。 (2)工作环境优越、提高工人劳动环境和公司形象、无污染、低耗能 感应加热炉与煤炉相比,,工人不会再受炎炎烈日下煤炉的烘烤与烟熏,更可达到环保部门的各项指标要求,同时树立公司外在形象与锻造业未来的发展趋势。感应加热是电加热炉中最节能的加热方式由室温加热到1100℃的吨锻件耗电量小于360度。 (3)加热均匀,芯表温差极小,温控精度高 中频透热炉功率估算公式: P=(C×G×T)/(0.24×t×∮) 公式说明:P—设备功率(KW);C—金属比热,其中钢铁比热系数是0.17 G—加热工件重量(kg);T—加热温度(℃);t—工作节拍(秒); ∮—设备综合热效率,一般可取0.5—0.7,异型件取0.4左右。 例如:某锻造厂有锻件坯料为Φ60×150mm,工作节拍为12秒/件(包括辅助时间),初锻温度以1200℃。则需要GTR中频电炉功率的计算如下:P=(0.17×3.3×1200)/(0.24×12×0.65)=359.61KW 根据以上计算,可以配置额定功率为400KW的GTR感应加热设备。感应加热其热量在工件内自身产生所以加热均匀,芯表温差极小。应用温控系统可实现对温度的精确控制提高产品质量和合格率。 中频炉加热装置具有体积小,重量轻、效率高、热加工质量优及有利环境等优点正迅速淘汰燃煤炉、燃气炉、燃油炉及普通电阻炉,是新一代的金属加热设备。 中频炉是铸造锻造及热处理车间的主要设备,其工作的稳定性、可靠性及安全性是流水作业的铸造锻造及热处理生产线正常稳定工作的保证。中频炉在热加工领域有着很好的发展前景如。国内专业的生产中频电炉的厂家东莞市正鑫中频电炉厂是这一领域佼

高频电源技术要求(精)

高频电源技术要求 1、输入电源:三相三线制,电压380V,50Hz。 2、变换器形式:全桥串并联混合谐振。 3、谐振频率:30kHz~50kHz。 4、变换器效率:≥0.92。 5、功率因数:在额定输出电压、电流条件下大于0.9。 6、高频电源结构特性:整机一体化。高频控制柜和变压器采用上下结构方式,以便于变压器检修、吊装换油等。 7、高频电源设备必须确保密闭,防护等级IP55,必须加装大功率工业空调,确保控制柜内主辅电及控制器须与外界空气完全隔绝,防水、防尘,防盐雾。、 8、为确保功率器件(IGBT、整流桥)可靠散热,散热器必须采用热管散热器。 9、设备具有纯直流供电、间歇供电两种供电方式,间歇供电比任意可调。 10、输出直流电压调节范围:0~100%的最大输出电压值或起晕电压~100%的最大输出电压值。 11、输出直流电流调节范围:0~100%额定值。 12、控制系统:采用16位单片机控制,具有与上位机通讯、远程控制功能。 13、设备具有自动和手动两种运行方式。 14、设备具有高低压一体化断电振打接口,能自动接收来自低压振打系统的振打信号,并自动响应,实现复合式功率控制振打,明显改善振打清灰效果。 15、设火花检测控制功能灵敏可靠。闪络特性参数可根据需要设定。 16、设备设置启动、停止按钮,设置“本地/远控”转换开关,将“本地/远控”开关置于本地位置时,本地启停高频电源,将“本地/远控”开关置于远控位置时,可在上位机操作界面上启停控制高频电源。 17、设备应设置运行、报警、停机指示灯。 18、设备应设置母线电压表、一次电流表、二次电压表、二次电流表,以方便直观地监视设备的重要参数。 19、设备能向上位机传送运行的母线电压、电流、二次电压、二次电流、火花率、设备启、停状态、变压器油温、IGBT温度超限等设备故障信号。 20、设备具有重载、轻载保护功能。设备重载、轻载时,设备的二次电流、二次

中频感应加热

ZD系列中频感应加热电源说明书 一、概述 ZD系列中频加热电源是江苏油田工程院的专利产品。(专利号为97220550. 0) ZD系列中频加热电源应用了现代电力电子技术,重量轻,效率高,具有过流、短路等自动保护功能,并且输出功率由温度控制传感器进行自动调节。采用该中频电源的电加热系统通过对输出电压和频率的调节,可以对最大加热长度范围内的任意长度的负载进行加热,具有使用寿命长,效率高,体积小、重量轻等优点。ZD系列中频加热电源可以应用于地面集输管线感应加热和井下空心抽油杆加热。 二、工作原理 中频电源首先将三相380V交流电整流成直流电,并滤波。然后再运用电力电子器件IGBT,把直流电逆变成频率和占空比连续可调的单相中频交流电。最后通过隔离变压器,将单相中频交流电输送给加热负载。 三、型号说明 Z D -□ 额定容量(kVA) 电源 中频 四、使用条件 1、环境温度:-15℃~+40℃ 2、空气相对湿度不大于90%

3、使用场所无严重的振动,周围环境无灰尘、腐蚀性气体 4、输入电压:三相四线交流电50Hz,380V±10%,机壳接零 五、技术数据(仅供参考) 型号 ZD-10 ZD-20 ZD-35 ZD-50 额定容量 10kVA 20kVA 35kVA 50kVA 输入电压 380V±10% 380V±10% 380V±10% 380V±10% 输入电流 5~15A 10~30A 15~55A 20~75A 输出电压 0~240V 0~300V 0~400V 0~500V 装置重量 50kg 80kg 110kg 150kg 加热长度<200米<400米<700米<1000米 六、安装方法 1、中频感应加热电源与油井的距离R≥15m,对轻烃气含量高的油井要求R≥20 m。 2、中频感应加热电源室内安装时,电源装置左右两侧对墙体的距离应≥1m,电源装置后面对墙体的距离应≥0.5m,不得倾斜。 3、中频感应加热电源室外安装时,应放置在一个相应的防雨外壳内,防雨外壳上下通风,不得倾斜,防雨外壳对其它设备的距离应≥1m。 4、中频电源上部接线柱用四芯铜电缆外接三相380V电网,电源装置机壳用接地线可靠接地; 5、中频电源下部的两个接线柱用单芯铜电缆分别引至加热负载; 中频电源型号四芯输入铜电缆规格接地线规格 相线零线 ZD-10 4 mm2 2.5 mm2 2.5 mm2 ZD-20 6 mm2 4 mm2 4 mm2 ZD-35 10 mm2 6 mm2 6 mm2 ZD-50 16 mm2 10 mm2 10 mm2

高频感应加热电源工作原理

高频感应加热电源工作原理【大比特导读】高频感应加热电源在工作原理方面,也与普通的加热电源有 着很大不同,本文将会通过对其工作原理的叙述,为大家解读高频感应加热电源加热快、效率高的秘密所在。 感应加热电源的研发在最近几年呈现出专业化和快速的趋势,高频感应加热电源凭借着加热速度快、加热均匀等优势,被广泛的应用在工业及生活领域。高频感应加热电源在工作原理方面,也与普通的加热电源有着很大不同,本文将会通过对其工作原理的叙述,为大家解读高频感应加热电源加热快、效率高的秘密所在。 高频感应加热电源与普通的感应加热模块一样,也是采用了导体磁束加热的模式。用交流电流流向被卷曲成环状的导体,这种导体通常情况下会采用铜管这种材料,由此产生磁束。将金属放置其中,磁束就会贯通金属体,在与磁束自缴的方向产生涡电流,也就是大家所熟悉的旋转电流,于是感应电流在涡电流的影响下产生发热,用这样的加热方式就是感应加热。由此,对金属等被加热物体在无需直接接触的状态下就能获得加热效果。 此时,窝电流将会在线圈接近的物体上集中,感应加热表现出在物体的表面上较强里边较弱的特点,用这样的原理来对被加热体的必要的地方集中加热,达到瞬间加热的效果,从而提高生产效率和工作量等。 当然了,使用高频感应加热电源进行加热的成功与否,直接取决于感应线圈设置是否合理,以及加热体的大小、形状、间距等等。感应线圈是要做到均匀加热、加热效果好,并且要有强度和准确度。感应线圈是一般用一圈或数圈的铜管来做,一般采用水冷的方式对线圈进行冷却。 结语: 高频感应加热电源的感应线圈是高效加热的关键所在,而无需直接触碰就可以快速加热 的优势,也让这个感应加热电源的家族新成员迅速获得了生产商的认可。

中频感应电源

普传科技PI7800MF系列中频感应加热电源的应用 【前言】 普传科技股份有限公司根据冶金和石油行业特殊用途,基于公司产品研发战略,在成功开发冶金行业电磁搅拌器专用电源基础上,开发生产了新一代数字化控制高性能特殊电源——PI7800MF中频感应加热电源,主要应用领域有:金属熔炼、透热、钎焊、晶体生长、稀有金属加工及石油工业的感应电加热采油(稠油井的空心抽油杆电加热)、石油集输管道的感应加热等设备,还可以应用于集输管道加热和其它类型的中频电源相比,在结构、性能及可靠性方面,具有非常明显的优势,控制电路采用高性能专用32位DSP及大规模数字专用集成电路,IGBT/IPM功率器件,整流控制、逆变控制、功率调节、操作接口、保护等部分均集成在一块控制板上,调试、维护方便,可靠性提高,节能效果好。 在石油工业应用上,由于中频电源涡流感应加强,导致集肤效应更强,漏磁减少,因此电加热效果大大好于工频电源。该设备可替代现有的工频加热电源,节能效果达到30%以上,大大地降低了采油生产能源的消耗。本专用电源对电网没有污染,与同类产品相比,提高了电源的可靠性,减少了因停机造成的生产损失。 一、电源基本框图及原理 1.1 电路基本构成如下: TI DSP 1.2 原理:中频加热电源主电路为AC-DC-AC变频结构,由整流电路、滤波、逆变电路和保护电路组成。其工作原理是将三相50Hz工频交流电经过三相全控整流桥整流成电压可调的脉动直流,再通过电容将脉动的直流电滤波变成光滑平稳的直流电送到单相 逆变桥,最后通过逆变桥将直流电变成单相频率可调的中频交流电供给负载。采用三 相全控桥式整流电路,它的输出电压调节范围大,而移相控制角的变化范围小,有利于系统的自动调节,输出电压的脉动频率较高,可以减轻直流滤波环节的负担。 逆变电路是由全控器件IGBT构成的串联谐振式逆变器:核心部分逆变器由大功率

基于KA3525的高频感应加热电源的设计

基于KA3525的高频感应加热电源的设计 【摘要】本文根据电流型PWM控制芯片KA3525的特点,并利用三星单片机S3F9454的辅助控制功能,设计了一种高频感应加热电源电路,并可实现输出功率可调。本文详细介绍了它的功率调整电路、主电路、控制电路等,并描述了它们的实现原理与方法。 【关键词】KA3525;三星单片机S3F9454;PWM;感应加热电源 0.引言 在当今工业生产中,很多地方都要用到中小功率的感应加热电源,例如对工件进行淬火、熔炼贵金属等。这类电源大多为并联谐振型电源,由电流源直接供电,通过直流侧的控制电路实现功率调节,即通过调节整流晶闸管的移相触发角来实现功率调节。这类电源在制作时需要消耗大量材料,入端功率因数低,包含比较大的平波电抗器,对电网也有较大的谐波干扰,效率低。因此,这类电源如今越来越不符合人们对具有高品质的感应加热电源的要求。本文就这一问题,设计出了一种容易实现、高品质的中小功率感应加热电源。 本文结合KA3525和三星单片机S3F9454的特点,研制出了一种基于KA3525并利用单片机辅助控制的高频感应加热电源。对高频感应加热电源的工作原理作了详细分析,并对它的功率调整电路、主电路、控制电路等作了主要阐述。 1.感应加热电源原理及总体结构 首先通过不控整流电路,将220V的交流电转换为脉动直流,再经过电容滤波得到平直的直流电压,然后通过高速V-MOS功率场效应管组成的桥式逆变电路,得到高频方波交流电压,利用变压器隔离实现阻抗匹配,将高频高压电变为低压大电流,从而对金属进行加热。 系统主要由七个部分组成: 不控整流电路:本文采用不控整流将220V的交流电变为不可调的直流电。 滤波电路:逆变谐振一般采用电容滤波,这里为减小体积,采用了电感,为防止电流冲击破坏电路,特在电路中设置了延迟环节。 桥式逆变电路:本文装置频率较高,必须采用高速V-MOS场效应管;由于单管电流容量受到限制,而场效应管具有易并联的特点,因此在满足耐压的前提下,采用多管并联方式来满足输出功率的要求。 高频变压器隔离:串联谐振一般Q值较大,谐振时,电压可达千伏以上,

电力电子技术课程设计中频加热电源主电路设计

电力电子技术课程设计 题目中频加热电源主电路设计 学院 专业班级 学号 学生姓名 指导老师

目录 1 设计内容和设计要求 (3) 1.1 设计内容 1.2 设计要求 2 中频加热电源 (4) 2.1 中频加热电源基本原理 2.2 中频加热电源基本结构 3 整流电路的设计 (6) 3.1 整流电路的选择 3.2 三相桥式全控整流电路 3.3 整流电路参数计算 4 逆变电路的设计 (10) 4.1 逆变电路的选择 4.2逆变电路参数计算 5 保护电路的设计 (14) 5.1过电压保护 5.2 过电流保护 6 设计结果分析 (18) 6.1 仿真结果 6.2 主电路原理图 6.3 结果分析 7 设计心得体会 (23) 8 参考文献 (24)

1 设计内容和设计要求 1.1 设计内容 1) 额定中频电源输出功率PH=100kw,极限中频电源输出功率 P HM=1.1 P H=110kW; 2) 电源额定频率f =1kHz; 3) 逆变电路效率h=95% 4) 逆变电路功率因数:cosj =0.866,j =30o; 5) 整流电路最小控制角amin =15o; 6) 无整流变压器,电网线电压UL=380V; 7) 电网波动系数A=0.95~1.10。 1.2 设计要求 1) 画出中频感应加热电源主电路原理图; 2) 完成整流侧电参数计算; 3) 完成逆变侧电参数计算; 4) 利用仿真软件分析电路的工作过程; 5)编写设计说明书,设计小结。

2 中频加热电源 2.1 中频加热电源基本原理 感应加热利用导体处于交变的电磁场中产生感应电流,即涡流,所形成的热效应使导体本身发热。根据不同的加热工艺的要求,感应加热采用的电源的频率有工频(50HZ),中频(60-10000HZ),高频(高于10000HZ)。感应加热本身的物体必须是导体,感应加热能在被加热物体内部直接生热,因而热效率高,升温速度快,容易实现整体均匀加热或局部加热。 感应加热利用交流电建立交变磁场涡流对金属工件进行感应加热,基本工作原理如图1,A为感应线圈,B为被加热工件,若线圈A 中通以交流电流i1,则线圈A内产生随时间变化的磁场,置于交变磁场中的被加热工件B要产生感应电动势e2,形成涡流i2,这些涡流使金属工件发热,因此,感应加热是靠感应线圈把电能传递给要加热的金属工件,然后在金属工件内部转换成热能,感应线圈与被加热工件不直接接触,能量是通过电磁感应传递的。

(完整版)高频开关电源设计毕业设计

目录 引言......................................................... 1本文概述 ................................................. 1.1选题背景............................................................................................................................ 1.2本课题主要特点和设计目标 ........................................................................................... 1.3课题设计思路.................................................................................................................... 2SABER软件................................................ 2.1SABER简介 ..................................................................................................................... 2.2SABER仿真流程 ............................................................................................................. 2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计.................................. 3.1工作原理............................................................................................................................ 3.1.1 三相桥式全控整流电路的特点 ..................................................................................... 3.2保护电路............................................................................................................................ 3.2.1 过电压产生的原因.......................................................................................................... 3.2.2 过压保护 (1) 3.2.3 过电流产生的原因 (1) 3.2.4 过流保护 (1) 3.3SABER仿真 (1) 3.3.1 设计规范 (1) 3.3.2 建立模型 (1)

中频加热电源

PI7800MF 系列中频感应加热电源 大连普传科技股份有限公司 深圳市普传科技有限公司 企划部/工程部 https://www.doczj.com/doc/ca3150595.html, 第一部分感应加热与变频电源

普传科技变频技术应用系列—中频电源 一、基本原理 1、集肤效应及感应加热 1.1集肤效应:当交流电流通过导线时,在导线周围产生交变的磁场,处在交变磁 场中的整块导体的内部会产生感应电流,由于这种感应电流在整块导体内部自成闭合回路,形似水的旋涡,称做涡流。 在直流电路内,均匀导线的横截面上的电流密度是均匀的,而当交流电通过导线时,由于交变磁场的作用,在导线截面上各处电流分布不均匀,中心处电流密度小,而越靠 近表面电流密度越大,这种电流分布不均匀的现象称为集肤效应(也称趋肤效应)。交 流电的频率越高,则集肤深度越深,同时其交流阻抗也变大,因此在相同数值的电流作 用下,负载所获得的能量也越高,而电流及线路损耗相应地也会变小,从而提高了加热 效率,同时还可起到节约电能的目的。变频加热电源正是基于这一原理,利用变频技术,可将运行频率提高到工频的数倍,加热效果会明显提高。 1.2感应加热:1831 年法拉第发现电磁感应规律、1868 年福考特提出涡流理论、1840 年焦耳-楞茨确定了电阻发热的关系式Q=I2Rt,构成感应加热之理论基础。 交变的电流产生交变的磁场,再利用交变磁场来产生涡流达到加热的效果。感应 加热的加热效率高、速度快、可控性好,易于实现高温和局部加热。随着电力电子技术 的不断成熟,感应加热技术得到了迅速发展。 在金属加工上,感应加热热处理用感应电流使工件局部加热的表面热处理工艺。这 种热处理工艺常用于表面淬火、局部退火或回火,有时也用于整体淬火和回火。 将工件放入感应器(线圈)内,当感应器中通入一定频率的交变电流时,周围即产生 交变磁场,交变磁场的电磁感应作用使工件内产生封闭的感应电流,感应电流在工件截 面上的分布很不均匀,工件表层电流密度很高,向内逐渐减小,工件表层高密度电流的 电能转变为热能,使表层的温度升高,即实现表面加热。电流频率越高,工件表层与内 部的电流密度差则越大,加热层越薄。在加热层温度超过钢的临界点温度后迅速冷却, 即可实现表面淬火。 2、感应加热的作用及应用 感应加热早期主要用于有色金属熔炼和热处理工艺,其加热效率高、速度快、可控 性好及易于实现自动化等优点,广泛应用于金属熔炼、透热、热处理和焊接等工业生产 过程中,成为冶金、国防、机械加工等部门及铸、锻和船舶、飞机、汽车制造业等不可 缺少的技术手段。如表 1 所列。 感应加热的广泛应用,究其原因,主要是它本身相对于别的加热方式所具有的一些 独特性。 1)加热速度快,可节能。感应加热是从金属内部,透入深度层开始加热,大大节 省了热传导时间。其它加热是从外到内,导热时间长。据实验,加热同一坯料到一定温度,感应加热只需火焰炉加热时间的1/10。 2)加热温度高,是非接触式的电磁感应加热。 3)可进行局部加热,容易控制加热部位。被加热产品质量稳定,加热工件的质量 再现性与重复性好,各种参数容易控制。 4)控制温度的精度高,可保证温差在±0.5%~1%范围内。 5)感应加热的热效率高,一般可达50%-70%,而火焰炉的热效率一般只有30%左右。 6)容易实现自动化控制。

感应加热电源的控制与驱动电路

感应加热电源的控制与驱动电路 感应加热电源中电力电子控制电路的构成,显现出多样化组成方式,其控制方案主要是根据感应电源调功方式、加热负载特性要求等不同,控制电路的结构会有所不同。 感应加热电源的功率控制调节方式总体上可分为直流侧调功和逆变侧调功两种。直流侧调功又分为三相全控整流器调功和直流斩波器调压调功。逆变侧调功的控制电路方案根据加热工艺特性要求,可以采用的控制方式更灵活, 常用的有调频功(PFM )、移相调功(PSM)、脉宽调制恒频调功(PWM )、脉冲密度调制调功(PDM )、调宽调制加调频调功(PWM+PFM )、脉宽调制加脉冲密度调制调功(PWM+PDM )等各种调功方式。 下面就感应加热电源控制电路的基本组成和原则作简单叙述,其具体内容将在相关章节中介绍。 (1)控制方式根据感应加热电源负载特性不同,调功方法不同,通常可采用电压反馈控制、电流反馈控制。 1)采用电压控制,其目的是保证输出直流母线电压恒定,也就是说加在感应加热绕组的端电压恒定。控制采样可以取自直流母线电压或逆变器电感绕组或谐振补偿电容上的电压。取样一般采用隔离式电压传感器(TV),经道算、比较处理,控制品闸管的导通角或逆变器开关管PWM 驱动脉冲的相移或脉宽,达到改变直流输出到逆变器直流母线上的电压或改变逆变器输出电压的平均值(或有效值),最终因闭环负反馈的作用维持输出电压恒定。输人电压的波动,对加热电源的输出功率也就是对工件的加热温度产生较大影响,将直接影响到加热工件的产品工艺质量要求。 加热电源的输出功率为P =u 2/Z,在负载不变的条件下,功率P 与电压组或谐振补偿电容上的电压。u 的平方成正比。也就是说,加热温度与电压的平方成正比。如果电压不稳定,加热温度就不均匀,对于毛坯工件加热、淬火要求温度稳定性较高的场合,必须要有自动稳压功能,否则产品质單得不到保证。 2)采用电流控制,其目的是保证输出直流或高频输出电流恒定。控制采样可取自直流母线电流或逆变器感应加热绕组中的电流。取样一般采用隔离式电流传感器感(TA ),电流反馈信号控制的对象同电压控制,目的是达到输出电流的变化,也就是输出功率P 的变化、加热温度的 变化。这是因为P=IU u z u z u =?? ? ??=2,因此可以看出,电压U 或负载阻抗Z 的变化,会引起电流I 的变化,即功率或加热温度的变化。 3)采用功率控制,其目的是为了保证感应加热电源的恒功率输出。采样信号同时取样电压和电流信号,经乘法器处理后,经PI 调节器输出与功率给定相比较,控制晶闸管的导通角或逆变器驱动脉冲信号的宽度、相移,或采用动态阻抗匹配法控制电源侧的等效阻抗与负载相等,达到功率的恒定,保证加热温度在给定的功率下恒定,满足工件加热工艺特性和质量要求。 (2)采用直流侧调月i 调功方案的感应加热电源,其控制电路需要有锁相频率自动跟踪系统。无.论是逆变器采用脉宽调制(PwM)控制技本调功,还是采用移相(PSM)调功等,如果逆变侧不进行频率自动照際,会出现两大问题:①逆变器的开关功率器件不能很好地工作在软开关状态,开关器件承受的电压和电流应力大,除了危及器件安全外,开关损耗也增大;②因为逆变器工作频率与谐振电路的固有谐振频率不相等,逆变器回路或者说开关器件中流过较大的无功电流,而且功率因数下降,达不到最大功率输出,逆变器的效率降。频率跟踪的目的是保证逆变器的开关频

高频开关电源设计与应用

电源网讯传统的工频交流整流电路,因为整流桥后面有一个大的电解电容来稳定输出电压,所以使电网的电流波形变成了尖脉冲,滤波电容越大,输入电流的脉宽就越窄,峰值越高,有效值就越大。这种畸变的电流波形会导致一些问题,比如无功功率增加、电网谐波超标造成干扰等。 功率因数校正电路的目的,就是使电源的输入电流波形按照输入电压的变化成比例的变化。使电源的工作特性就像一个电阻一样,而不在是容性的。 目前在功率因数校正电路中,最常用的就是由BOOST变换器构成的主电路。而按照输入电流的连续与否,又分为DCM、CRM、CCM模式。DCM模式,因为控制简单,但输入电流不连续,峰值较高,所以常用在小功率场合。C CM模式则相反,输入电流连续,电流纹波小,适合于大功率场合应用。介于DCM和CCM之间的CRM称为电流临界连续模式,这种模式通常采用变频率的控制方式,采集升压电感的电流过零信号,当电流过零了,才开通MO S管。这种类型的控制方式,在小功率PFC电路中非常常见。 今天我们主要谈适合大功率场合的CCM模式的功率因数校正电路的设计。 要设计一个功率因数校正电路,首先我们要给出我们的一些设计指标,我们按照一个输出500W左右的APFC电路来举例: 已知参数: 交流电源的频率fac——50Hz 最低交流电压有效值Umin——85Vac 最高交流电压有效值Umax——265Vac 输出直流电压Udc——400VDC 输出功率Pout——600W 最差状况下满载效率η——92% 开关频率fs——65KHz 输出电压纹波峰峰值Voutp-p——10V 那么我们可以进行如下计算: 1,输出电流Iout=Pout/Udc=600/400=1.5A 2,最大输入功率Pin=Pout/η=600/0.92=652W 3,输入电流最大有效值Iinrmsmax=Pin/Umin=652/85=7.67A 4,那么输入电流有效值峰值为Iinrmsmax*1.414=10.85A 5,高频纹波电流取输入电流峰值的20%,那么Ihf=0.2*Iinrmsmax=0.2*10.85=2.17A 6,那么输入电感电流最大峰值为:ILpk=Iinrmsmax+0.5*Ihf=10.85+0.5*2.17=11.94A 7,那么升压电感最小值为Lmin=(0.25*Uout)/(Ihf*fs)=(0.25*400)/(2.17*65KHz)=709uH 8,输出电容最小值为:Cmin=Iout/(3.14*2*fac*Voutp-p)=1.5/(3.14*2*50*10)=477.7uF,实际电路中还要考虑hold up时间,所以电容容量可能需要重新按照hold up的时间要求来重新计算。实际的电路中,我用了1320uF,4只330uF的并联。 有了电感量、有了输入电流,我们就可以设计升压电感了! PFC电路的升压电感的磁芯,我们可以有多种选择:磁粉芯、铁氧体磁芯、开了气隙的非晶/微晶合金磁芯。这几种磁芯是各有优缺点,听我一一道来。

中频感应加热设备介绍及应用

中频感应加热设备介绍及应用 设备简介 中频感应加热设备采用的串联谐振,即电压型谐振频率跟踪。因此效率较高、功率因数较高。所以有明显的中频感应加热电炉节电效果,加热每吨棒料用电341度。中频感应加热设备前级不可控全桥整流,不会在整流段引起波形的变形,没有关断角的削波现象,并且用大电容滤波,因此谐波数小对电网的干扰小。 工作原理 中频感应加热设备的工作原理是把一根金属圆柱体放在有交变中频电流的感应圈里,金属圆柱体没有与感应线圈直接接触,通电线圈本身温度已很低,可是圆柱体表面被加热到发红,甚至熔化,而且这种发红和熔化的速度只要调节频率大小和电流的强弱就能实现。 中频优势 随着我国工业化进程的飞速发展,感应加热领域也再快速发展.由于环保要求以及煤炭涨价,用焦煤加热不仅不符合环保要求,而且在价格和经济上也非常的不合算.另一方面,目前工业加热还大量使用着KGBS以可控硅为主器件的中频加热设备.功率因数低耗费着大量的电能.随着金融危机的曼延,节能降耗,缩减成本已经成为中小企业非常迫切的问题.于是我们利用近20年的感应加热经验,成功研制出JZ(IGBT)系列节能型中频。 设备特点 1.生产操作简单、进出料灵活、自动化程度高,可实现在线式生产; 2.工件加热速度快、氧化脱碳少,效率高,锻件质量好; 3.工件加热长度、速度、温度等可精确控制; 4.工件加热均匀、芯表温差小,控制精度高; 5.感应器可按客户要求精心制作; 6.全方位节能优化设计,能耗低、效率高,比烧煤生产成本低; 7.符合环保要求,污染小,同时还减少了工人的劳动强度。 设备优势 节约特点 加热速度快、生产效率高、氧化脱炭少、节省材料与锻模成本由于中频感应加热的原理为电磁感应,其热量在工件内自身产生,普通工人用中频电炉上班后十分钟即可进行锻造任务的连续工作,不需烧炉专业工人提前进行烧炉和封炉工作。不必担心由于停电或设备故障引起的煤炉已加热坯料的浪费现象。由于该加热方式升温速度快,所以氧化极少,每吨锻件和烧煤炉相比至少节约钢材原材料20-50千克,其材料利用率可达95%。由于该加热方式加热均匀,芯表温差极小,所以在锻造方面还大大的增加了锻模的寿命,锻件表面的粗糙度也小于50um。 环保特点 工作环境优越、提高工人劳动环境和公司形象、无污染、低耗能感应加热炉与煤炉相比,,工人不会再受炎炎烈日下煤炉的烘烤与烟熏,更可达到环保部门的各项指标要求,同时树立公司外在形象与锻造业未来的发展趋势。感应加热是电加热炉中最节能的加热方式由室温加热到1100℃的吨锻件耗电量小于360度。 精准特点 加热均匀,芯表温差极小,温控精度高感应加热其热量在工件内自身产生所以加热均匀,芯表温差极小。应用温控系统可实现对温度的精确控制提高产品质量和合格率。

项目五 中频感应加热电源.

项目五中频感应加热电源 【学习目标】: 完成本项目的学习后,能够: 1.了解中频感应加热装置的基本原理及应用。 2.掌握中频感应加热装置的组成、各部分电路(三相桥式整流电路、触发电路、并联谐振逆变电路、保护电路)的工作原理。 3.掌握触发电路与主电路电压同步的概念以及实现同步的方法。 4.了解常用的中频感应加热装置的使用注意事项。 5.熟悉中频感应加热装置的安装、调试,简单的故障维修方法。 6.了解三相有源逆变电路工作原理及有源逆变电路的应用 【项目描述】:中频电源装置是一种利用晶闸管元件把三相工频电流变换成某一频率的中频电流的装置,广泛应用在感应熔炼和感应加热的领域。图5-1是常见的感应加热装置。 【相关知识点】: 一、中频感应加热电源概述 1.感应加热的原理 (1)感应加热的基本原理 1831年,英国物理学家法拉第发现了电磁感应现象, 并且提出了相应的理论解释。其内容为,当电路围绕的区 域内存在交变的磁场时,电路两端就会感应出电动势,如 果闭合就会产生感应电流。电流的热效应可用来加热。 例如图5-2中两个线圈相互耦合在一起,在第一个线 圈中突然接通直流电流(即将图中开关S突然合上)或突

然切断电流(即将图中开关S突然打开),此时在第二个线圈所接的电流表中可以看出有某一方向或反方向的摆动。这种现象称为电磁感应现象,第二个线圈中的电流称为感应电流,第一个线圈称为感应线圈。若第一个线圈的开关S不断地接通和断开,则在第二个线圈中也将不断地感应出电流。每秒内通断次数越多(即通断频率越高),则感生电流将会越大。若第一个线圈中通以交流电流,则第二个线圈中也感应出交流电流。不论第二个线圈的匝数为多少,即使只有一匝也会感应出电流。如果第二个线圈的直径略小于第一个线圈的直径,并将它置于第一个线圈之内,则这种电磁感应现象更为明显,因为这时两个线圈耦合得更为紧密。如果在一个钢管上绕了感应线圈,钢管可以看作有一匝直接短接的第二线圈。当感应线圈内通以交流电流时,在钢管中将感应出电流,从而产生交变的磁场,再利用交变磁场来产生涡流达到加热的效果。平常在50Hz的交流电流下,这种感生电流不是很大,所产生的热量使钢管温度略有升高,不足以使钢管加热到热加工所需温度(常为1200℃左右)。如果增大电流和提高频率(相当于提高了开关S的通断频率)都可以增加发热效果,则钢管温度就会升高。控制感应线圈内电流的大小和频率,可以将钢管加热到所需温度进行各种热加工。所以感应电源通常需要输出高频大电流。 利用高频电源来加热通常有两种方法: ①电介质加热:利用高频电压(比如微波炉加热等) ②感应加热:利用高频电流(比如密封包装等) 1)电介质加热(dielectric heating) 电介质加热通常用来加热不导电材料,比如木材、橡胶等。微波炉就是利用这个原理。原理如图5-3.: 图5-3电介质加热示意图 当高频电压加在两极板层上,就会在两极之间产 生交变的电场。需要加热的介质处于交变的电场中, 介质中的极分子或者离子就会随着电场做同频的旋转 或振动,从而产生热量,达到加热效果。 2)感应加热(induction heating) 感应加热原理为产生交变的电流,从而产生交变

中频感应加热设备

中频加热设备的电流密度都很高,一定采用异型铜管绕制成各种形状的线圈,铜管通水冷却,工件与线圈之间有耐温炉衬,相互组装在一起。 (1) 铜管必须由优质铜材构成,导电性能优良,其杂质越小越佳,在退火状态柔软,不易折断。 (2) 耐火炉衬通常为石英砂组成,Al203含量越高,其耐温性能越高,耐温性好,热传导性越差,热效率也就高,耐温性好,炉衬厚度可以减薄,可以提高电效率,则综合效率也就高。小直径的能耗不低的一个很重要的因素是炉衬厚度不可能做得很薄,在同一个感应炉内加热不同直径的工件,总是直径大时能耗低,直径小者能耗高。 (3) 中频感应加热设备的端板采用铜质,主要是作用是防止电的散射,并开口减少铜端板的损耗。 (4) 其结构由于电流同时流过线圈和工件,因此它们相互间的电动力是相当大,工件在线圈上的炉衬中移动又要承受工件的压力,因此必须使线圈匝与匝之间紧固,防止移动和线圈间的短路,这个紧固必须是牢固的,否则产生低频振动造成噪声,所以线圈匝间要绝缘紧固,必须与端板夹紧固定,似一个完整固体。

往往工频感应加热炉常用玻璃纤维带和其他绝缘复合材料带将线圈铜管包扎起来,并浸漆处理,目的使线圈匝间结构紧密,不产生低频振动。匝间距越小,效率也越高。 (5) 线圈的水路要有足够的水路数,以水在水管中流通成紊流为原则,水路不要有直角弯,它会降低水流流量与速度,降低冷却效果。判断方法以每一个支路水有一定的水温,且每一路流量水温都差不多。如果一路水温偏高,恐怕有焊渣或运行中有杂质堵塞,所以感应炉对每一支路要进行温度监测与控制。每一支路的水温控制在50℃为宜,过高温度冷却水在铜管内侧面汽化将会大大降低冷却效果,过高温度要结垢,最终炉子线圈过温而损坏。 (6) 炉衬材料要防止跌落和开裂,造成的原因是原材料不过关,炉衬材料一般为耐火水泥,水泥一旦吸潮过性,成形为粉末状,成块脱落。工艺不到位,耐火水泥与普通建筑水泥相似,要保养,时间不能少,这个保养是在潮湿环境下的保养,保养时间约48h,不能出现流浆,保养时间不够或流浆,必然会开裂,炉衬有烘干与不烘二种方法。要炉子寿命长,炉衬烘干很重要,核心是慢速烘干,在低温长时间36h的烘干,初始升温要很慢。 (7) 中频感应加热设备的每一个支路的分接头水路支路的焊接为银铜焊,确保焊接牢固不渗水,水路为橡胶管,不用塑料管,塑料管密封性能不佳。 (8) 一般配有通水导轨,导轨寿命长短取决于堆焊材料与厚度。不推荐用喷涂法堆耐磨材质,因为喷涂耐磨粉配方通常为单一不锈钢,不及高温耐磨的焊条,堆焊条的配方成分全面。

感应加热电源常见问题解读

感应加热电源常见问题解读 在感应加热电源的设备调试和日常使用过程中,工程师常常需要临时解决其出现的突发情况,这就需要工程师结合感应加热电源的设计方案和理论知识,及时进行处理。在今天的文章中,我们为大家总结了三种在平时比较常遇到的问题并进行解读,下面就让我们一起来看看这些问题都有哪些吧。 常见问题一:感应加热电源的烟气问题应该怎么处理比较稳妥? 对于感应加热电源来说,想要正确处理其烟气问题,我们可以从两个方面来入手,即通常所说的烟气净化或设置烟气捕集装置。先来看烟气净化方式,想要实现对感应加热设备的烟气净化,只有靠除尘器来实现,而除尘器选择的优劣直接影响到除尘系统的捕集效果、除尘电耗以及整个系统能否长期稳定、可靠运行、除尘器的形式繁多,各有利弊。关键在于如何扬长避短,与系统工艺及粉尘组成相适应以获得最佳效果。而设置烟气捕集装置则相对来说繁琐一些,其设置的内容主要包括回转式伞顶吸罩、低阻、大流量管道+调温电动蝶阀、 离线气管式脉冲除尘器、锅炉引风机等。这两种方法的选择,需要工程师依据实际情况进行判断。 常见问题二:感应加热电源在开机工作时有哪些问题需要特别注意一下? 通常情况下,在感应加热电源的工作过程中,有三类问题需要我们特别注意,分别是水资源短缺、电压过高和电气接地阴极电容设置。先来看水资源短缺问题,在长期使用感应加热设备的过程中,可能会出现因冷却水管水垢或阻塞电容而引起的电力电容器过热和燃烧问题,因此,我们应特别注意在水流量的排放情况,一旦发现排放不正常,则应该使用适当的措施。电气接地阴极电容也是需要特别注意的,电绝缘电容一旦发生损坏,很容易造成故障,因此需要工程师及时排查问题,及时处理故障的电容柜绝缘点。电压过高的情况也同样需

高频淬火和中频淬火的区别

高频淬火和中频淬火的区别 1、高频淬火淬硬层浅(1.5~2mm)、硬度高、工件不易氧化、变形小、淬火质量好、生产效率高,适用于摩擦条件下工作的零件,如一般较小的齿轮、轴类(所用材料为45号钢、40Cr); 2、中频淬火淬硬层较深(3~5mm),适用于承受扭曲、压力负荷的零件,如曲轴、大齿轮、磨床主轴等(所用材料为45号钢、40Cr、9Mn2V和球墨铸铁)。 感应加热表面淬火,是利用电磁感应、集肤效应、涡流和电阻热等电磁原理,使工件表层快速加热,并快速冷却的热处理工艺 感应加热表面淬火时,将工件放在铜管制成的感应器内,当一定频率的交流电通过感应器时,处于交变磁场中的工件产生感应电流,由于集肤效应和涡流的作用,工件表层的高密度交流电产生的电阻热,迅速加热工件表层,很快达到淬火温度,随即喷水冷却,工件表层被淬硬 感应加热时,工件截面上感应电流的分布状态与电流频率有关。电流频率愈高,集肤效应愈强,感应电流集中的表层就愈薄,这样加热层深度与淬硬层深度也就愈薄 因此,可通过调节电流频率来获得不同的淬硬层深度。常用感应加热种类及应用见表5-3 感应加热速度极快,只需几秒或十几秒。淬火层马氏体组织细小,机械性能好。工件表面不易氧化脱碳,变形也小,而且淬硬层深度易控

制,质量稳定,操作简单,特别适合大批量生产 常用于中碳钢或中碳低合金钢工件,例如45、40Cr、40MnB等。也可用于高碳工具钢或铸铁件,一般零件淬硬层深度约为半径的1/10时,即可得到强度、耐疲劳性和韧性的良好配合。感应加热表面淬火不宜用于形状复杂的工件,因感应器制作困难 表5-3 感应加热种类及应用范围 感应加热类型常用频率一般淬硬层深度/m m 应用范围 高频感应加热 200~1000kHz 0.5~2.5 中小模数齿轮及中小尺寸的轴类零件 中频感应加热 2500~8000Hz 2~10 较大尺寸的轴和大中模数齿轮 工频感应加热火 50Hz 10~20 较大直径零件穿透加热,大直径 零件如轧辊、火车车轮的表面淬超音频感应加热 30~36kHz 淬硬层能沿工件轮廓分中小模数齿轮 表面热处理是通过改变零件表层组织,以获得硬度很高的马氏体,而保留心部韧性和塑性(即表面淬火), 或同时改变表层的化学成分,以获得耐蚀、耐酸、耐碱性,及表面硬度比前者更高(即化学热处理)的方法。

高频高压电源的调试

符号(ZDK ),开始时,自 动调宽电位器顺时针开到 最大。在保护点范围内,逐 渐开大内调宽电位器并逐 渐关小自动调宽电位器,直 至, 调宽电位器最大,自动 调宽电位器小到一定程度, 以达到额定电流为度。 符号(TK )正时针 宽度大 (总电流大)反时针宽度 小(总电流小)当电流过 大,电路保护时,关机, 将宽度电位器略微调小, 开机。配合自动调宽电位 器,自动调宽电位器逐渐 关小,宽度电位器逐渐开 大,直至最大(不超过额 定电流) 三龙臭氧电源调试 连接好的三龙臭氧电源经过细心调 试可以发挥它的最大潜能,做到长 期稳定的工作 1先认识四只电位器 频率调整电位器: 紧靠加密盒, 宽度微调电位器: 为1k_1.5k/1w 转柄电位器固定在 符号⑴,正时针频率高, 反时针频率低,总电流 为最大值时,频率为最 佳点,此时,声音最小。 如果总电流超过额定 值,用ZDK 调到额定自 值。 机壳面板上,调整电路时,首先把他 正时针开到最大值。 调宽电位器: 为10k 实芯电位器,离高压包较近。 固定在电路板上。 宽度调整电位器: 为4.7k 实芯电位器。固定在电路板 故障保护电位器:为200欧姆实芯电位 器。固定在电路板上。

将自动调宽电位器(ZDK)和挂长 勺手动电位器正时针调到最大,调宽 1器(TK)反时针调到最小。 开启电源,此时,电流表指示应远 小于电路工作正常值。细心听取,应该 有发生器工作时所固有的沙沙声或高压包的 轻微叫声。否则,应检查电路连接。检查电 路连接时应首先关掉电源。 2调整过程: A试运行。检查电路连接确实无误,在 交流输入端,一定要串联匹配的电流 交流电流表一定 要用磁电式 水路连接完好,并且水路中应有水在流动,确保 调试过程中功率管散热良好。 B正常工作电流的调整。宽度电位器 (TK 4.7k )徐徐开大,当电流达到额定植 的一半时(2.5kw,5kw,10kw 则应该在额定 值的1 /3时)调整频率,方法是:不论正时 针或是反时针调整频率电位器,使电流增至最 大,暂时锁定频率电位器。 再徐徐开大宽度电位器(TK 4.7k )使 电流表指针达到额定值,调节频率电位器 (f),不论正时针或反时针,使电流值达到最 大,超过额定植用自动限宽电位器(ZDK)拉 回到额定值。如果是2.5Kw,5kw,10kw 应该 分三次调整频率,第二次应该在额定电流的2 /3 处进行。 调整频率的目的是在寻找负载回路的谐振 符号(BH )开始反时针放到最小 值,逐渐开大调宽电位器,使岀现 保护。正时针调大线的保护电位 器30度角,重启。 再调大宽度,再调大保护3电位 度角,再重启。直至保护点为额定 电流值的1.2倍。

相关主题
文本预览
相关文档 最新文档