当前位置:文档之家› 最新浙江大学物理竞赛讲义——恒定电流

最新浙江大学物理竞赛讲义——恒定电流

最新浙江大学物理竞赛讲义——恒定电流
最新浙江大学物理竞赛讲义——恒定电流

稳恒电流讲义

一、电路的基本概念及规律

1.电流强度

电荷的定向运动形成电流,电流强度即单位时间内通过导体任一截面的电量。设在时间间隔△t 通过某一截面的电量为△Q ,则电流强度为Q I t

?=? 电流的微观表达式 :υnes I =(其中n 为电荷的数密度,S 为导体的横截面积,v 为电荷定向移动的速度)

2.电流密度

在通常情况的电路问题中,通过导线截面的电流用电流强度描述就

可以了,但在讨论大块导体中的电流的流动时,用电流强度描述就过于粗

糙了,这是因为电流在截面上将会有一个强弱不同的分布,而且各点的电

流方向可能并不一致。为此需引入电流密度j ,电流密度的定义,考虑导

体中某一给定点P ,在该点沿电流方向作一单位矢量n ,并取一面元△S

与n 垂直,设通过△S 的电流强度为△I ,则定义P 点处电流密度的大小为

nev =??=S

I j 电流密度的单位为安培/米2(A·m -2)。

通过导体任一有限截面△S 的电流强度为: ∑=∞→??=n

i i i n S j I 1

lim 3.电动势

正电荷在电场力的作用下从高电势处移到低电势处,而一非静电力把正电荷从低电势处搬运

到高电势处,提供非静电力的装置称为电源.电源内的非静电力克服电源内静电力作用,把流到负极的正电荷从负极移到正极.若正电荷q 受到非静电力f →非,则电源内有非静电场,非静电场的强度E 非也类似电场强度的定义:k f E q

=非 将非静电场把单位正电荷从负极通过电源内部移到正极时所做的功定义为电源的电动势,即

W E l q

ε=??=∑非非 4.欧姆定律

通过一段导体的电流强度与导体两端的电压成正比,与电阻R 成反比,即

R

U I = 这条定律,只适用于金属和电解液,即R 为常数的情形。

满足欧姆定律的元件的电阻称为线性电阻,对于非线性元件,欧姆

定律不适用,但仍可定义电阻 I U R /= ,只是R 还与工作状态

下的电压、电流有关。

5.欧姆定律的微观表达式 设想在载有稳恒电流的各向同性的导体内取一长度为l ?,垂直截面积为

S ?的小电流管分析,有

S

l U R U I ???=?=?ρ则:l U S I ??=??ρE E j σρ==?1(σ为电导率),即→→=E j σ

6.含源电路的欧姆定律

如图所示含有电源的电路称为含源电路.含源电路的欧姆定律就是找出电路中两点间电压与电流的关系.常用“数电压”的方法.即从一点出发,沿一方

向,把电势的升降累加起来得到另一点的电势,从而得到两点

间的电压.设电流从a 流向b ,则有

1122a

b U Ir IR Ir U εε+----= a 、b 两点间电压为

1212

a

b U U Ir IR Ir εε-=-++++ 写成一般形式 a

b i i i U U ε-=+∑∑(I R )

闭合回路的欧姆定律: 对于上图可把a 、b 两点连起来形成一闭合回路,则0a b U U -=,即

12120Ir IR Ir εε-++++=,

12

12-I r r R εε=++,写成一般形式:i i

I R ε=∑∑ 二、题型与方法

题型一:复杂电路的计算问题

方法一:基尔霍夫定律

1:基尔霍夫第一定律——节点定则:

流入任何一个节点的总电流必等于流出该节点的总电流.

1234I I I I +=+

注意:N 个节点,可以列N-1个独立方程

2:基尔霍夫第二定律——回路定则:

沿任一闭合回路的电势变化的代数和为零(或沿任一闭合回路,升高的电势等于降落的电势) 注意:M 个网孔,可以列M 个独立方程

【例1】如图所示,电源电动势V V 0.1,0.321==εε,内阻Ω=Ω=0.1,5.021r r ,电阻

Ω=Ω=Ω=Ω=0.19,5.4,0.5,0.104321R R R R ,求电路中三条支路

上的电流强度。

方法二:叠加原理

内容:含源网络中每一个支路中的电流,可以看作网络中每一个电源在支路中独立提供的电流的叠加.

方法:在计算每个电源独立作用提供的电流时,应将其它电源的电动势去掉,仅保留其内阻。方法三:等效电压源(戴维宁定理)

任意一含源的二端网络都可以等效成一电动势为E0,电源内阻为r0的电源。

求E0的方法:网络两端开路时的路端电压

求r0的方法:网络除电源后的等效电阻

方法四:等效电流源(诺尔顿定律)

两端有源网络可等效于一个电流源,电流源的电流I0等于网络两端短路时流经两端点的电流,内阻等于从网络两端看除电源后的等效电阻

【例2】如图,电路构成为四面体的棱,各电阻均为R=2Ω,各电源电

动势均为E=2V,内阻均为r=1Ω,求节点B、C间的电压。

【例3】在如图复15-6所示的网络中,仅知

道部分支路上电流值及其方向、某些元件参

数和支路交点的电势值(有关数值及参数已

标在图上)。请你利用所给的有关数值及参

数求出含有电阻R x的支路上的电流值及其

方向。

【例4】若干个电阻构成如图所示的电路,其中A和

B两点的接地电阻是固定不变的。输入电压V1,

V2,…V n仅取1V或0V两个值,0V表示接地。

(1)当n=3时,B点输出电压有几种可能的值?

(2)当n→∞时,B点的最大输出电压是多少?

题型二:等效电阻求解问题

方法一:等势缩点法:利用对称性求电路的等效电阻问题

【例5】如图所示的电阻网络,每一段的电阻为r,求AB的等效电阻和

MN之间的等效电阻。

【提高】由单位长度电阻为r的导线组成如图所示的正方形网络系列.n=1时,正方形网络边长为

L,n= 2时,小正方形网络的边长为L/3;n=3 时,最小正方形网络的边长为L/9.当n=1、2、3 时,

各网络上A、B两点间的电阻分别为多少?

【例6】一正方体,每一条边的电阻为R,求R AC,R AD,R AG。

【相关变换】如图所示的平面电阻丝网络中,每一直线段和每一弧线段电阻丝的电

阻均为r.试求A、B两点间的等效电阻.

B

【提高】如图所示,正六边形每条棱的电阻都为r,每个顶点至中心O连线电阻也为r。

1)求A,H两点的电阻;2)求A,B两点的电阻。

方法二:利用递推法求解等效电阻

【例7】:在图8-11甲所示无限网络中,每个电阻的阻值均为

R ,试求A、B两点间的电阻R AB。

【相关变换1】在图8-13甲所示的三维无限网络中,每两个节点

之间的导体电阻均为R ,试求A、B两点间的等效电阻R AB。

【相关变换2】试求框架上A、B两点间的电阻R AB.此框架是用同

种细金属制作的,单位长度的电阻为ρ.一连串内接等边三角形的

数目可认为趋向无穷,如图所示.取AB边长为a,以下每个三角形

的边长依次减少一半.

【相关变换3】如图所示,由粗细、质地均匀的细金属丝连成的无

限内接网络。已知金属丝单位长度的电阻为ρ,求等效电阻R AB

(ABC为等边三角形,且边长为a,内接三角形的顶点均为三角

形各边的中点)

【提高】六个相同的电阻(阻值均为R)连成一个电阻环,六个接点依次为1、2、3、4、5和6,如图复16-5-1所示。现有五个完全相同的这样的电阻环,分别称为

1

D、

2

D、┅

5

D。

现将

2

D的1、3、5三点分别与

1

D的2、4、6三点用导线连接,如图复16-5-2所示。然后将

3

D

的1、3、5三点分别与

2

D的2、4、6三点用导线连接,┅依此类推。最后将

5

D的1、3、5三点分

别连接到

4

D的2、4、6三点上。

1.证明全部接好后,在

1

D上的1、3两点间的等效电阻为

724

627

R。

2.求全部接好后,在

5

D上的1、3两点间的等效电阻。

方法三:利用电流分布法求等效电阻

【例8】电阻分布如图所示,试求A、B间的等效电阻。

方法四:利用电流叠加原理求等效电阻

【例9】电阻丝网络如图所示,每一小段的电阻均为R,求AB之间

的等效电阻R

【例10】一个无限延展的矩形线圈平面网络,求任意相邻两点AB间

的电阻。

变:若把AB间的电阻r去掉,则AB间的电阻为多少?

变:若把AB间的电阻换成R,则AB间的电阻为多少?

变:若把所有电阻换成电容C,则AB间的等效电容是多少?

2R

【相关变换】无限大六角形网络, 每边电阻为r, 求:

(1)ab之间电阻;

(2)如果电流从a流入, 从g流出, 求de段的电流.

【提高】一个平面把空间分为两个部分。一半充满了均匀的导电介质, 而物理学家在另一半空间里工作。他们在平面上画出一个边长为a的正方形的轮廓, 并用精细的电极使一电流I0在正方形的两个相邻角, 一个流入,一个流出。同时, 他们测量另两个角之间的电势差V。如图所示。问物理学家们如何用这些数据来计算均匀介质的电阻率?

方法五:利用△-Y转化求解等效电阻

?

?

?

?

?

?

?

?

?

+

+

=

+

+

=

+

+

=

31

23

12

31

23

3

31

23

12

23

12

2

31

23

12

12

13

1

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

?

?

?

?

?

?

?

?

?

+

+

=

+

+

=

+

+

=

2

1

3

3

2

2

1

31

1

1

3

3

2

2

1

23

3

1

3

3

2

2

1

12

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

【例10】试利用△——Y转化求R AG

高中物理竞赛训练题:奥赛训练《稳恒电流C》(含答案)

稳恒电流 C 13、电解硝酸银溶液时,在阴极上1分钟内析出67.08毫克银,银的原子量为107.9 ,求电路中的电流。已知法拉第恒量F =9.68×104C/mol 。 14、一铜导线横截面积为4毫升2,20秒内有80库仑的电量通过该导线的某一截面。已知铜内自由电子密度为8.5×1022厘米?3,每个电子的电量为1.6×10?19库仑,求电子的定向移动的平均速率。 15、通常气体是不导电的,为了使之能够导电,首先必须使之;产生持续的自激放电的条件是和;通常气体自激放电现象可分为四大类:、、和,如雷电现象属,霓虹灯光属,高压水银灯发光属。 16、一个电动势为ε、内阻为r的电池给不同的灯泡供电。试证:灯泡电阻R =r时亮度最大,且最大功率P m=ε2/4r 。 17、用万用表的欧姆档测量晶体二极管的正向电阻时,会出现用不同档测出的阻值不相同的情况,试解释这种现象。 18、某金属材料,其内自由电子相继两次碰撞的时间间隔平均值为τ,其单位体积内自由电子个数为n ,设电子电量为e,质量为m ,试推出此导体的电阻率表达式。 19、用戴维南定理判断:当惠斯登电桥中电流计与电源互换位置后的电流计读数关系(自己作图)。视电流计内阻趋于无穷小,电源内阻不计。 20、图示为电位差计测电池内阻的电路图。实际的电位差计在标准电阻RAB上直接刻度的不是阻值,也不是长度,而是各长度所对应的电位差值,RM为被测电池的负载电阻,其值为100Ω。实验开始时,K2打开,K1拨在1处,调节R N使流过R AB的电流准确地达到某标定值,然后将K1拨至2处,滑动C,当检流计指针 指零时,读得UAC= 1.5025V;再闭合K 2 ,滑动C,检流计指针再指零时读得U AC′= 1.4455V,试据以上数据计算电池 内阻r 。

高中物理竞赛讲义:动量

专题六 动量 【扩展知识】 1.动量定理的分量表达式 I 合x =mv 2x -mv 1x , I 合y =mv 2y -mv 1y , I 合z =mv 2z -mv 1z . 2.质心与质心运动 2.1质点系的质量中心称为质心。若质点系内有n 个质点,它们的质量分别为m 1,m 2,……m n ,相对于坐标原点的位置矢量分别为r 1,r 2,……r n ,则质点系的质心位置矢量为 r c=n n n m m m r m r m r m ++++++ 211211=M r m n i i i ∑=1 若将其投影到直角坐标系中,可得质心位置坐标为 x c =M x m n i i i ∑=1, y c =M y m n i i i ∑=1, z c =M z m n i i i ∑=1. 2.2质心速度与质心动量 相对于选定的参考系,质点位置矢量对时间的变化率称为质心的速度。 v c=t r c ??=M p 总=M v m n i i i ∑=1, p c =Mv c =∑=n i i i v m 1 . 作用于质点系的合外力的冲量等于质心动量的增量 I 合= ∑=n i i I 1=p c -p c0=mv c -mv c0 . 2.3质心运动定律 作用于质点系的合外力等于质点总质量与质心加速度的乘积。F合=Ma c.。 对于由n 个质点组成的系统,若第i 个质点的加速度为a i ,则质点系的质心加速度可表示为 a c =M a m n i i i ∑=1 .

【典型例题】 1.将不可伸长的细绳的一端固定于天花板上的C点,另一端系一质量为m的小球以以角速度ω绕竖直轴做匀速圆周运动,细绳与竖直轴之间的夹角为θ,如图所示。已知A、B为某一直径上的两点,问小球从A点运动到B点的过程中细绳对小球的拉力T的冲量为多少? 2.一根均匀柔软绳长为l=3m,质量m=3kg,悬挂在天花板的钉子上,且下端刚好接触地板,现将软绳的最下端拾起与上端对齐,使之对折起来,然后让它无初速地自由下落,如图所示。求下落的绳离钉子的距离为x时,钉子对绳另一端的作用力是多少? 3.一长直光滑薄板AB放在平台上,OB伸出台面,在板左侧的D点放一质量为m1的小铁块,铁块以速度v向右运动。假设薄板相对于桌面不发生滑动,经过时间T0后薄板将翻倒。现让薄板恢复原状,并在薄板上O点放另一个质量为m2的小物体,如图所示。同样让m1从D点开始以速度v向右运动,并与m2发生正碰。那么从m1开始经过多少时间后薄板将翻倒?

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

高中物理竞赛讲义全套(免费)

目录 中学生全国物理竞赛章程 (2) 全国中学生物理竞赛内容提要全国中学生物理竞赛内容提要 (5) 专题一力物体的平衡 (10) 专题二直线运动 (12) 专题三牛顿运动定律 (13) 专题四曲线运动 (16) 专题五万有引力定律 (18) 专题六动量 (19) 专题七机械能 (21) 专题八振动和波 (23) 专题九热、功和物态变化 (25) 专题十固体、液体和气体的性质 (27) 专题十一电场 (29) 专题十二恒定电流 (31) 专题十三磁场………………………………………………………………………… 33 专题十四电磁感应 (35) 专题十五几何光学 (37) 专题十六物理光学原子物理 (40)

中学生全国物理竞赛章程 第一章总则 第一条全国中学生物理竞赛(对外可以称中国物理奥林匹克,英文名为Chinese Physic Olympiad,缩写为CPhO)是在中国科协领导下,由中国物理学会主办,各省、自治区、直辖市自愿参加的群众性的课外学科竞赛活动,这项活动得到国家教育委员会基础教育司的正式批准。竞赛的目的是促使中学生提高学习物理的主动性和兴趣,改进学习方法,增强学习能力;帮助学校开展多样化的物理课外活动,活跃学习空气;发现具有突出才能的青少年,以便更好地对他们进行培养。第二条全国中学生物理竞赛要贯彻“教育要面向现代化、面向世界、面向未来”的精神,竞赛内容的深度和广度可以比中学物理教学大纲和教材有所提高和扩展。 第三条参加全国中学生物理竞赛者主要是在物理学习方面比较优秀的学生,竞赛应坚持学生自愿参加的原则.竞赛活动主要应在课余时间进行,不要搞层层选拔,不要影响学校正常的教学秩序。 第四条学生参加竞赛主要依靠学生平时的课内外学习和个人努力,学校和教师不要为了准备参加竞赛而临时突击,不要组织“集训队”或搞“题海战术”,以免影响学生的正常学习和身体健康。学生在物理竞赛中的成绩只反映学生个人在这次活动中所表现出来的水平,不应当以此来衡量和评价学校的工作和教师的教学水平。 第二章组织领导 第五条全国中学生物理竞赛由中国物理学会全国中学生物理竞赛委员会(以下简称全国竞赛委员会)统一领导。全国竞赛委员会由主任1人、副主任和委员若干人组成。主任和副主任由中国物理学会常务理事会委任。委员的产生办法如下: 1.参加竞赛的省、自治区、直辖市各推选委员1人; 2.承办本届和下届决赛的省。自治区、直辖市各推选委员3人。 3.由中国物理学会根据需要聘请若干人任特邀委员。 在全国竞赛委员会全体会议闭会期间由主任和副主任组成常务委员会,行使全国竞赛委员会职权。 第六条在全国竞赛委员会领导下,设立命题小组、组织委员会和竞赛办公室等工作机构。命题小组成员由全国竞赛委员会聘请专家和高等院校教师担任。组

镜像法-高中物理竞赛讲义

镜像法 思路 用假想的镜像电荷代替边界上的感应电荷。 保持求解区域中场方程和边界条件不变。 使用范围:界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 使用范围 界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 步骤 确定镜像电荷的大小和位置。 去掉界面,按原电荷和镜像电荷求解所求区域场。 求解边界上的感应电荷。 求解电场力。 平面镜像1 点电荷对平面的镜像 (a) 无限大接地导体平面上方有点电荷q (b)用镜像电荷-q代替导体平面上方的感应电荷 图4.4.1 点电荷的平面镜像 在无限大接地导体平面(YOZ平面)上方有一点电荷q,距离导体平面的高度为h。 用位于导体平面下方h处的镜像电荷-q代替导体平面上的感应电荷,边界条件维持不变,即YOZ平面为零电位面。 去掉导体平面,用原电荷和镜像电荷求解导体上方区域场,注意不能用原电荷和镜像电荷求解导体下方区域场。

电位: (4.4.2.1 ) 电场强度: (4.4.2.2) 其中, 感应电荷:=> (4.4.2.3) 电场力: (4.4.2.4) 图4.4.2 点电荷的平面镜像图4.4.3 单导线的平面镜像 无限长单导线对平面的镜像 与地面平行的极长的单导线,半径为a,离地高度为h。

用位于地面下方h处的镜像单导线代替地面上的感应电荷,边界条件维持不变。 将地面取消而代之以镜像单导线(所带电荷的电荷密度为) 电位: (4.4.2.5) 对地电容 : (4.4.2.6 平面镜像2 无限长均匀双线传输线对平面的镜 像 与地面平行的均匀双线传输线, 半径为a,离地高度为h,导线间距离为d, 导线一带正电荷+,导线二带负电荷-。 用位于地面下方h处的镜像双 导线代替地面上的感应电荷,边界条件维 持不变。 将地面取消而代之以镜像双导线。 图 4.4.4 无限长均匀传输线对地面的镜像 求解电位: (4.4.2.8) (4.4.2.9)

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

高中物理竞赛——稳恒电流习题

高中物理竞赛——稳恒电流习题 一、纯电阻电路的简化和等效 1、等势缩点法 将电路中电势相等的点缩为一点,是电路简化的途径之一。至于哪些点的电势相等,则需要具体问题具体分析—— 【物理情形1】在图8-4甲所示的电路中,R 1 = R 2 = R 3 = R 4 = R 5 = R ,试求A 、B 两端的等效电阻R AB 。 【模型分析】这是一个基本的等势缩点的事例,用到的是物理常识是:导线是等势体,用导线相连的点可以缩为一点。将图8-4甲图中的A 、D 缩为一点A 后,成为图8-4乙图 对于图8-4的乙图,求R AB 就容易了。 【答案】R AB = 8 3R 。 【物理情形2】在图8-5甲所示的电路中,R 1 = 1Ω ,R 2 = 4Ω ,R 3 = 3Ω ,R 4 = 12Ω ,R 5 = 10Ω ,试求A 、B 两端的等效电阻R AB 。 【模型分析】这就是所谓的桥式电路,这里先介绍简单的情形:将A 、B 两端接入电源,并假设R 5不存在,C 、D 两点的电势有什么关系? ☆学员判断…→结论:相等。 因此,将C 、D 缩为一点C 后,电路等效为图8-5乙 对于图8-5的乙图,求R AB 是非常容易的。事实上,只要满足2 1R R =4 3R R 的关系, 我们把桥式电路称为“平衡电桥”。

【答案】R AB = 4 15Ω 。 〖相关介绍〗英国物理学家惠斯登曾将图8-5中的R 5换成灵敏电流计○G ,将R 1 、R 2中的某一个电阻换成待测电阻、将R 3 、R 4换成带触头的电阻丝,通过调节触头P 的位置,观察电流计示数为零来测量带测电阻R x 的值,这种测量电阻的方案几乎没有系统误差,历史上称之为“惠斯登电桥”。 请学员们参照图8-6思考惠斯登电桥测量电阻的原理,并写出R x 的表达式(触头两端的电阻丝长度L AC 和L CB 是可以通过设置好的标尺读出的)。 ☆学员思考、计算… 【答案】R x =AC CB L L R 0 。 【物理情形3】在图8-7甲所示的有限网络中,每一小段导体的电阻均为R ,试求A 、B 两点之间的等效电阻R AB 。 【模型分析】在本模型中,我们介绍“对称等势”的思想。当我们将A 、B 两端接入电源,电流从A 流向B 时,相对A 、B 连线对称的点电流流动的情形必然是完全相同的,即:在图8-7乙图中标号为1的点电势彼此相等,标号为2的点电势彼此相等…。将它们缩点后,1点和B 点之间的等效电路如图8-7丙所示。 不难求出,R 1B = 14 5R ,而R AB = 2R 1B 。 【答案】R AB = 75R 。 2、△→Y 型变换 【物理情形】在图8-5甲所示的电路中,将R 1换成2Ω的电阻,其它条件不变,再求A 、B 两端的等效电阻R AB 。 【模型分析】此时的电桥已经不再“平衡”,故不能采取等势缩点法简化电路。这里可以将电路的左边或右边看成△型电路,然后进行△→Y 型变换,具体操作如图8-8所示。 根据前面介绍的定式,有

中学物理竞赛讲义动能定理

4.2动能定理 一、单个质点的动能定理 例1、设物体的质量为m ,在与运动方向相同的恒定外力F (F 未知)的作用下,在光滑水平面上发生一段位移l ,速度由v 1增加到v 2,如图所示。试用牛顿运动定律和运动学公式,推导出力F 对物体做功的表达式(与速度的关系)。 22211122 W mv mv =- 功是能量转化的量度,上式右边可以看成是能量的变化(末状态的能量减初状态的能量)。由于和速度有关,将其定义为动能。 1、动能 212 K E mv = 2、动能定理:合外力所做的功等于物体动能的变化量。 22211122 k W E mv mv =?=-合 3、动能定理的优越性: (1)适用于恒力做功,也适用于变力做功。 (2)适用于直线运动,也适用于曲线运动。 (3)适用于单一过程,也适用于全过程(复杂运动)。 *(4)机械能守恒定律是有适用条件的,而动能定理是普遍适用的。 例2、两个质量均为m 的小球.用长为2L 的轻绳连接起来,置于光滑水平面上, 绳恰好处于 伸直状态.如图所示.今用一个恒力F 作用在绳的中点,F 的方向水平且垂直 于绳的初始长度方向.原为静止的两个小球因此运动.求:(1)在两个小球第一次相碰前 的瞬间,小球在垂直于F 作用线方向上的分速度为多大?(2)若干次碰撞后,两球处于接触 状态一起运 动,求因碰撞损失的总能量。 二、质点系统的动能定理 质点系的动能增量等于作用于质点系所有外力和内力做功的代数和。 k E W W ?=+∑∑外内 注意: 系统牛顿第二定律:F =ma ,不需要考虑内力。 但是,系统动能定理,不仅需要考虑外力做功,还要考虑内力做功 例3、速度为v 1的子弹射入静止在光滑桌面上的木块,子弹受到的阻力为f ,子弹未从木块中射出,子弹和木块以共同的速度v 2在桌面上运动。子弹射入木块的深度为d ,求木块和子弹构成的系统动能的减少量。

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

物理竞赛课件-奥赛训练稳恒电流A

稳恒电流 A 编号:971017 1、令每段导体的电阻为R ,求R AB。 2、对不平衡的桥式电路,求等效电阻R AB。 3、给无穷网络的一端加上U AB = 10V的电压,求R2消耗的功率。已知奇数号电阻均为5Ω,偶数号电阻均为10Ω。 4、试求平面无穷网络的等效电阻R AB,已知每一小段导体的电阻均为R 。 5、右图电路中,R1 = 40Ω,R2 = R3 = 60Ω,ε1 = 5V ,ε2 = 2V ,电源内阻忽略不计,试求电源ε2的输出功率。 6、右图电路中,ε1 = 20V ,ε2 = 24V ,ε3 = 10V ,R1 = 10Ω,R2 = 3Ω,R3 = 2Ω,R4 = 28Ω,R5 = 17Ω,C1 = C2 = 20μF ,C3 = 10μF ,试求A、B两点的电势、以及三个电容器的的带电量。

稳恒电流A答案与提示 1、等势缩点法。设图中最高节点为C 、最低节点为D ,则U C = U D… 答案:7R/15 。 2、法一:“Δ→Y”变换; 法二:基尔霍夫定律,基尔霍夫方 程两个…解得I1 = 9I/15 ,I2 = 6I/15 , 进而得U AB = 21IR/15 。 答案:1.4R 。 3、先解R AB = R右= 10Ω 答案:2.5W 。 4、电流注入、抽出…叠加法 求U AB表达式。 答案:左图R/2 ;右图R 。 5、设R3的电流为I(方向向 左),用戴维南定理解得I = 0 。 答案:零。 6、设电路正中间节点为P点,接地点为O点,求A、B电势后令U P大于U A而小于U B,则三电容器靠近P点的极板的电性分别是+、?、+ ,据电荷守恒,应有Q1 + Q2 = Q3… 答案:U A = 7V ,U B = 26V ;Q1 = 124μC(A板负电),Q2 = 256μC(B板正电),Q3 = 132μC (O板负电)。

高中物理竞赛讲义——微积分初步

高中物理竞赛讲义——微积分初步 一:引入 【例】问均匀带电的立方体角上一点的电势是中心的几 倍。 分析: ①根据对称性,可知立方体的八个角点电势相等;将原立 方体等分为八个等大的小立方体,原立方体的中心正位于个小立方体角点位置;而根据电势叠加原理,其电势即为八个小立方体角点位置的电势之和,即U 1=8U 2 ; ②立方体角点的电势与什么有关呢?电荷密度ρ;二立方体的边长a ;三立方体的形状; 根据点电荷的电势公式U=K Q r 及量纲知识,可猜想边长为a 的立方体角点电势为 U=CKQ a =Ck ρa 2 ;其中C 为常数,只与形状(立方体)及位置(角点)有关,Q 是总电量,ρ是电荷密度;其中Q=ρa 3 ③ 大立方体的角点电势:U 0= Ck ρa 2 ;小立方体的角点电势:U 2= Ck ρ(a 2 )2=CK ρa 2 4 大立方体的中心点电势:U 1=8U 2=2 Ck ρa 2 ;即U 0=12 U 1 【小结】我们发现,对于一个物理问题,其所求的物理量总是与其他已知物理量相关联,或者用数学语言来说,所求的物理量就是其他物理量(或者说是变量)的函数。如果我们能够把这个函数关系写出来,或者将其函数图像画出来,那么定量或定性地理解物理量的变化情况,帮助我们解决物理问题。 二:导数 ㈠ 物理量的变化率 我们经常对物理量函数关系的图像处理,比如v-t 图像,求其斜率可 以得出加速度a ,求其面积可以得出位移s ,而斜率和面积是几何意义上 的微积分。我们知道,过v-t 图像中某个点作出切线,其斜率即a= △v △t . 下面我们从代数上考察物理量的变化率: 【例】若某质点做直线运动,其位移与时间的函数关系为上s=3t+2t 2,试求其t 时刻的速度的表达式。(所有物理量都用国际制单位,以下同)

高中物理竞赛辅导讲义:原子物理

原 子 物 理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

高中物理竞赛讲义:恒定电流.

专题十二 恒定电流 【扩展知识】 1.电流 (1)电流的分类 传导电流:电子(离子)在导体中形成的电流。 运流电流:电子(离子)于宏观带电体在空间的机械运动形成的电流。 (2)欧姆定律的微观解释 (3)液体中的电流 (4)气体中的电流 2.非线性元件 (1)晶体二极管的单向导电特性 (2)晶体三极管的放大作用 3.一段含源电路的欧姆定律 在一段含源电路中,顺着电流的流向来看电源是顺接的(参与放电),则经过电源后,电路该点电势升高ε;电源若反接的(被充电的),则经过电源后,该点电势将降低ε。不论电源怎样连接,在电源内阻r 和其他电阻R 上都存在电势降低,降低量为I (R+r )如图则有: b a U Ir Ir IR U =-+---2211εε 4.欧姆表 能直接测量电阻阻值的仪表叫欧姆表,其内部结构如图所示,待测电阻的值由:)(0R r R I R g x ++-=ε 决定,可由表盘上直接读出。在正式测电阻前先要使红、黑表笔短接,即:

中R r R R I g g ε ε =++=0。 如果被测电阻阻值恰好等于R 中,易知回路中电流减半,指针指表盘中央。而表盘最左边刻度对应于∞=2x R ,最右边刻度对应于03=x R ,对任一电阻有R x ,有:x g R R n I I +== 中ε, 则中R n R x )1(-=。 由上式可看出,欧姆表的刻度是不均匀的。 【典型例题】 1、两电解池串联着,一电解池在镀银,一电解池在电解水,在某一段时间内,析出的银是0.5394g ,析出的氧气应该是多少克? 2、用多用电表欧姆档测量晶体二极管的正向电阻时,用100?R 档和用k R 1?档,测量结果不同,这是为什么?用哪档测得的电阻值大?

最新高中物理竞赛讲义(完整版)

最新高中物理竞赛讲义 (完整版) 目录 最新高中物理竞赛讲义(完整版) (1) 第0 部分绪言 (5) 一、高中物理奥赛概况 (5)

二、知识体系 (6) 第一部分力&物体的平衡 (7) 第一讲力的处理 (7) 第二讲物体的平衡 ............................. 1...0.. 第三讲习题课 ................................. 1..1... 第四讲摩擦角及其它........................... 1...7..第二部分牛顿运动定律 ............................ 2..2.. 第一讲牛顿三定律 ............................. 2...2.. 第二讲牛顿定律的应用 ......................... 2..3.. 第二讲配套例题选讲........................... 3...7..第三部分运动学 ................................. 3...7... 第一讲基本知识介绍 .......................... 3..7.. 第二讲运动的合成与分解、相对运动 ............. 4..0 第四部分曲线运动万有引力 ....................... 4...4. 第一讲基本知识介绍........................... 4...4.. 第二讲重要模型与专题 ......................... 4..7.. 第三讲典型例题解析............................. 5...9..第五部分动量和能量 ............................... 5...9.. 第一讲基本知识介绍............................. 5...9.. 第二讲重要模型与专题.......................... 6..3.. 第三讲典型例题解析............................. 8...3..第六部分振动和波 ................................. 8..3...

高中物理竞赛辅导讲义-第8篇-稳恒电流

高中物理竞赛辅导讲义 第8篇 稳恒电流 【知识梳理】 一、基尔霍夫定律(适用于任何复杂电路) 1. 基尔霍夫第一定律(节点电流定律) 流入电路任一节点(三条以上支路汇合点)的电流强度之和等于流出该节点的电流强度之和。即∑I =0。 若某复杂电路有n 个节点,但只有(n ?1)个独立的方程式。 2. 基尔霍夫第二定律(回路电压定律) 对于电路中任一回路,沿回路环绕一周,电势降落的代数和为零。即∑U =0。 若某复杂电路有m 个独立回路,就可写出m 个独立方程式。 二、等效电源定理 1. 等效电压源定理(戴维宁定理) 两端有源网络可以等效于一个电压源,其电动势等于网络的开路端电压,其内阻等于从网络两端看除源(将电动势短路,内阻仍保留在网络中)网络的电阻。 2. 等效电流源定理(诺尔顿定理) 两端有源网络可等效于一个电流源,电流源的电流I 0等于网络两端短路时流经两端点的电流,内阻等于从网络两端看除源网络的电阻。 三、叠加原理 若电路中有多个电源,则通过电路中任一支路的电流等于各个电动势单独存在时,在该支路产生的电流之和(代数和)。 四、Y?△电路的等效代换 如图所示的(a )(b )分别为Y 网络和△网络,两个网络中的6个电阻满足一定关系 时完全等效。 1. Y 网络变换为△网络 12 2331 123 R R R R R R R R ++=, 122331 231R R R R R R R R ++= 122331 312 R R R R R R R R ++= 2. △网络变换为Y 网络 12311122331R R R R R R = ++,23122122331R R R R R R =++,3123 3122331 R R R R R R =++

高中物理竞赛讲义-圆周运动

圆周运动 一、匀速圆周运动 1、基本物理量 半径r 、线速度v 、角速度ω、周期T 、频率f 、转速n 、向心加速度a n 、向心力F n 2、物理量之间的关系 v r ω= 1 T f = n f = 222r v rf rn T πππ= == 222f n T πωππ=== 22 224==n n v F ma m m r m r r T πω== 例1、半径为R 的圆柱夹在互相平行的两板之间,两板分别以速 度v1,v2反向运动,圆柱与板无相对滑动。问圆柱上与板接触 的A 点的加速度是多少? 例2、如图一半径为R 的刚性圆环竖直地在刚性水平地面上作纯滚动, 圆环中心以不变的速度v o 在圆环平面内水平向前运动.求圆环圆心等高 的P 点的瞬时速度和加速度. 例3、缠在线轴上的线绕过滑轮B 后,以恒定速度v0被拉出, 如图所示,这时线轴沿水平面无滑动滚动。求线轴中心点 O 的 速度随线与水平方向的夹角 α 的变化关系。(线轴的内、外半径 分别为r 和R )

二、变速圆周运动 速率变化的圆周运动,加速度不再沿着半径方向。可以加速度分解为半径方向的向心加速度a n和切线方向的切向加速度a t。向心加速度a n改变速度方向,切向加速度a t改变速度大小。此时,角速度的大小也在变化,角速度变化的快慢叫做角加速度β。 = t dv d r dt dt a r ω β = 例4、如图所示,在离水面高度为h的岸边,有人用绳子拉船靠 岸,若人拉绳的速率恒为v 0,试求船在离岸边s距离处时的速度 和加速度。 例5、如图所示,直杆AB以匀速v0搁在半径为r的固定圆 环上做平动,试求图示位置时,杆与环的交点M的速度 和加速度。

高中物理竞赛辅导讲义_微积分初步

微积分初步 一、微积分的基本概念 1、极限 极限指无限趋近于一个固定的数值 两个常见的极限公式 0sin lim 1x x x →= *1lim 11x x x →∞??+= ??? 2、导数 当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限叫做导数。 0'lim x dy y y dx x ?→?==? 导数含义,简单来说就是y 随x 变化的变化率。 导数的几何意义是该点切线的斜率。 3、原函数和导函数 对原函数上每点都求出导数,作为新函数的函数值,这个新的函数就是导函数。 00()()'()lim lim x x y y x x y x y x x x ?→?→?+?-==?? 4、微分和积分 由原函数求导函数:微分 由导函数求原函数:积分 微分和积分互为逆运算。 例1、根据导函数的定义,推导下列函数的导函数 (1)2y x = (2) (0)n y x n =≠ (3)sin y x = 二、微分 1、基本的求导公式 (1)()'0 ()C C =为常数 (2)()1' (0)n n x nx n -=≠ (3)()'x x e e = *(4)()'ln x x a a a = (5)()1ln 'x x = *(6)()1log 'ln a x x a =

(7)()sin 'cos x x = (8)()cos 'sin x x =- (9)()21tan 'cos x x = (10)()21cot 'sin x x = **(11)() arcsin 'x = **(12)()arccos 'x = **(13)()21arctan '1x x =+ **(14)()2 1arccot '1x x =-+ 2、函数四则运算的求导法则 设u =u (x ),v =v (x ) (1)()'''u v u v ±=± (2)()'''uv u v uv =+ (3)2'''u u v uv v v -??= ??? 例2、求y=tan x 的导数 3、复合函数求导 对于函数y =f (x ),可以用复合函数的观点看成y =f [g (x)],即y=f (u ),u =g (x ) 'dy dy du y dx du dx == 即:'''u x y y u = 例3、求28(12)y x =+的导数 例4、求ln tan y x =的导数 三、积分 1、基本的不定积分公式 下列各式中C 为积分常数 (1) ()kdx kx C k =+?为常数 (2)1 (1)1n n x x dx C n n +=+≠-+?

相关主题
文本预览
相关文档 最新文档