当前位置:文档之家› 逻辑函数的基本运算与定律

逻辑函数的基本运算与定律

数字电路与系统东南大学信息科学与工程学院

第二章逻辑函数及其简化

基本逻辑运算

常用复合逻辑运算

逻辑代数的基本定律

逻辑代数的基本规则

逻辑代数的常用公式

逻辑函数及其描述方法

逻辑函数的简化

二值逻辑

◆逻辑代数是用来处理命题之间逻辑关系的代数系统;

◆在逻辑代数中,命题可以用逻辑变量代表;命题之间的逻辑关系,用逻辑函数表示;

◆在数字电路中,信息用二进制表示,因此在这里只研究二值逻辑;

◆逻辑代数又称布尔代数,开关代数。在这里,是一个由逻辑变量真假(或取值0,1 )、以及用“与”、“或”、“非”3种基本运算构成的代数系统。

◆对于二值逻辑,任何逻辑命题只有真(True)和假(False) 两个可

能;

◆逻辑变量是一种二值变量。仅取0、1(或者真、假)两种逻辑值◆逻辑变量的真和假称为逻辑真值,用数码1和0表示,1代表逻辑

真,而0表示逻辑假。

◆逻辑代数中的1和0是逻辑常量,它们不具备数的性质,无大、小

、正、负之分,仅仅表示真、假两个相反的逻辑状态;

◆数字电路中的两种状态,可以用二值逻辑表示;

◆逻辑代数的三种基本逻辑运算:非(NOT)、与(AND)、或(OR)

非逻辑和非运算

◆“若前提为真,结论则为假,若前提为假,结论反而为真”,这

样的逻辑关系称为非逻辑。

电路状态表

开关A灯L

断亮

通灭实例电路A

01

10

真值表

非门符号

与逻辑和与运算

◆“所有前提皆为真,结论才为真”,这种逻辑关系称为与逻辑;◆与逻辑表明只有当所有前提条件均具备时,结论命题才为真;

开关A 开关B 灯L 断断灭断通灭通断灭通通亮

电路实例

状态表

A

B L=A?B 0000101001

1

1

真值表

与门符号

或逻辑和或运算

“若一个或一个以上前提为真,则结论为真”,这样的逻辑关系称为或逻辑;

开关A 开关B 灯L 断断灭断通亮通断亮通

电路实例

状态表

A B L=A+B 0000111011

1

1

真值表

或门符号

逻辑运算的优先级和逻辑运算的完备集

◆三种基本逻辑运算如在逻辑运算式中同时出现时,其优先顺序

由高到低为:非运算、与运算、或运算;

◆若需要更改运算次序,可以通过加括号实现;

◆一个代数系统,如果仅用它所定义的运算中的某一组就能实现

所有的运算,则这一组运算是完备的,称为完备集;

◆任何复杂的逻辑运算,都可以由与、或、非三种基本逻辑运算

组合来实现的,所以逻辑运算{与,或,非}是一个完备集;

三种基本逻辑电路的符号

国标GB4728.12-85、美国MIL-STD-806B、原部颁标准SJ1223-77

2.2 常用的复合逻辑运算

在基本逻辑运算的基础上,通过多种基本逻辑运算的组合定义了与非、或非、与或非、异或和同或这几种新的逻辑运算,称为复合逻辑运算。

2.2 常用复合逻辑运算

2.3 逻辑代数的基本定律

2.4.1 置换(Replacement)规则

◆置换规则:对于逻辑等式中的任一变量X,若将所有出现它的

地方都用逻辑函数G置换,那么,等式仍然成立;

◆因为逻辑函数G和逻辑变量X的值域均为二值逻辑0和1,所以

可以用穷举法证明代入规则的正确性。

函数极限及运算法则

教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01 lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数 的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 对于函数极限有如下的运算法则: 限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2 x x x +→ 例2 求1 1 2lim 231++-→x x x x 例3 求4 16 lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数

4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即 可求出函数的极限. 例4 求1 3 3lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim * N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim * N k x C C k x x ∈==∞→∞ → 例5 求1 34 2lim 232+--+∞→x x x x x 分析:同例4一样,不能直接用法则求极限. 如果分子、分母都除以3 x ,就可以运用法则计算了。 四 课堂练习(利用函数的极限法则求下列函数极限) (1))32(lim 2 1-→ x x ; (2))132(lim 2 2 +-→x x x (3))]3)(12[(lim 4 +-→x x x ; (4)1431 2lim 221-++→x x x x (5)11lim 21+--→x x x (6)9 6 5lim 223-+-→x x x x (7)13322lim 232+--+∞→x x x x x (8)5 2lim 32--∞→y y y y 五 小结

高中数学教案:极限与导数函数极限的运算法则

函数极限的运算法则(4月30日) 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2x x x +→

例2 求1 12lim 231++-→x x x x 例3 求4 16lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数 4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即可求出函数的极限. 例4 求1 33lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim *N k x C C k x x ∈==∞→∞→

以下表达式中符合逻辑运算法则的是

练习2 一、选择题 1. 以下表达式中符合逻辑运算法则的是 。 A.C ·C =C 2 B.1+1=10 C.0<1 D.A +1=1 2. 逻辑变量的取值1和0可以表示: 。 A.开关的闭合、断开 B.电位的高、低 C.真与假 D.电流的有、无 3. 当逻辑函数有n 个变量时,共有 个变量取值组合? A. n B. 2n C. n 2 D. 2n 4. 逻辑函数的表示方法中具有唯一性的是 。 A .真值表 B.表达式 C.逻辑图 D.卡诺图 5.F=A B +BD+CDE+A D= 。 A.D B A + B.D B A )(+ C.))((D B D A ++ D.))((D B D A ++ 6.逻辑函数F=)(B A A ⊕⊕= 。 A.B B.A C.B A ⊕ D. B A ⊕ 7.求一个逻辑函数F 的对偶式,可将F 中的 。 A .“·”换成“+”,“+”换成“·” B.原变量换成反变量,反变量换成原变量 C.变量不变 D.常数中“0”换成“1”,“1”换成“0” E.常数不变 8.A+BC= 。 A .A + B B.A + C C.(A +B )(A +C ) D.B +C 9.在何种输入情况下,“与非”运算的结果是逻辑0。 A .全部输入是0 B.任一输入是0 C.仅一输入是0 D.全部输入是1 10.在何种输入情况下,“或非”运算的结果是逻辑0。 A .全部输入是0 B.全部输入是1 C.任一输入为0,其他输入为1 D.任一输入为1 二、判断题(正确打√,错误的打×) 1. 逻辑变量的取值,1比0大。( )。 2. 异或函数与同或函数在逻辑上互为反函数。( )。 3.若两个函数具有相同的真值表,则两个逻辑函数必然相等。( )。 4.因为逻辑表达式A+B+AB=A+B 成立,所以AB=0成立。( )

《函数极限的运算法则》教案(优质课)

《函数极限的运算法则》教案 【教学目标】:掌握函数极限的运算法则,并会求简单的函数的极限 【教学重点】:运用函数极限的运算法则求极限 【教学难点】:函数极限法则的运用 【教学过程】: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01 lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 对于函数极限有如下的运算法则: 也就是说,如果两个函数都有极限,那么这两个函数的和、差、积、商组

成的函数极限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 22 x x x +→ 例2 求1 1 2lim 231++-→x x x x 例3 求4 16 lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.

注意函数4 16 2--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变 成4+x ,由此即可求出函数的极限. 例4 求1 3 3lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim * N k x C C k x x ∈==∞→∞ →

逻辑代数基础习题

第二章逻辑代数基础 [题] 选择题 以下表达式中符合逻辑运算法则的是。 ·C=C2+1=10 C.0<1 +1=1 2. 逻辑变量的取值1和0可以表示:。 A.开关的闭合、断开 B.电位的高、低 C.真与假 D.电流的有、无 3. 当逻辑函数有n个变量时,共有个变量取值组合。 A. n B. 2n C. n2 D. 2n 4. 逻辑函数的表示方法中具有唯一性的是。 A .真值表 B.表达式 C.逻辑图 D.卡诺图 5.在输入情况下,“与非”运算的结果是逻辑0。 A.全部输入是0 B.任一输入是0 C.仅一输入是0 D.全部输入是1 6.在输入情况下,“或非”运算的结果是逻辑0。 A.全部输入是0 B.全部输入是1 C.任一输入为0,其他输入为1 D.任一输入为1 7.求一个逻辑函数F的对偶式,可将F中的。 A .“·”换成“+”,“+”换成“·” B.原变量换成反变量,反变量换成原变量 C.变量不变 D.常数中“0”换成“1”,“1”换成“0” E.常数不变 8. 在同一逻辑函数式中,下标号相同的最小项和最大项是 关系。 A.互补 B.相等 C.没有关系 9. F=A +BD+CDE+ D= 。 A. A B. A+D C. D D. A+BD 10.A+BC= 。 A .A+ B + C C.(A+B)(A+C) +C 11.逻辑函数F== 。 C. D. [题]判断题(正确打√,错误的打×) 1.逻辑变量的取值,1比0大。() 2.异或函数与同或函数在逻辑上互为反函数。()3.若两个函数具有相同的真值表,则两个逻辑函数必然相等。()

4.因为逻辑表达式A+B+AB=A+B成立,所以AB=0成立。()5.若两个函数具有不同的真值表,则两个逻辑函数必然不相等。()6.若两个函数具有不同的逻辑函数式,则两个逻辑函数必然不相等。()7.逻辑函数两次求反则还原,逻辑函数的对偶式再作对偶变换也还原为它本 身。 ( )8.逻辑函数Y=A + B+ C+C 已是最简与或表达式。()9.对逻辑函数Y=A + B+ C+B 利用代入规则,令A=BC代入,得Y= BC + B+ C+B = C+B 成立。() [题] 填空题 1. 逻辑代数又称为代数。最基本的逻辑关系有、、三种。常用的几种导出的逻辑运算为、、、、。 2. 逻辑函数的常用表示方法有、、。 3. 逻辑代数中与普通代数相似的定律有、、。摩根定律又称为。 4. 逻辑代数的三个重要规则是、、。 5.逻辑函数化简的方法主要有化简法和化简法两种。 6.利用卡诺图化简法化简逻辑函数时,两个相邻项合并,消去一个变量,四个相邻项合并,消去个变量等。一般来说,2n 个相邻一方格合并时,可消去个变量。 7. 和统称为无关项。 8.逻辑函数F= B+ D的反函数 = 。 9.逻辑函数F=A(B+C)·1的对偶函数是。 10.添加项公式AB+ C+BC=AB+ C的对偶式为。 11.逻辑函数F=+A+B+C+D= 。 12.逻辑函数F== 。 13.已知函数的对偶式为+,则它的原函数为。 [题] 将下列各函数式化成最小项表达式。 (1) (2) (3) [题] 利用公式法化简下列逻辑函数。 (1)

基本逻辑函数及运算规律(与或非)

基本逻辑函数及运算规律(与或非) 基本的逻辑关系有与逻辑、或逻辑、非逻辑,与之对应的逻辑运算为与运算(逻辑乘)、或运算(逻辑加)、非运算(逻辑非)。 1.与运算 只有当决定一件事情的条件全部具备之后,这件事情才会发生。把这种因果关系称为与逻辑,其逻辑关系、真值表及逻辑符号如图6.7所示。 若用逻辑表达式来描述,则可写为:B A Y ?= (a)电路 (b)真值表 (c)逻辑符号 图6.7 与运算 下图6.8为实现与运算的二极管与门电路。A 、B 为输入端,F 为输出端。A 、B 输入端中只要有一个为低电平,则与该输入端相连的二极管会反相偏置导通,使输出端为低电平。只有输入端同时为高电平时,二极管会反向偏置截止,输出才是高电平。 图 6.8 与运算的二极管与门电路 2.或运算 当决定一件事情的几个条件中,只要有一个或一个以上条件具备,这件事情就发生。把这种因果关系称为或逻辑,其逻辑关系、真值表及逻辑符号如图6.9所示。 若用逻辑表达式来描述,则可写为:B A Y += (a)电路 (b)真值表 (c)逻辑符号

图6.9 或运算 下图6.10为实现与运算的二极管或门电路。A、B为输入端,F为输出端。A、B输入端中只要有一个为高电平,则输出端为高电平。只有当A、B同时为低电平,输出端才会输出低电平。 图 6.10或运算的二极管与门电路 3.非运算 某事情发生与否,仅取决于一个条件,而且是对该条件的否定,即条件具备时事情不发生;条件不具备时事情才发生,其逻辑关系、真值表及逻辑符号如图6.11所示。 (a)电路(b)真值表(c)逻辑符号 图6.11 或运算 Y 若用逻辑表达式来描述,则可写为:A 下图6.12为晶体管非门电路。当输入为高电平,晶体管饱和,输出为低电平;当输入为电平,晶体管截止,输出为高电平,实现了非门功能。 图 6.12 非运算的二极管与门电路 二、常用逻辑运算 1.与非运算 下图6.13为2输入与非运算的电路、逻辑符号及真值表。它由二极管与门和晶体管非门串接而成,当输入中至少有一个为低电平,P点输出为低电平,晶体管截止,F输出为高电平;当输入全为高电平时,P点输出为高电平,晶体管饱和,F输出为低电平,实现了与

§1-2 函数极限的运算规则

第1章 函数的极限和连续函数 8 §1-2 函数极限的运算规则·单调有界原理 1.极限的运算规则 记号“(,)x c c c -+→”和“(,)x →∞+∞-∞”都称为极限过程.若把它们统一地表示成“x →?”,则各种形式的函数极限,都具有像数列极限那样的运算 规则.要证明它们,也属于高等微积分(证明在第二篇中). 设在同一个极限过程中,有极限)(lim x f x ? →和)(lim x g x ? →. ⑴ lim[()]lim ()x x c f x c f x →? →? =(c 为常数); (齐次性) ⑵ lim[()()]lim ()lim ()x x x f x g x f x g x →? →? →? ±=±; (可加性) ⑶ lim[()()]lim ()lim ()x x x f x g x f x g x →? →? →? =?; (乘积的极限等于极限的乘积) ⑷ lim ()()lim lim ()0()lim () x x x x f x f x g x g x g x →? →?→?→? ??=≠???? ; (商的极限等于极限的商) ⑸ 若()()f x g x ≤,则lim ()lim ()x x f x g x →? →? ≤; (极限运算的单调性) ⑹ 若()()()f x h x g x ≤≤,且lim ()lim ()x x f x g x C →? →? ==,则也有极限lim ()x h x C →? =. (夹挤规则) 根据夹挤规则,若lim ()0x f x →? =,且)(x g 在极限过程?→x 中是有界变量(())g x B ≤, 则应直接写成 lim[()()]0x f x g x →? = 因为 0()()()0()f x g x B f x x ≤≤→→?且lim ()()0lim[()()]0x x f x g x f x g x →? →? =??= 而不能写成 []lim ()()lim ()lim ()0x x x f x g x f x g x →? →? →? =?=[逻辑错误!] 例如函数1sin y x x =(图1-15),应当直接写成 01 lim sin 0x x x →=(因为1sin 1x ≤) 而不能写成 00011 lim sin lim limsin 0x x x x x x x →→→=?= 因为不存在极限01 limsin x x →(图1-10). 例3 设有多项式 2012()(0)n n n P x a a x a x a x a =+++ +≠ 则 2012lim ()lim lim()lim()lim()n n x c x c x c x c x c P x a a x a x a x →→→→→=+++ + 2012(lim )(lim )(lim )n n x c x c x c a a x a x a x →→→=+++ +

函数极限的十种求法

函数极限的十种求法 信科2班江星雨250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使 得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。时的极限。 1.利用极限的四则运算法则: 极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。方能利用极限四则运算法则进行求之。不满足条件者,不能直接利用极限四则运算法则求之。但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。例 1 求lim( x 2 ? 3x + 5). x→ 2 解:lim( x 2 ? 3x + 5) = lim x 2 ? lim 3x + lim 5 = (lim x) 2 ? 3 lim x + lim 5 = 2 2 ? 3 ? 2 + 5 = 3. x→2 x →2 x →2 x →2 x →2 x →2 x →2 2.利用洛必达法则 洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。一般用在求导后为零比零或无穷比无穷的类型。 利用洛必达求极限应注意以下几点: 设函数f(x)和F(x)满足下列条件: (1)x→a时,lim f(x)=0,lim F(x)=0; (2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0; (3)x→a时,lim(f'(x)/F'(x))存在或为无穷大 则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x)) 例1: 1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2 xsinx = 2xsin(x/2)cos(x/2) 原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x 对分子分母同时求导(洛必达法则) (tgx)' = 1 / (cosx)^2 (x)' = 1 原式= lim 1/(cosx)^2 当x --> 0 时,cosx ---> 1 原式= 1 3.利用两个重要极限: 应用第一重要极限时,必须同时满足两个条件: ①分子、分母为无穷小,即极限为0 ; ②分子上取正弦的角必须与分母一样。 应用第二重要极限时,必须同时满足四个条件: ①带有“1”;

高三数学总复习 函数极限的运算法则教案

湖南师范大学附属中学高三数学总复习教案:函数极限的运算 法 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01 lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 对于函数极限有如下的运算法则: 如果B x g A x f o o x x x x ==→→)(lim ,)(lim ,那么 B A x g x f o x x +=+→)]()([lim B A x g x f o x x ?=?→)]()([lim )0()()(lim ≠=→B B A x g x f o x x 也就是说,如果两个函数都有极限,那么这两个函数的和、差、积、商组成的函数极限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→=

n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2 x x x +→ 例2 求1 1 2lim 231++-→x x x x 例3 求4 16 lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数 4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x , 由此即可求出函数的极限. 例4 求1 3 3lim 22++-∞→x x x x

数字电路与逻辑设计习题逻辑函数及其简化

第二章逻辑函数及其简化 一、选择题 1. 以下表达式中符合逻辑运算法则的是 。 A.C ·C=C 2 B.1+1=10 C.0<1 D.A+1=1 2. 逻辑变量的取值1和0可以表示: 。 A.开关的闭合、断开 B.电位的高、低 C.真与假 D.电流的有、无 3. 当逻辑函数有n 个变量时,共有 个变量取值组合? A. n B. 2n C. n 2 D. 2n 4. 逻辑函数的表示方法中具有唯一性的是 。 A .真值表 B.表达式 C.逻辑图 D.卡诺图 5.F=A B +BD+CDE+A D= 。 A.D B A + B.D B A )(+ C.))((D B D A ++ D.))((D B D A ++ 6.逻辑函数F=)(B A A ⊕⊕ = 。 A.B B.A C.B A ⊕ D. B A ⊕ 7.求一个逻辑函数F 的对偶式,可将F 中的 。 A .“·”换成“+”,“+”换成“·” B.原变量换成反变量,反变量换成原变量 C.变量不变 D.常数中“0”换成“1”,“1”换成“0” E.常数不变 8.A+BC= 。 A .A+ B B.A+ C C.(A+B )(A+C ) D.B+C 9.在何种输入情况下,“与非”运算的结果是逻辑0。 A .全部输入是0 B.任一输入是0 C.仅一输入是0 D.全部输入是1 10.在何种输入情况下,“或非”运算的结果是逻辑0。 A .全部输入是0 B.全部输入是1 C.任一输入为0,其他输入为1 D.任一输入为1 二、判断题(正确打√,错误的打×) 1. 逻辑变量的取值,1比0大。( )。 2. 异或函数与同或函数在逻辑上互为反函数。( )。 3.若两个函数具有相同的真值表,则两个逻辑函数必然相等。( )。 4.因为逻辑表达式A+B+AB=A+B 成立,所以AB=0成立。( ) 5.若两个函数具有不同的真值表,则两个逻辑函数必然不相等。( )

求函数极限的方法

求函数极限的方法 1. 预备知识 1.1 函数极限的定义 定义 1 设f 为定义在[],a +∞上的函数,A 为定数.若对任给的0ε>,存在正整数()M a ≥,使得当x M >时有()f x A ε-<,则称函数f 当x 趋于+∞时以A 为极限.记作:()lim x f x A →+∞ =或()()f x A x →→+∞. 定义2 设函数f 在点0x 的某个空心邻域()00;'U x δ内有定义,A 为定数,若对任给的0ε>,存在正数()'δδ<,使得当00x x δ<-<时有()f x A ε-<,则称函数f 当x 趋于0x 时以A 为极限.记作:()0 lim x x f x A →=或()()0f x A x x →→. 定义 3 设函数f 在()0 0;'U x δ+(或()00;'U x δ-)内有定义,A 为定数.若对任 给0ε>的,存在正数()'δδ<,使得当时00x x x δ<<+(或00x x x δ-<<)有 ()f x A ε-<,则称数A 为函数f 当x 趋于0 x +(或0x - )时的右(左)极限.记作: ()()00lim lim x x x x f x A f x A + -→→??== ??? 或()()()()() 00f x A x x f x A x x +-→→→→. 1.2 函数极限的性质 性质1(唯一性) 若极限()0 lim x x f x →存在,则此极限是唯一的. 性质2(局部有界性) 若()0 lim x x f x →存在,则f 在0x 的某空心邻域()00U x 内有界. 性质3(局部保号性) 若()0 lim 0x x f x A →=>(或0<),则对任何正数r A <(或 r A <-) ,存在()00U x ,使得对一切()o o x U x ∈有()0f x r >>(或()0f x r <-<). 性质4(保不等式性) 设()0 lim x x f x →与()0 lim x x g x →都存在,且在某邻域()00;'U x δ内 有()()f x g x <,则()()0 lim lim x x x x f x g x →→≤. 性质5(迫敛性)设()()0 lim lim x x x x f x g x A →→==,且在某邻域()00;'U x δ内有

(完整版)逻辑代数的运算规则

逻辑代数的运算规则 逻辑代数的基本定律 逻辑代数的三个规则 1、代入规则 在任一逻辑等式中,如果将等式两边所有出现的某一变量都代之以一个逻辑函数,则此等式仍然成立,这一规则称之为代入规则。 2、反演规则 已知一逻辑函数F,求其反函数时,只要将原函数F中所有的原变量变为反变量,反变量变为原变量;“+”变为“·”,“·”变为“+”;“0”变为“1”;“1”变为“0”。这就是逻辑函数的反演规则。 3、对偶规则 已知一逻辑函数F,只要将原函数F中所有的“+”变为“·”,“·”变为“+”;“0”变为“1”;“1”变为“0”,而变量保持不变、原函数的运算先后顺序保持不变,那么就可以得到一个新函数,这新函数就是对偶函数F'。 其对偶与原函数具有如下特点: 1.原函数与对偶函数互为对偶函数; 2.任两个相等的函数,其对偶函数也相等。这两个特点即是逻辑函数的对偶规则。 逻辑运算的常用公式 逻辑代数的总结 基本逻辑运算: 与(或称“积”)---符号(&、?、无、∧、∩) 或(或称“和”)---符号(| 、+、∨、∪)

非(或称“反”)---符号(! 、) 1 0-1律: 0?A=0 0+A=1 1?A=A 1+A=A 同一律: A?A=A A+A=A 互补律: A?A=0 A+A=0 反演律 A?B =A+B A+B=A? 还原律 A =A √⊕⊙??+A=0 2、常用公式 交换律: A?B=B?A A+B=B+A 结合律: A?(A?B)=(A?B)?C A+(A+B)=(A+B)+C 分配律: A?(A+B)=A?B+A?C A+(A?B)=(A+B)?(A+C) 吸收律: A?(A+B)=AB A+(A?B)=AB A?B+(A?B)=A (A+B)?(A+B)=A

(完整版)极限四则运算法则

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

以下表达式中符逻辑运算法则是

以下表达式中符逻辑运算法则是

————————————————————————————————作者:————————————————————————————————日期:

练习2 一、选择题 1. 以下表达式中符合逻辑运算法则的是 。 A.C ·C =C 2 B.1+1=10 C.0<1 D.A +1=1 2. 逻辑变量的取值1和0可以表示: 。 A.开关的闭合、断开 B.电位的高、低 C.真与假 D.电流的有、无 3. 当逻辑函数有n 个变量时,共有 个变量取值组合? A. n B. 2n C. n 2 D. 2n 4. 逻辑函数的表示方法中具有唯一性的是 。 A .真值表 B.表达式 C.逻辑图 D.卡诺图 5.F=A B +BD+CDE+A D= 。 A.D B A + B.D B A )(+ C.))((D B D A ++ D.))((D B D A ++ 6.逻辑函数F=)(B A A ⊕⊕= 。 A.B B.A C.B A ⊕ D. B A ⊕ 7.求一个逻辑函数F 的对偶式,可将F 中的 。 A .“·”换成“+”,“+”换成“·” B.原变量换成反变量,反变量换成原变量 C.变量不变 D.常数中“0”换成“1”,“1”换成“0” E.常数不变 8.A+BC= 。 A .A + B B.A + C C.(A +B )(A +C ) D.B +C 9.在何种输入情况下,“与非”运算的结果是逻辑0。 A .全部输入是0 B.任一输入是0 C.仅一输入是0 D.全部输入是1 10.在何种输入情况下,“或非”运算的结果是逻辑0。 A .全部输入是0 B.全部输入是1 C.任一输入为0,其他输入为1 D.任一输入为1 二、判断题(正确打√,错误的打×) 1. 逻辑变量的取值,1比0大。( )。 2. 异或函数与同或函数在逻辑上互为反函数。( )。 3.若两个函数具有相同的真值表,则两个逻辑函数必然相等。( )。 4.因为逻辑表达式A+B+AB=A+B 成立,所以AB=0成立。( )

《数字逻辑电路(A)》复习题逻辑代数基础

逻辑代数基础 一、选择题(多项选择) 1. 以下表达式中符合逻辑运算法则的是 。 A.C ·C =C 2 B.1+1=10 C.0<1 D.A +1=1 2. 逻辑变量的取值1和0可以表示: 。 A.开关的闭合、断开 B.电位的高、低 C.真与假 D.电流的有、无 3. 当逻辑函数有n 个变量时,共有 个变量取值组合? A. n B. 2n C. n 2 D. 2n 4. 逻辑函数的表示方法中具有唯一性的是 。 A .真值表 B.表达式 C.逻辑图 D.卡诺图 5.F=A B +BD+CDE+A D= 。(加一个盈余项AD ) A.D B A + B.D B A )(+ C.))((D B D A ++ D.))((D B D A ++ 6.逻辑函数F=)(B A A ⊕⊕ = 。 A.B B.A C.B A ⊕ D. B A ⊕ 7.求一个逻辑函数F 的对偶式,可将F 中的 。 A .“·”换成“+”,“+”换成“·” B.原变量换成反变量,反变量换成原变量 C.变量不变 D.常数中“0”换成“1”,“1”换成“0” E.常数不变 8.A+BC= 。 A .A + B B.A + C C.(A +B )(A +C ) D.B +C 9.在何种输入情况下,“与非”运算的结果是逻辑0。 D A .全部输入是0 B.任一输入是0 C.仅一输入是0 D.全部输入是1 10.在何种输入情况下,“或非”运算的结果是逻辑0。 A .全部输入是0 B.全部输入是1 C.任一输入为0,其他输入为1 D.任一输入为1 二、判断题(正确打√,错误的打×) 1. 逻辑变量的取值,1比0大。( × )。 2. 异或函数与同或函数在逻辑上互为反函数。( √ )。 3.若两个函数具有相同的真值表,则两个逻辑函数必然相等。( × )。

逻辑代数的运算规则

逻辑代数的三个规则 1、代入规则 在任一逻辑等式中,如果将等式两边所有出现的某一变量都代之以一个逻辑函数,则此等式仍然成立,这一规则称之为代入规则。 2、反演规则 已知一逻辑函数F,求其反函数时,只要将原函数F中所有的原变量变为反变量,反变量变为原变量;“+”变为“·”,“·”变为“+”;“0”变为“1”;“1”变为“0”。这就是逻辑函数的反演规则。 3、对偶规则 已知一逻辑函数F,只要将原函数F中所有的“+”变为“·”,“·”变为“+”;“0”变为“1”;“1”变为“0”,而变量保持不变、原函数的运算先后顺序保持不变,那么就可以得到一个新函数,这新函数就是对偶函数F'。 其对偶与原函数具有如下特点: 1.原函数与对偶函数互为对偶函数; 2.任两个相等的函数,其对偶函数也相等。这两个特点即是逻辑函数的对偶规则。 逻辑运算的常用公式 逻辑代数的总结 基本逻辑运算: 与(或称“积”)---符号(&、?、无、∧、∩) 或(或称“和”)---符号(| 、+、∨、∪) 非(或称“反”)---符号(! 、) 1 0-1律: 0?A=0 0+A=1 1?A=A 1+A=A 同一律: A?A=A A+A=A 互补律: A?A=0 A+A=0 反演律 A?B =A+B B=A?B

还原律 A =A √⊕⊙??+A=0 2、常用公式 交换律: A?B=B?A A+B=B+A 结合律: A?(A?B)=(A?B)?C A+(A+B)=(A+B)+C 分配律: A?(A+B)=A?B+A?C A+(A?B)=(A+B)?(A+C)吸收律: A?(A+B)=AB A+(A?B)=AB A?B+(A?B)=A (A+B)?(A+B)=A

逻辑函数(布尔代数)运算规则

逻辑函数(布尔代数)运算规则 根据逻辑变量和逻辑运算的基本定义,可得出逻辑代数的基本定律。 一、逻辑运算基本公式 1.逻辑常量运算公式 ·与运算:111 001 010 000=?=?=?=? ·或运算:111 101 110 000=+=+=+=+ ·非运算:10 01== 2.逻辑变量、常量运算公式 ·0-1律:???=?=+A A A A 10 ???=?=+0 011A A ·互补律: 0 1=?=+A A A A ·等幂律:A A A A A A =?=+ ·双重否定律:A A = 3.逻辑代数的基本定律 (1)与普通代数相似的定律 ·交换律:? ??+=+?=?A B B A A B B A ·结合律:???++=++??=??) ()()()(C B A C B A C B A C B A ·分配律:? ??+?+=?+?+?=+?)()()(C A B A C B A C A B A C B A 利用真值表很容易证明这些公式的正确性。如证明A·B=B·A : (2)吸收律

·还原律:???=+?+=?+?A B A B A A B A B A )()( ·吸收率:?????+=?+?=+????=+?=?+B A B A A B A B A A A B A A A B A A )( )( ·冗余律:C A AB BC C A AB +=++ (3)摩根定律 反演律(摩根定律):??????=++=?B A B A B A B A . 二、逻辑代数的三个重要规则 1.代入规则:任何一个含有变量A 的等式,如果将所有出现A 的位置(包括等式两边)都用同一个逻辑函数代替,则等式仍然成立。这个规则称为代入规则。 2.反演规则:对于任何一个逻辑表达式Y ,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y 的反函数Y (或称补函数)。这个规则称为反演规则。例如: E D C B A Y += ))((E D C B A Y +++= E D C B A Y ++++= E D C B A Y ????= 3.对偶规则:对于任何一个逻辑表达式Y ,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,则可得到的一个新的函数表达式Y ',Y '称为函Y 的对偶函数。这个规则称为对偶规则。例如: E D C B A Y ++++= E D C B A Y ????=' 三、逻辑函数的公式化简法 1.化简的意义与标准 逻辑函数化简的意义:在逻辑设计中,逻辑函数最终都要用逻辑电路来实现。若逻辑表达式越简单,则实现它的电路越简单,电路工作越稳定可靠。 逻辑函数式的基本形式和变换对于同一个逻辑函数,其逻辑表达式不是唯一的。常见的逻辑形式有5种:与或表达式、或与表达式、与非-与非表达式、或非-或非表达式、与或非表达式。如: (1)与或表达式:AC B A Y +=

相关主题
文本预览
相关文档 最新文档