当前位置:文档之家› 利用导数解决不等式的恒成立问题

利用导数解决不等式的恒成立问题

利用导数解决不等式的恒成立问题

华南师范大学数学科学学院(510631)李可欣

不等式的恒成立问题一直是中学数学的重要内容,需要利用导数解决,在近几年的高考试题中,常见于压轴题,作为区分考生能力高低的分水岭。本文将讨论此类问题的解题策略及注意问题,主要利用导数在求函数最值和单调性问题上的优越性,将传统知识与现代方法交互作用、交相映辉,需要学生灵活运用知识以解决问题。 其中常见的基本题型分为(1)已知某个不等式恒成立,求参数的取值范围;(2)证明某个不等式恒成立。而我们的解题策略分为两点,一是灵活应用函数思想,二是注意变量的选择,下面我们将对这两点展开深入讨论。

一、灵活应用函数思想

形如“a x f ≥)(”或“a x f ≤)(”型不等式,是恒成立问题中最基本的类型,许多复杂的恒成立问题最终都可归结为这一类型。而解此类问题的指导思想是:构造函数,或参数分离后构造函数,转化为新函数的最值问题。根据恒成立的本质,我们可以进行如下转化:

(1)对任意D x ∈,有a x f ≥)((其中a 为常数)恒成立?对D x ∈,a x f ≥min )(.

(2)对任意D x ∈,有a x f ≤)((其中a 为常数)恒成立?对D x ∈,a x f ≤max )(. 其中,常数a 可以用函数)(x g 替代,即对任意D x ∈,有)()(x g x f ≥恒成立?对D x ∈,0)()(≥-x g x f 恒成立?对D x ∈,0)]()([min ≥-x g x f 恒成立;或者将上述)(x f 看成)(x f ',那么有函数)(x f 在区间D 单调递增?对D x ∈,0)(≥'x f 恒成立?对D x ∈,0)(min ≥'x f 恒成立.

(3)任意1x ,D x ∈2,都有)()(21x g x f ≥恒成立?对D x ∈,max min )()(x g x f ≥; 任意1x ,D x ∈2,都有)()(21x g x f ≤恒成立?对D x ∈,max min )()(x g x f ≤. 例1(2010·天津理21):已知函数).()(R x xe

x f x ∈=- (1) 求函数)(x f 的单调区间和极值;

(2) 已知函数)(x g y =的图像与函数)(x f y =的图像关于直线1=x 对称,证明当 1>x 时,)()(x g x f >;

(3) 如果21x x ≠,且)()(21x f x f ≠,证明.221>+x x 。

分析:对于第(2)问,首先注意由条件关于直线1=x 对称可得()(2)g x f x =-,再关于

直线构造函数)()()(x g x f x F -=,利用导数0)(>'x F 以及)(x F 在).1[∞+的最小值证明不等式;第(3)问注意分类讨论的对象.

解析:(1).1,0)(.)-1()(=='='-x x f e x x f x

解得令

当x 变化时,)(x f ,)(x f '的变化情况如下表:

所以)(x f 在)1,(-∞内是增函数,在),1(+∞内是减函数。函数)(x f 在1=x 处取得极大值)1(f ,且.1)1(e

f = (2)证明:由题意可知.)2()()2()(2--=-=x e x x

g x f x g ,得令

222()()(),()(2).()(1)(1).1x x x x F x f x g x F x xe x e F x x e e x ----'=-=+-=-->即于是当时,22220,10.0,()0,()x x x e e F x F x --'->->>>从而又所以从而函数在),1[+∞上是增函数.

,0)1(11=-=--e e F 又所以1>x 时,有).()(,0)1()(x g x f F x F >=>即

(3)证明:①若0)1)(1(21=--x x ,由(1)及)()(21x f x f =得21x x =,与21x x ≠矛盾;②若0)1)(1(21>--x x ,由(1)及)()(21x f x f =得21x x =,与21x x ≠矛盾; 根据①②得,0)1)(1(21<--x x ,不妨设11x ,由(2)可知)()(22x g x f >, 2222122()(2)()(2)()(2).1g x f x f x f x f x f x x =->->->,所以,从而因为,所以 .122<-x

又由(1)知()f x 在(,1)-∞内是增函数,所以122x x >-,即122x x +<.

例2(2008·山东理21):已知),1ln()

1(1)(-+-=x a x x f n 其中a N n *,∈为常数. (1) 当2=n 时,求函数)(x f 的极值;

(2) 当1=a 时,证明:对任意的正整数n ,当2≥x 时,有.1)(-≤x x f

分析:重点在于如何构造特殊函数,并且注意对特殊函数进行分类讨论,如法1分别讨论在n 为奇数或偶数的情况特殊函数的最值变化。

解析:(1)略.

(2)证:因为1a =,所以1()ln(1)(1)n

f x x x =+--. 法1:当n 为偶数,令.0)

1(12)()1ln()1(11)(1>-+--='-----=+n n x n x x x g x x x x g ,则 所以当[2,)x ∈+∞时,()g x 单调递增.又(2)0g =,因此()0g x ≥在[2,)+∞上恒成立,即() 1.f x x ≤-

当n 为奇数时,要证()1f x x ≤-,由于10(1)

n x <-,只需证ln(1) 1.x x -≤- 令()1ln(1)h x x x =---,则12()10(2)11

x h x x x x -'=-=≥≥--,所以[2,)x ∈+∞时()h x 单调递增,又(2)10h =>,所以当2x ≥时,()0h x >恒成立,ln(1)1x x -<-.

命题成立.综上所述,结论成立.

法2:当2x ≥时,对于任意正整数n ,恒有11(1)n

x ≤-,故只需证明1ln(1) 1.x x +-≤- 与法1类似,构建函数),1ln(2))1ln(1(1)(---=-+--=x x x x x h 利用导函数求区间内函数单调性,进而利用最小值证明命题.

例3:函数)(x f 定义在),0(+∞上,0)1(=f ,导函数1()f x x

'=

,()()()g x f x f x '=+. (1)求)(x g 的单调区间和最小值. (2)讨论)(x g 与)1

(x

g 的大小关系. (3)是否存在00>x ,使得x

x g x g 1|)()(|0<

-对任意0>x 成立?若存在,求出0x 的 取值范围;若不存在,请说明理由。 分析:对于第二问,构造特殊函数,利用特殊函数的单调性确定)(x g 与)1

(x

g 的大小关系;

第三问难点在于如果找到或构造出一个0x 点与题目的恒成立条件所矛盾。

解析:(1)由导函数x x f 1)(='可得x x f ln )(=,x x x g 1ln )(+=,∴=')(x g 21x

x -. 令0)(='x g ,易求出)(x g 在)1,0(内单调递减,在),1(+∞内单调递增.而1=x 为)(x g 唯一的极值点,且为极小值点,从而是最小值点.∴最小值.1)1(=g

(2)x x x g +-=ln )1

(,设x

x x x g x g x h 1ln 2)1()()(+-=-=(),0(+∞∈x ),则.)1()(22

x

x x h --=' 当1=x 时,0)1(=h ,即)1()(x g x g =;

当Y ),1()1,0(+∞∈x 时,0)(<'x h ,0)1(='h ,)(x h ∴在Y ),1()1,0(+∞内单调递减.

当10<h x h ,即)1

()(x g x g >;

当1>x 时,0)1()(=

(3)满足条件的0x 的不存在证明如下:

(方法一)

假设存在00x >,使01|()()|g x g x x

-<对任意0x >成立.即对任意0x >,有02ln ()ln x g x x x

<<+,(*)但对上述0x ,取0()1g x x e =时,有10ln ()x g x =,这与(*)式左边不等式矛盾.∴不存在00x >,使01|()()|g x g x x -<对任意0x >成立.

(方法二)

假设存在00x >,使01|()()|g x g x x

-<对任意0x >成立.由(1)知,()g x 的最小值

为(1)1g =,又1()ln ln g x x x x

=+>,而1x >时,ln x 的值域为(0,)+∞. ∴当1x ≥时,()g x 的值域为[1,)+∞.从而可取一个11x >,使10()()1g x g x ≥+,即10()()1g x g x -≥.故101

1|()()|1g x g x x -≥>,与假设矛盾. ∴不存在00x >,使01|()()|g x g x x

-<对任意0x >成立. 小结:在面对不同形式呈现的恒成立问题时,我们应想方设法的把它转化为“a x f ≥)(”的结构形式,然后利用导数在求最值问题上的优越性,从而轻松、简便的解决相应问题。

二、注意变量的选择

此类问题中常出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求。解此类问题的指导思想是:谁任意谁变量,求谁谁参数;能分离,首选分离,不能分离,直接构造。

例4.已知函数2()(,),f x x bx c b c R =++∈对任意的x R ∈,恒有'()f x ≤()f x .

(1)证明:当0x ≥时,2()()f x x c ≤+;

(2)若对满足题设条件的任意b ,c ,不等式22()()(0)f c f b M c b -≤-=恒成立,求M 的最小值.

分析:此题第(2)问变量M 的系数为220c b -≥,当我们把22

0c b -=的情况单独分析后,就可实现把M 分离出来,从而实现转化为不含参的最大值问题,回避分类讨论,这是我们的首选方向。

解析:(1)易知()2f x x b '=+.由题设,对任意的2,2x R x b x bx c ∈+≤++,即 2(2)0x b x c b +-+-≥恒成立,所以2

(2)4()0b c b ---≤,从而2

14b c ≥+. 于是1c ≥

,且c b ≥=,因此2()0c b c c b -=+->. 故当0x ≥时,有2

()()(2)(1)0x c f x c b x c c +-=-+-≥.

即当0x ≥时,2()()f x x c ≤+.

(2)由(1)知,c b ≥,当c b >时,有2222222()()2f c f b c b bc b c b M c b c b b c

--+-+≥==--+, 令b t c =可求得232c b b c +<+,从而有c b >时,3,)2

M ?∈+∞??. 当c b =时,由(Ⅰ)知,2,2b c =±=.此时()()8f c f b -=-或0,220c b -=,

从而223()()()2

f c f b c b -≤

-恒成立. 综上所述,M 的最小值为32. 例5(2010全国卷):设函数()21x f x e x ax =---,

(1)若0a =,求()f x 的单调区间;

(2)若当0x ≥时,()0f x ≥。求a 的取值范围.

分析:第一问没有任何难度,通过求导数()f x '来分析()f x 的单调性即可。第二问,其实第一问算是个提示,但要注意分类讨论,并且利用导数在单调性问题上的优势求得范围。 解析:(1)当0a =,()1x f x e '=-,令()0f x '=,得0x =;当x <0时,()f x '<0;当x >0时,()f x '>0。所以()f x 在区间(),0-∞上为减函数,在区间[)0,+∞上为增函数。

(2)当0a =时,()f x 在区间[)0,+∞上为增函数,故()()00f x f ≥=,显然满足题意.

下面我们分别分析a <0和a >0两种情况。

当a <0时,在区间[)0,+∞上显然20ax -≥,综上可得在区间[)0,+∞上

()210x f x e x ax =---≥成立。故a <0满足题意。

当a >0时,()12x f x e ax '=--,()2x f x e a ''=-,显然()00f =,()00f '=,

当()f x '在区间[)0,+∞上大于零时,()f x 为增函数,()()0f x f x ≥=,满足题意。而当()f x '在区间[)0,+∞上为增函数时,()()00f x f ''≥=,也就是说,要求()f x ''在区

间[)0,+∞上大于等于零,又因为()2x f x e a ''=-在区间[)0,+∞上为增函数,所以要求

()10f ''≥,即020e a -≥,解得12

a ≤。

综上所述,a的取值范围为

1

,

2

??-∞

???

最后,解决不等式的恒成立问题的基本策略常常是构作辅助函数或分离变量,利用导数求出函数的单调性、最值(或上、下界),再结合一些基本方法包括:如分类讨论,数形结合,参数分离,变换主元等求解。这类问题在数学的学习中涉及的知识面比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现的试题类型,因此要求学生们在平时学习中注意积累。

01导数应用——不等式恒成立问题

2015届高三培优____导数应用不等式恒成立问题 【基础导练】 1.已知函数32()39f x x x x c =--+,若[2,6]x ∈-时,()2f x c <恒成立,则c 的取值范 围是 解析:问题等价于3239()c x x x g x >+-=,只要max ()(6)54c g x g >== 答案:(54,)+∞ 2.已知33()3,(0),()3,(0)f x x x x g t t t m t =-≤=-+≥,若对任意0,0x t ≤≥恒有不等 式()()g t f x ≥成立,则实数m 的取值范围是 解析:求得max ()(1)2f x f =-=,min ()(1)2g t g m ==-,只需22m -≥,即 4.m ≥ 答案:[4,)+∞ 3.设函数()(1)ln(1)f x x x =++,若对所有的0x ≥,都有()f x ax ≥成立,则实数a 的 取值范围 . 【解析】令()(1)ln(1)g x x x ax =++-, 对函数()g x 求导数:'()ln(1)1g x x a =++-令'()0g x =,解得11a x e -=-, (i)当1a ≤时,对所有0,'()0x g x >>,所以()g x 在[0,)+∞上是增函数, 又(0)0g =,所以对0x ≥,都有()(0)g x g ≥, 即当1a ≤时,对于所有0x ≥,都有()f x ax ≥. (ii)当1a >时,对于101a x e -<<-,'()0g x <,所以()g x 在1(0,1)a e -- 是减函数, 又(0)0g =,所以对1 01a x e -<<-,都有()(0)g x g <,即当1a >时,对所有的0x ≥,都有()f x ax ≥成立. 综上,a 的取值范围是(-∞,1]. 【例题研究】 例题1.已知函数()f x ax e x =-,其中0a ≠ . 若对一切x R ∈ ,()f x ≥1恒成立,求a 的取值集合. 【解析】(Ⅰ)若0a <,则对一切0x >,()f x 1ax e x =-<,这与题设矛盾,又0a ≠, 故0a >. 而()1,ax f x ae '=-令11()0,ln .f x x a a '==得

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题) 恒成立问题是高考函数题中的重点问题, 也是高中数学非常重要的一个模块, 不管是小题,还 是大题,常常以压轴题的形式出现。 知识储备(我个人喜欢将参数放左边,函数放右边) 先来简单的(也是最本质的)如分离变量后, a f (x )恒成立,则有a f (X )max 2. 对于双变量的恒成立问题 f(x) min g(x)min 今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的, (甚至我提出这样 一个观点,所有导数的题目95%3根结底就是带参数二次函数在已知定义域上根的讨论, 3%是 ax b 与ax 3 b 这种形式根的讨论,2%!观察法得到零点,零点通常是1,-,e 之类),所以如果 e 我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。 那么我们先从一道练习题说起 一?二次函数型(通常方法是讨论对称轴,根据图像求最值) 例题1.已知f (x ) ■ 2x2 2ax a 1定义域为R ,求a 的取值围 思考:①引入定义域(非R ) ② 参数在二次项,就需考虑是否为0 1 ③ 引入高次(3次,4次,—,I nx , e x 等等) x ④ 引入a 2, a 3等项(导致不能分离变量) f (x )恒成立,则有a f ( x) min (若是存在性问题,那么最大变最小, 最小变最大) 如:化简后我们分析得到, a,b , f (x) 0恒成立,那么只需 f ( x) min a,b ,使得 f(x) 0,那么只需f (X )max 0 如:化简后我们分析得到, X i ,X 2 a,b , f(xj g(X 2),那么只需 f (X)min g ( X) max 如:化简后我们分析得到, X i a,b , x 2 c, d 使f (xj gg ),那么只需 如:化简后我们分析得到, X i a,b ,X 2 C,d 使 f (X i ) g(X 2),那么只需 f (X)max g(x)min 还有一些情况了,这里不一一列举, 一个变量,再处理另一个变量) 3.对于带绝对值的恒成立问题, 成立问题(2014.03锡常镇一模那题特别典型) 总之一句话 (双变量的存在性与恒成立问题,都是先处理 我们往往先根据函数的单调性,去掉绝对值,再转变成恒

利用导数研究不等式问题

1.已知函数f (x )=x 2-ax -a ln x (a ∈R ). (1)若函数f (x )在x =1处取得极值,求a 的值; (2)在(1)的条件下,求证:f (x )≥-x 33+5x 22-4x +116 . 2.(优质试题·烟台模拟)已知函数f (x )=x 2-ax ,g (x )=ln x ,h (x )=f (x )+g (x ). (1)若函数y =h (x )的单调减区间是????12,1,求实数a 的值; (2)若f (x )≥g (x )对于定义域内的任意x 恒成立,求实数a 的取值范围.

3.(优质试题·山西四校联考)已知f (x )=ln x -x +a +1. (1)若存在x ∈(0,+∞),使得f (x )≥0成立,求a 的取值范围; (2)求证:在(1)的条件下,当x >1时,12x 2+ax -a >x ln x +12 成立. 4.已知函数f (x )=(2-a )ln x +1x +2ax . (1)当a <0时,讨论f (x )的单调性; (2)若对任意的a ∈(-3,-2),x 1,x 2∈[1,3],恒有(m +ln 3)a -2ln 3>|f (x 1)-f (x 2)|成立,求实数m 的取值范围. 5.(优质试题·福州质检)设函数f (x )=e x -ax -1. (1)当a >0时,设函数f (x )的最小值为g (a ),求证:g (a )≤0; (2)求证:对任意的正整数n ,都有1n +1+2n +1+3n +1+…+n n +1<(n +1)n +1.

答案精析 1.(1)解 f ′(x )=2x -a -a x ,由题意可得f ′(1)=0,解得a =1.经检验,a =1时f (x )在x =1处取得极值,所以a =1. (2)证明 由(1)知,f (x )=x 2-x -ln x , 令g (x )=f (x )-????-x 33+5x 22 -4x +116 =x 33-3x 22+3x -ln x -116 , 由g ′(x )=x 2 -3x +3-1x =x 3-1x -3(x -1)=(x -1)3x (x >0),可知g (x )在(0,1)上是减函数, 在(1,+∞)上是增函数,所以g (x )≥g (1)=0,所以f (x )≥-x 33+5x 22-4x +116 成立. 2.解 (1)由题意可知,h (x )=x 2-ax +ln x (x >0), 由h ′(x )=2x 2-ax +1x (x >0), 若h (x )的单调减区间是????12,1, 由h ′(1)=h ′????12=0,解得a =3, 而当a =3时,h ′(x )=2x 2-3x +1x =(2x -1)(x -1)x (x >0). 由h ′(x )<0,解得x ∈????12,1, 即h (x )的单调减区间是????12,1, ∴a =3. (2)由题意知x 2-ax ≥ln x (x >0), ∴a ≤x -ln x x (x >0). 令φ(x )=x -ln x x (x >0),

利用导数解决不等式恒成立中的参数问题学案

利用导数解决不等式恒成立中的参数问题 一、单参数放在不等式上型: 【例题1】(07全国Ⅰ理)设函数()x x f x e e -=-.若对所有0x ≥都有()f x ax ≥,求a 的取值范围. 解:令()()g x f x ax =-,则()()x x g x f x a e e a -''=-=+-, (1)若2a ≤,当0x >时,()20x x g x e e a a -'=+->-≥,故()g x 在(0,)+∞上为增函数, ∴0x ≥时,()(0)g x g ≥,即()f x ax ≥. (2)若2a >,方程()0g x '=的正根为1x = 此时,若1(0,)x x ∈,则()0g x '<,故()g x 在该区间为减函数. ∴1(0,)x x ∈时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(,2]-∞. 说明:上述方法是不等式放缩法. 【针对练习1】(10课标理)设函数2 ()1x f x e x ax =---,当0x ≥时,()0f x ≥,求a 的取值范围. 解: 【例题2】(07全国Ⅰ文)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (1)求a 、b 的值;(2)若对于任意的[0,3]x ∈,都有2()f x c <成立,求c 的取值范围. 解:(1)2()663f x x ax b '=++, ∵函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=. 即6630241230a b a b ++=?? ++=? ,解得3a =-,4b =. (2)由(1)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--. 当(0,1)x ∈时,()0f x '>;当(1,2)x ∈时,()0f x '<;当(2,3)x ∈时,()0f x '>. ∴当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[0,3]x ∈时,()f x 的最大值为(3)98f c =+. ∵对于任意的[0,3]x ∈,有2()f x c <恒成立,∴298c c +<,解得1c <-或9c >, 因此c 的取值范围为(,1)(9,)-∞-+∞. 最值法总结:区间给定情况下,转化为求函数在给定区间上的最值. 【针对练习2】(07重庆理)已知函数44 ()ln (0)f x ax x bx c x =+->在1x =处取得极值3c --,其中 a 、b 、c 为常数. (1)试确定a 、b 的值;(2)讨论函数()f x 的单调区间; (3)若对任意0x >,不等式2()2f x c ≥-恒成立,求c 的取值范围.

导数的不等式恒成立问题

导数的应用 【考查重点与常见题型】 题型一 运用导数证明不等式问题 例1 设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值; (2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1. (1)解 由f (x )=e x -2x +2a ,x ∈R 知 f ′(x )=e x -2,x ∈R . 令f ′(x )=0,得x =ln 2, 于是当x 变化时,f ′(x ),f (x )的变化情况如下表: x (-∞,ln 2) ln 2 (ln 2,+∞) f ′(x ) - 0 + f (x ) 单调递减 2(1-ln 2+a ) 单调递增 故f (x )的单调递减区间是(-∞,ln 2],单调递增区间是[ln 2,+∞), f (x )在x =ln 2处取得极小值,极小值为 f (ln 2)=e ln 2-2ln 2+2a =2(1-ln 2+a ). (2)证明 设g (x )=e x -x 2+2ax -1,x ∈R , 于是g ′(x )=e x -2x +2a ,x ∈R . 由(1)知当a >ln 2-1时,g ′(x )的最小值为 g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0, 所以g (x )在R 上是增加的. 于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1. 已知f (x )=x ln x . (1)求g (x )= f (x )+k x (k ∈R)的单调区间; (2)证明:当x ≥1时,2x -e ≤f (x )恒成立. 解:(1) g (x )=ln x +k x , ∴令g ′(x )=x -k x 2=0得x =k . ∵x >0,∴当k ≤0时,g ′(x )>0. ∴函数g (x )的增区间为(0,+∞),无减区间; 当k >0时g ′(x )>0得x >k ;g ′(x )<0得0

导数中的恒成立和存在性问题

导数中的恒成立和存在性问题

技巧传播 1.恒成立问题的转化:()a f x >恒成立max ()a f x ?>;()a f x ≤恒成立min ()a f x ?≤; 2.能成立问题的转化:()a f x >能成立min ()a f x ?>;()a f x ≤能成立max ()a f x ?≤; 3.恰成立问题的转化:()a f x >在M 上恰成立()a f x ?>的解集为R ()()a f x M M a f x C M >???≤?在上恒成立在上恒成立 ; 另一转化方法:若x D ∈,()f x A ≥在D 上恰成立,等价于()f x 在D 上的最小值min ()f x A =, 若x D ∈,()f x B ≤在D 上恰成立,则等价于()f x 在D 上的最大值max ()f x B =; 4.设函数()f x 、()g x ,对任意的1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≥,则min min ()()f x g x ≥; 5.设函数()f x 、()g x ,对任意的1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≤,则max max ()()f x g x ≤; 6.设函数()f x 、()g x ,存在1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≥,则max min ()()f x g x ≥; 7.设函数()f x 、()g x ,存在1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≤,则min max ()()f x g x ≤; 8.若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图像在函数()y g x =图像上方; 9.若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图像在函数()y g x =图像下方;

导数在处理不等式的恒成立问题(一轮复习教案)

学习过程 一、复习预习 考纲要求: 1.理解导数和切线方程的概念。 2.能在具体的数学环境中,会求导,会求切线方程。 3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。4.灵活应用建立切线方程与其它数学知识之间的内在联系。

5. 灵活应用导数研究函数的单调性问题 二、知识讲解 1.导数的计算公式和运算法则 几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '= ; 1(log )log a a x e x '=, ()x x e e '= ; ()ln x x a a a '= 求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.

法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '= 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ??? 复合函数的导数:设函数()u x ?=在点x 处有导数()x u x ?'=',函数()y f u =在点x 的对应点u 处有导 数()u y f u '=',则复合函数(())y f x ?=在点x 处也有导数,且x u x u y y '''?= 或(())()()x f x f u x ??'='?' 2.求直线斜率的方法(高中范围内三种) (1) tan k α=(α为倾斜角); (2) 1212 ()() f x f x k x x -= -,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= (在0x x =处的切线的斜率); 3.求切线的方程的步骤:(三步走) (1)求函数()f x 的导函数()f x '; (2)0()k f x '= (在0x x =处的切线的斜率); (3)点斜式求切线方程00()()y f x k x x -=-; 4.用导数求函数的单调性: (1)求函数()f x 的导函数()f x '; (2)()0f x '>,求单调递增区间; (3)()0f x '<,求单调递减区间; (4)()0f x '=,是极值点。 考点一 函数的在区间上的最值 【例题1】:求曲线29623-+-=x x x y 在)5,2(上的最值 。 【答案】:最大值为18,最小值为-2. 【解析】:∵根据题意09123'2=+-=x x y ,∴3,121==x x ,由函数的单调性,当11=x ,2=y , 取得极大值;当32=x ,2-=y ,取得极小值;当5=x ,18=y 。所以最大值为18,最小值为-2.

第18讲 导数的应用——利用导数研究不等式恒成立问题备战2021年新高考数学考点精讲与达标测试

《导数的应用——利用导数研究不等式恒成立(能成立)问题》 达标检测 [A 组]—应知应会 1.已知函数f (x )=x +4 x ,g (x )=2x +a ,若?x 1∈????12,1,?x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是( ) A .a ≤1 B .a ≥1 C .a ≤2 D .a ≥2 【解析】选A.由题意知f (x )min ??? ?x ∈????12,1≥g (x )min (x ∈[2,3]),因为f (x )min =5,g (x )min =4+a ,所以5≥4+a ,即a ≤1,故选A. 2.(2020·吉林白山联考)设函数f (x )=e x ????x +3x -3-a x ,若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【解析】原问题等价于存在x ∈(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=e x (x 2-3x +3),x ∈(0,+∞),则a ≥g (x )min ,而g ′(x )=e x (x 2-x ).由g ′(x )>0可得x ∈(1,+∞),由g ′(x )<0可得x ∈(0,1).据此可知,函数g (x )在区间(0,+∞)上的最小值为g (1)=e.综上可得,实数a 的最小值为e. 3.(2020·西安质检)已知函数f (x )=ln x ,g (x )=x -1. (1)求函数y =f (x )的图象在x =1处的切线方程; (2)若不等式f (x )≤ag (x )对任意的x ∈(1,+∞)均成立,求实数a 的取值范围. 【解析】(1)因为f ′(x )=1 x , 所以f ′(1)=1. 又f (1)=0,所以切线的方程为y -f (1)=f ′(1)(x -1), 即所求切线的方程为y =x -1. (2)易知对任意的x ∈(1,+∞),f (x )>0,g (x )>0. ①当a ≥1时,f (x )≤g (x )≤ag (x ); ②当a ≤0时,f (x )>0,ag (x )≤0,所以不满足不等式f (x )≤ag (x ); ③当0<a <1时,设φ(x )=f (x )-ag (x )=ln x -a (x -1),则φ′(x )=1 x -a ,

用导数研究函数的恒成立与存在性问题-答案

用导数研究函数的恒成立与存在问题 1.已知函数23()2ln x f x x x a = -+,其中a 为常数. (1)若1a =,求函数()f x 的单调区间; (2)若函数()f x 在区间[1,2]上为单调函数,求a 的取值范围. 2.已知函数3 2 ()4()f x x ax a R =-+-∈,'()f x 是()f x 的导函数。 (1)当2a =时,对于任意的[1,1]m ∈-,[1,1]n ∈-,求()()f m f n '+的最小值; (2)若存在0(0,)x ∈+∞,使0()f x >0,求a 的取值范围。

3.已知函数x ax x f ln )(+= )(R a ∈. (1)若2=a ,求曲线)(x f y =在点1x =处的切线方程; (2)求)(x f 的单调区间; (3)设22)(2 +-=x x x g ,若对任意1(0,)x ∈+∞,均存在[]1,02∈x ,使得)()(21x g x f <, 求实数a 的取值范围.

4.(2016届惠州二模)已知函数()22ln f x x x =-+. (Ⅰ)求函数()f x 的最大值; (Ⅱ)若函数()f x 与()a g x x x =+ 有相同极值点. ①求实数a 的值; ②对121,,3x x e ???∈???? (e 为自然对数的底数),不等式 ()() 1211 f x g x k -≤-恒成立,求实数k 的取值范围.

5.已知函数2 12 ()()ln ()f x a x x a R =-+∈. (1)当1a =时,01[,]x e ?∈使不等式0()f x m ≤,求实数m 的取值范围; (2)若在区间1(,)+∞,函数()f x 的图象恒在直线2y ax =的下方,求实数a 的取值范围.

利用导数解决不等式问题

考点43 利用导数解决不等式问题 1.(13天津T8)设函数2()e 2,()ln 3x x g x x x x f +-=+-=. 若实数,a b 满足()0,()0f a g b ==, 则( ) A. ()0()g a f b << B. ()0()f b g a << C. 0()()g a f b << D. ()()0f b g a << 【测量目标】利用导数解决不等式问题. 【考查方式】已知两个函数,通过导数判断函数的单调性,比较值的大小. 【试题解析】首先确定b a ,的取值范围,再根据函数的单调性求解. ()e 10x f x '=+>,∴()x f 是增函数. (步骤1) ∵()x g 的定义域是()0,+∞,∴()120,g x x x '=+> ∴()x g 是()0,+∞上的增函数. (步骤2) ∵()010,(1)e 10,0 1.f f a =-<=->∴<<(步骤3) (1)20,g =-<(2)ln 210,12,()0,()0.g b f b g a =+>∴<<∴><(步骤4) 2.(13湖南T21)(本小题满分13分)已知函数21()e 1x x f x x -= +. ⑴求()f x 的单调区间; ⑵证明:当时1212()()()f x f x x x =≠时,120x x +<. 【测量目标】导数的运算,导数研究函数的单调性,导数在不等式证明问题中的应用. 【考查方式】考查导数的运算、利用导数求函数单调区间的方法、构造函数判断函数大小的方法. 【试题解析】⑴ 函数的定义域,-∞+∞(), 2211()e e 11x x x x f x x x '--??'=+ ?++?? 222(11)e 1)(1)e 21)x x x x x x x -+-?+--?=+((22232e 1)x x x x x --+=?+((步骤1) 22420?=-?<,∴当(,0)x ∈-∞时,()0,()f x y f x '>=单调递增,

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题) 恒成立问题是高考函数题中的重点问题,也是高中数学非常重要的一个模块,不管是小题,还是大题,常常以压轴题的形式出现。 知识储备(我个人喜欢将参数放左边,函数放右边) 先来简单的(也是最本质的)如分离变量后,()a f x ≥恒成立,则有max ()a f x ≥ ()a f x ≤恒成立,则有min ()a f x ≤ (若是存在性问题,那么最大变最小,最小变最大) 1.对于单变量的恒成立问题 如:化简后我们分析得到,对[],x a b ?∈,()0f x ≥恒成立,那么只需min ()0f x ≥ [],x a b ?∈,使得()0f x ≥,那么只需max ()0f x ≥ 2.对于双变量的恒成立问题 如:化简后我们分析得到,对[]12,,x x a b ?∈,12()()f x g x ≥,那么只需min max ()()f x g x ≥ 如:化简后我们分析得到,对[]1,x a b ?∈,[]2,x c d ?∈使12()()f x g x ≥,那么只需 min min ()()f x g x ≥ 如:化简后我们分析得到,[]1,x a b ?∈,[]2,x c d ∈使12()()f x g x ≥,那么只需max min ()()f x g x ≥ 还有一些情况了,这里不一一列举,总之一句话(双变量的存在性与恒成立问题,都是先处理一个变量,再处理另一个变量) 3.对于带绝对值的恒成立问题,我们往往先根据函数的单调性,去掉绝对值,再转变成恒成立问题(201 4.03苏锡常镇一模那题特别典型) 今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的,(甚至我提出这样一个观点,所有导数的题目95%归根结底就是带参数二次函数在已知定义域上根的讨论,3%是 ax b +与3ax b +这种形式根的讨论,2%是观察法得到零点,零点通常是1 1,,e e 之类) ,所以如果我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。 那么我们先从一道练习题说起 一.二次函数型(通常方法是讨论对称轴,根据图像求最值) 例题1.已知()f x =R ,求a 的取值范围 思考:① 引入定义域(非R ) ②参数在二次项,就需考虑是否为0 ③引入高次(3次,4次,1 x ,ln x ,x e 等等) ④引入2a ,3a 等项(导致不能分离变量)

2020高考数学专题突破练2利用导数研究不等式与方程的根文含解析

专题突破练(2) 利用导数研究不等式与方程的根 一、选择题 1.(2019·佛山质检)设函数f (x )=x 3 -3x 2 +2x ,若x 1,x 2(x 1<x 2)是函数g (x )=f (x )-λx 的两个极值点,现给出如下结论: ①若-1<λ<0,则f (x 1)<f (x 2);②若0<λ<2,则f (x 1)<f (x 2);③若λ>2,则 f (x 1)<f (x 2). 其中正确结论的个数为( ) A .0 B .1 C .2 D .3 答案 B 解析 依题意,x 1,x 2(x 10,即λ>-1,且x 1+x 2=2,x 1x 2=2-λ3.研究f (x 1)0,解得λ>2.从而可知③正确.故选B . 2.(2018·乌鲁木齐一诊)设函数f (x )=e x x +3x -3-a x ,若不等式f (x )≤0有正实数解, 则实数a 的最小值为( ) A .3 B .2 C .e 2 D .e 答案 D 解析 因为f (x )=e x x +3x -3-a x ≤0有正实数解,所以a ≥(x 2-3x +3)e x ,令g (x )=(x 2-3x +3)e x ,则g ′(x )=(2x -3)e x +(x 2-3x +3)e x =x (x -1)e x ,所以当x >1时,g ′(x )>0;当0b >c B .b >a >c C .c >b >a D .c >a >b 答案 C 解析 构造函数f (x )=e x x 2,则a =f (6),b =f (7),c =f (8),f ′(x )=x e x (x -2) x 4 ,当x >2时,f ′(x )>0,所以f (x )在(2,+∞)上单调递增,故f (8)>f (7)>f (6),即c >b >a .故选C . 4.(2018·合肥质检二)已知函数f (x )是定义在R 上的增函数,f (x )+2>f ′(x ),f (0)=1,则不等式ln (f (x )+2)-ln 3>x 的解集为( ) A .(-∞,0) B .(0,+∞) C.(-∞,1) D .(1,+∞)

构造函数法解决导数不等式问题教学设计公开课

构造函数法解决导数不等式问题 在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。 例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。 既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x = ,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。 构造函数模型总结: 关系式为“加”型: (1)'()()0f x f x +≥ 构造''[()][()()]x x e f x e f x f x =+ (2)'()()0xf x f x +≥ 构造''[()]()()xf x xf x f x =+ (3)'()()0xf x nf x +≥构造''11'[()]()()[()()]n n n n x f x x f x nx f x x xf x nf x --=+=+ (注意对x 的符号进行讨论) 关系式为“减”型 (1)' ()()0f x f x -≥ 构造'''2()()()()()[]()x x x x x f x f x e f x e f x f x e e e --== (2)' ()()0xf x f x -≥ 构造''2()()()[]f x xf x f x x x -= (3)' ()()0xf x nf x -≥构造'1''21()()()()()[]()n n n n n f x x f x nx f x xf x nf x x x x -+--== (注意对x 的符号进行讨论)

第5讲 利用导数研究不等式恒成立求参数范围问题

第5讲 利用导数研究不等式恒成立求参数范围问题 把参数看作常数利用分类讨论方法解决 [典例引领] (2018·衡阳模拟)已知函数f (x )=ln x -ax ,a ∈R . (1)求函数f (x )的单调区间; (2)若不等式f (x )+a <0在x ∈(1,+∞)上恒成立,求a 的取值范围. 【解】 (1)函数f (x )的定义域为(0,+∞),f ′(x )=1 x -a . ①当a ≤0时,f ′(x )>0恒成立, 则f (x )只有单调递增区间是(0,+∞). ②当a >0时,由f ′(x )>0,得0<x <1 a ; 由f ′(x )<0,得x >1 a ; 所以f (x )的单调递增区间是(0,1a ),单调递减区间是????1a ,+∞. (2)f (x )+a <0在x ∈(1,+∞)上恒成立,即ln x -a (x -1)<0在x ∈(1,+∞)上恒成立. 设g (x )=ln x -a (x -1),x >0,则g ′(x )=1 x -a ,注意到g (1)=0, ①当a ≥1时,g ′(x )<0在x ∈(1,+∞)上恒成立, 则g (x )在x ∈(1,+∞)上单调递减, 所以g (x )<g (1)=0,即a ≥1时满足题意. ②当0<a <1时,令g ′(x )>0,得0<x <1 a ; 令g ′(x )<0,得x >1 a . 则g (x )在????1,1 a 上单调递增, 所以当x ∈????1,1 a 时,g (x )>g (1)=0, 即0<a <1时不满足题意(舍去). ③当a ≤0时,g ′(x )=1 x -a >0,

导数的应用利用导数证明不等式

导 数 的 应 用 --------利用导数证明不等式 教学目标:1、进一步熟练并加深导数在函数中的应用并学会利用导数证明不等式 2、培养学生的分析问题、解决问题及知识的综合运用能力; 教学重点:利用导数证明不等式 教学难点:利用导数证明不等式 教学过程: 一、复习回顾 1、利用导数判断函数的单调性; 2、利用导数求函数的极值、最值; 二、新课引入 引言:导数是研究函数性质的一种重要工具.例如:求函数的单调区间、求函数的最大(小)值、求函数的值域等等.然而,不等式是历年高考重点考查的内容之一.尤其是在解答题中对其的考查,更是学生感到比较棘手的一个题.因而在解决一些不等式问题时,如能根据不等式的特点,恰当地构造函数,运用导数证明或判断该函数的单调性, 出该函数的最值;由当该函数取最大(或最小)值时不等式都成立,可得该不等式恒成立,从而把证明不等式问题转化为函数求最值问题.然后用函数单调性去解决不等式的一些相关问题,可使问题迎刃而解. 因此,很多时侯可以利用导数作为工具得出函数性质,从而解决不等式问题. 下面具体讨论导数在解决与不等式有关的问题时的作用. 三、新知探究 1、利用导数得出函数单调性来证明不等式 例1:当x>0时,求证:x 2x 2 -<ln(1+x) . 证明:设f(x)= x 2x 2--ln(1+x) (x>0), 则f '(x)=2x 1x -+. ∵x>0,∴f '(x)<0,故f(x)在(0,+∞)上递减, 所以x>0时,f(x)1+x 解:(1)f ′(x)= ae x -x, ∵f(x)在R上为增函数,∴f ′(x)≥0对x∈R恒成立,

导数的不等式恒成立问题

导数的不等式恒成立问题 Prepared on 24 November 2020

导数的应用 【考查重点与常见题型】 题型一 运用导数证明不等式问题 例1 设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值; (2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1. (1)解 由f (x )=e x -2x +2a ,x ∈R 知 f ′(x )=e x -2,x ∈R . 令f ′(x )=0,得x =ln 2, 于是当x 变化时,f ′(x ),f (x )的变化情况如下表: x (-∞,ln 2) ln 2 (ln 2,+∞) f ′(x ) - 0 + f (x ) 单调递减 2(1-ln 2+a ) 单调递增 故f (x )的单调递减区间是(-∞,ln 2],单调递增区间是[ln 2,+∞), f (x )在x =ln 2处取得极小值,极小值为 f (ln 2)=e ln 2-2ln 2+2a =2(1-ln 2+a ). (2)证明 设g (x )=e x -x 2+2ax -1,x ∈R , 于是g ′(x )=e x -2x +2a ,x ∈R . 由(1)知当a >ln 2-1时,g ′(x )的最小值为 g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0, 所以g (x )在R 上是增加的. 于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1. 已知f (x )=x ln x . (1)求g (x )= fx +k x (k ∈R)的单调区间; (2)证明:当x ≥1时,2x -e ≤f (x )恒成立. 解:(1)g (x )=ln x +k x , ∴令g ′(x )=x -k x 2=0得x =k . ∵x >0,∴当k ≤0时,g ′(x )>0. ∴函数g (x )的增区间为(0,+∞),无减区间; 当k >0时g ′(x )>0得x >k ;g ′(x )<0得0

利用导数研究不等式恒成立(能成立)问题

利用导数研究不等式恒成立(能成立)问题 1.设函数f (x )=(1+x -x 2)e x (e =2.718 28…是自然对数的底数). (1)讨论f (x )的单调性; (2)当x ≥0时,f (x )≤ax +1+2x 2恒成立,求实数a 的取值范围. 解:(1)f ′(x )=(2-x -x 2)e x =-(x +2)(x -1)e x . 当x <-2或x >1时,f ′(x )<0;当-20. 所以f (x )在(-∞,-2),(1,+∞)上单调递减,在(-2,1)上单调递增. (2)设F (x )=f (x )-(ax +1+2x 2),F (0)=0, F ′(x )=(2-x -x 2)e x -4x -a ,F ′(0)=2-a , 当a ≥2时,F ′(x )=(2-x -x 2)e x -4x -a ≤-(x +2)·(x -1)e x -4x -2≤-(x +2)(x -1)e x -x -2=-(x +2)·[(x -1)e x +1], 设h (x )=(x -1)e x +1,h ′(x )=x e x ≥0,所以h (x )在[0,+∞)上单调递增,h (x )=(x -1)e x +1≥h (0)=0, 即F ′(x )≤0在[0,+∞)上恒成立,F (x )在[0,+∞)上单调递减,F (x )≤F (0)=0,所以f (x )≤ax +1+2x 2在[0,+∞)上恒成立. 当a <2时,F ′(0)=2-a >0,而函数F ′(x )的图象在(0,+∞)上连续且x →+∞,F ′(x )逐渐趋近负无穷,必存在正实数x 0使得F ′(x 0)=0且在(0,x 0)上F ′(x )>0,所以F (x )在(0,x 0)上单调递增,此时F (x )>F (0)=0,f (x )>ax +1+2x 2有解,不满足题意. 综上,a 的取值范围是[2,+∞). 2.设函数f (x )=2ln x -mx 2+1. (1)讨论函数f (x )的单调性; (2)当f (x )有极值时,若存在x 0,使得f (x 0)>m -1成立,求实数m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞), f ′(x )=2x -2mx =-2(mx 2-1)x , 当m ≤0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增; 当m >0时,令f ′(x )>0,得0 m m , ∴f (x )在????0,m m 上单调递增,在??? ?m m ,+∞上单调递减. (2)由(1)知,当f (x )有极值时,m >0,且f (x )在????0,m m 上单调递增,在????m m ,+∞上单调递减.

利用导数解决恒成立能成立问题备课讲稿

利用导数解决恒成立能成立问题

利用导数解决恒成立能成立问题 一利用导数解决恒成立问题不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) (1)恒成立问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 1.若在x∈[1,+∞)上恒成立,则a 的取值范围是 ______ . 2.若不等式x 4﹣4x 3>2﹣a 对任意实数x 都成立,则实数a 的取值范围 _________ . 3.设a >0,函数,若对任意的x 1,x 2∈[1,e],都有f (x 1)≥g(x 2)成立,则a 的取值范围为 _________ . 4.若不等式|ax 3 ﹣lnx|≥1对任意x∈(0,1]都成立,则实数a 取值范围是 _________ .

15.设函数f(x)的定义域为D,令M={k|f(x)≤k恒成立,x∈D},N={k|f(x)≥k恒成立,x∈D},已知 ,其中x∈[0,2],若4∈M,2∈N,则a 的范围是_________ . 6.f(x)=ax3﹣3x(a>0)对于x∈[0,1]总有f(x)≥﹣1成立,则a的范围为_________ . 7.三次函数f(x)=x3﹣3bx+3b在[1,2]内恒为正值,则b的取值范围是_________ . 8.不等式x3﹣3x2+2﹣a<0在区间x∈[﹣1,1]上恒成立,则实数a的取值范围是__ . 9.当x∈(0,+∞)时,函数f(x)=e x的图象始终在直线y=kx+1的上方,则实数k的取值范围是_________ .10.设函数f(x)=ax3﹣3x+1(x∈R),若对于任意的 x∈[﹣1,1]都有f(x)≥0成立,则实数a的值为 _________ .

相关主题
文本预览
相关文档 最新文档