当前位置:文档之家› 基于功能化金纳米粒子灵敏检测水溶液中的镉离子

基于功能化金纳米粒子灵敏检测水溶液中的镉离子

基于功能化金纳米粒子灵敏检测水溶液中的镉离子
基于功能化金纳米粒子灵敏检测水溶液中的镉离子

柠檬酸钠还原法制备金纳米粒子

柠檬酸钠还原法制备金纳米粒子实验 一、试剂和材料 1) 柠檬酸钠(Na3C6H507?2H2O,AR) 天津市化学试剂三厂 2) 氯金酸溶液(HAu Cl4?4 H2O),用王水(硝酸:盐酸=1:3(浓溶液的体积比)配制)溶解99.99%纯金制备。 3) 所用水均为超纯水(电阻值大于15 MΩ) 4) 所用玻璃仪器均经王水洗液充分浸泡处理,使用前用超纯水洗净并烘干。 5)仪器圆底瓶(50 mL)、冷凝管(含2 条橡皮管)、漏斗、滴管、刻度吸量管(10 mL)、量筒(50 mL)、安全吸球、磁搅拌子、电磁加热搅拌器、烧杯、计时器、试管(1 支)、样品瓶(25 mL)等. 实验方法 (一)小粒径金纳米粒子(约15 nm)的制备 1. 取5 mL 浓硝酸与15 mL 浓盐酸混合于100 mL 烧杯中配制王水。将所需使用的圆底瓶、吸量管、磁搅拌子、样品瓶等以王水浸润约1 分钟,再将王水倒入回收烧杯中,以大量去离子水将器皿冲洗干净,最后以超纯水淋洗2 次,而后倒置滴干。 注1:反应器具需以王水(HNO3/HCl = 1/3 (v/v))浸洗器皿内壁,王水必须完全冲洗干净,以免残余王水影响后续制备反应。 注2:王水因具强腐蚀性及刺激臭味,使用时需穿戴乳胶手套并在通

风橱中清洗。王水用后回收作为最后清洗器具使用。 2. 使用已洗净后的量筒量取1 mM 的四氯金酸溶液45 mL 至100mL 圆底瓶中,加入1 个磁搅拌子。 3. 如图2-1架设回流加热装置:以铁夹固定圆底瓶于铁支架上,再将圆底瓶置于电磁搅拌器上,调整至适当位置使搅拌子能顺利搅拌。 4. 装接冷凝管于圆底瓶的上方使磨砂口接合紧密,以铁夹固定冷凝管;连接冷凝管的橡皮管,让冷却水自下端流入、上方排出。 注:橡皮管需先沾水以便利装接,装接的深度应足够以免脱落。冷凝管充满水后,将冷却水水量调小,以节省用水。 5. 开启电磁加热搅拌器之加热及搅拌调控钮让溶液均匀搅拌及加热至溶液沸腾。

(完整版)金属纳米颗粒制备中的还原剂与修饰剂の总结,推荐文档

《金属纳米颗粒制备中的还原剂与修饰剂》总结 一:金属纳米材料具有表面效应(比表面积大,表面原子多,表面原子可与其他原子结合稳定下来,使材料化学活性提高。)和量子尺寸效应,因而有不同于体相材料的光学、电磁学、化学特性。 目前制备方法为液相合成(操作简便、成本低、产量高、颗粒单分散性好)。——以金属盐或金属化合物为原料将其还原得到金属原子后聚集成金属纳米粒子。而金属纳米粒子比表面积大、物化活性高、易氧化、易团聚,所以需要引入修饰剂来控制形貌、稳定或分散纳米颗粒。 液相还原法按照溶剂不同可分为有机溶剂合成法(结晶性好、单分散性好、形貌易控、不能直接用于生物体系、环境不友好)和水溶液合成法(水溶性、制备方法简单环保、成本低、颗粒大小不均一)。按照还原手段不同可分为化学试剂还原法、辐射还原法、电化学还原法。 二:化学试剂还原法中常用的还原剂及其还原机理 还原能力不同:1)强还原剂(硼氢化物、水合肼、氢气、四丁基硼氢化物),还原能力强、反应速率快、纳米颗粒多为球形或类球形、尺寸小。2)弱还原剂(柠檬酸钠、酒石酸钾、胺类化合物、葡萄糖、抗坏血酸、次亚磷酸钠、亚磷酸钠、醇类化合物、醛类化合物、双氧水、DMF),反应体系一般需要加热。例如多元羟基类化合物可做溶剂和还原剂,通过控制反应条件可制备多种形貌的材料。柠檬酸钠、抗坏血酸做还原剂的同时可做保护剂。(一)无机类还原剂 1,硼氢化物(硼氢化钠钾、硼氢化四丁基铵TBAB),硼氢化钠化学性质活波与水反应放出 氢气,与金属盐反应时所需浓度低。 2,氢化铝锂,还原性极强,应用不及硼氢化钠。 3,水合肼N2H4·H2O,应用广泛。在碱性介质中为强还原剂。 4,双氧水。 5,有机金属化合物,二茂铁还原制备银纳米线。 6,氢气,(可以合成相当稳定无保护的可进一步修饰的银纳米颗粒。),控制反应时间可以得到相当大尺寸跨度的纳米颗粒,进一步处理如过滤离心可以得到尺寸分布窄的颗粒。 7,次亚磷酸盐,弱还原剂,因为容易与氧气反应所以一般用3-4倍。酸性条件下反应速度加快,认为酸性条件下利于次亚磷酸像活泼型转变。

聚合物纳米粒投送药物新方法

聚合物纳米粒投送药物新方法 发布日期:2007年6月27日 加州大学圣塔芭芭拉分校的研究人员最近发现,将多聚纳米颗粒附着在红细胞的表面后,可以显著延长这些纳米颗粒的体内代谢周期。该研究发表在7月7日的Experimental Biology and Medicine上,这将为药物的投送和体内循环的生物活性物质的应用提供新的视角。 聚合物纳米粒是良好的药物投送载体,可以保护药物免于在到达作用部位前的降解,保持药物的持续释放。然而,聚合物纳米粒一个主要的限制是它们很快被从血液中被清除,有时只需数分钟时间,最终导致通过纳米聚合物给药效果并不理想。 化学工程教授Samir Mitragotri和博士研究生Elizabeth Chambers率领的研究小组发现将纳米颗粒附着在红细胞上后,纳米颗粒可以持续存留在循环系统中,在最后受到剪切力和细胞间相互作用才从红细胞上脱落,并被肝脾从循环系统中清除。整个过程中,红细胞的循环不受影响。Mitragotri称,红细胞存活寿命较长,数量充足而聚合物纳米粒比较稳定,聚合物纳米粒和红血球相连后,将这两者的优势合二为一。由于红细胞存在一种对巨噬细胞的逃避机制,粘附在红细胞表面的颗粒可以逃脱吞噬作用。这种策略并不新鲜,一种立克次氏体Hemobartonella通过附着在红血球表面,可以随其在血液中循环数周。理论上,红细胞的寿命是120天,如果聚合物纳米粒和红细胞的连接足够强,聚合物纳米粒同样可以在血液中存留相当长的时间。 Mitragotri认为这种模式在药物投送技术方面影响深远,可能推动许多疾病的治疗,如癌症、脑血栓和心脏病等。杂志主编Steven R. Goodman博士认为这是一项纳米科学、细胞生物学和血液学多学科交叉融合的现代技术。

002通过G-四链体、功能化金纳米粒子,可视化检测肌红蛋白的比色生物传感器

Sensors and Actuators B 212(2015)440–445 Contents lists available at ScienceDirect Sensors and Actuators B: Chemical j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /s n b Visual detection of myoglobin via G-quadruplex DNAzyme functionalized gold nanoparticles-based colorimetric biosensor Qing Wang,Xiaohan Yang,Xiaohai Yang ?,Fang Liu,Kemin Wang ? State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry and Chemical Engineering,Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province,Hunan University,Changsha 410082,China a r t i c l e i n f o Article history: Received 19December 2014 Received in revised form 7February 2015Accepted 10February 2015 Available online 18February 2015 Keywords: Gold nanoparticles DNAzyme Aptamer Myoglobin a b s t r a c t Since myoglobin plays a major role in the diagnosis of acute myocardial infarction (AMI),monitoring of myoglobin in point-of-care is fundamental.Here,a novel colorimetric assay for myoglobin detection was developed based on hemin/G-quadruplex DNAzyme functionalized gold nanoparticles (AuNPs).In the presence of myoglobin,the anti-myoglobin antibody,which was modi?ed on the surface of polystyrene microplate,could ?rst capture the target myoglobin.Then the captured target could further bind to DNA1probe which contained the aptamer sequence through aptamers/myoglobin interaction.Next,as the DNA2probe modi?ed AuNPs were introduced,DNA2probe modi?ed AuNPs could hybridize with the captured DNA1probe.Subsequently,DNA2probe which was modi?ed on the AuNPs could fold into a G-quadruplex structure and bind to hemin,and then catalyze the oxidation of colorless ABTS 2?to green ABTS +by H 2O 2.Consequently,the relationship between the concentration of myoglobin and the absorbance was established.Due to AuNPs ampli?cation,the myoglobin concentration as low as 2.5nM could be detected,which was lower than clinical cutoff for myoglobin in healthy patients.This assay also showed high selectivity for myoglobin and was used for the detection of myoglobin in the human serum samples.This work may provide a simple but effective tool for early diagnosis of AMI in the world,especially in developing countries. ?2015Elsevier B.V.All rights reserved. 1.Introduction Since acute myocardial infarction (AMI)remains the leading cause of death in most industrialized nations,it is important to evaluate accurately the patients who show symptoms sugges-tive of AMI [1,2].Myoglobin,although not cardiac speci?c,has been widely suggested as one of the best candidate markers for an early diagnosis of AMI [3].Generally,myoglobin is present in very low concentrations (0.48–5.9nM)in serum of healthy indi-viduals.When muscle tissues are damaged,myoglobin is rapidly released into the circulation and the myoglobin concentration in serum is elevated to 4.8?M subsequently [4].Some conventional approaches have been employed to detect myoglobin,such as mass spectrometry [5],liquid chromatography [6],electrochemi-cal [7–11]and surface plasmon resonance (SPR)[12–15].Most of these methods showed high sensitivity,but these methods were time consuming and required expensive equipment,which was unable to be applied in point-of-care (POC)testing [16].Recently, ?Corresponding authors.Tel.:+8673188821566;fax:+8673188821566.E-mail addresses:yangxiaohai@https://www.doczj.com/doc/ca10999514.html, (X.Yang),kmwang@https://www.doczj.com/doc/ca10999514.html, (K.Wang). we reported a novel assay for sensitive and selective detection of myoglobin using a personal glucose meter [17].Besides glucose meter,colorimetric method offers great potential for POC testing,due to its intrinsic advantages such as cost-effective,rapid,simple,and even only utilizing naked eyes.Zhang et al.reported a colori-metric method for myoglobin detection based on the aggregation of iminodiacetic acid-functionalized gold nanoparticles (AuNPs)[18].Although this method was easy to perform,low cost and time-saving,the detection limit is relatively high. Here,a novel colorimetric method was developed for myoglobin detection based on hemin/G-quadruplex DNAzyme functional-ized AuNPs.G-quadruplex DNAzyme,which is usually formed by binding G-rich nucleic acid to hemin [19–21],can exhibit peroxidase-like activity and effectively catalyze the H 2O 2-mediated oxidation of 2,2 -azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt (ABTS)[22–24].In this assay,hemin/G-quadruplex DNAzyme complex showed inherent advan-tages of simplicity,stability and relatively low cost.Moreover,since a single Au nanoparticle was loaded with hundreds of DNA2probes which contained DNAzyme section [25,26],it could enhance the sensitivity effectively.This work may provide the new tool for early diagnosis of AMI in the world,especially in developing countries. https://www.doczj.com/doc/ca10999514.html,/10.1016/j.snb.2015.02.040 0925-4005/?2015Elsevier B.V.All rights reserved.

不同还原剂对金纳米颗粒合成的影响

不同还原剂对金纳米颗粒合成的影响 摘要:研究了通过步步种子生长法用盐酸羟胺或抗坏血酸作为还原剂对金纳米颗粒形貌、粒径、单分散性的影响。用UV-vis和TEM对金纳米颗粒的光学性质和形貌进行了表征。研究结果表明由于盐酸羟胺的还原性弱于抗坏血酸,不会发生二次成核,因此合成的金纳米颗粒的单分散性较好。 关键词:金纳米颗粒;种子生长法;单分散性;二次成核 纳米颗粒和其大小、形状有关的性质引起了科学家门的兴趣[]。因此特定大小和形状的纳米颗粒合成是非常重要的,特别在纳米工程方面[]。合成 金纳米颗粒所用的还原剂很多,例如用N a BH 4 作还原剂合成了粒径小于10nm 的金溶胶[];在CTAB的保护下用抗坏血酸合成了粒径5-40nm的金溶胶[]。 但是柠檬酸钠是最常用的还原剂[]。通过变换柠檬酸钠和氯金酸的浓度比,合成了粒径从10nm到150nm的金溶胶[]。可是,合成的粒径大于30nm的金溶胶的单分散性越来越差[]。这种方法的重现性不仅差,而且溶液需要被煮沸。多分散的金溶胶限制了其在胶体稳定性、光散射、流变学、标准颗粒、生物膜等方面的应用[]。我们通过步步种子生长法分别用盐酸羟胺和抗坏血酸作为还原剂合成了粒径从22nm到76nm的金溶胶。研究发现用还原性弱的盐酸羟胺合成的金溶胶的单分散性明显好于用还原性强的抗坏血酸合成的。 并且用盐酸羟胺的合成方法的重现性很好。 2实验 2.1试剂和仪器二水合柠檬酸三钠(AR)、盐酸羟胺(AR)、氯金酸(AR)、抗坏血酸(AR),以上实验药品都购自国药集团化学试剂有限公司;UV-2102PC型分光光度计(尤尼柯(上海)仪器有限公司),JEM-2100透射电子显微镜(日本电子株式会社)。 2.2 实验方法 1%的氯金酸(溶液1)、38.8mM柠檬酸钠溶液(溶液2)、0.2M的盐酸羟胺溶液(溶液3)、0.2M的抗坏血酸溶液(溶液4)被准备。实验所用水为二次水,实验所用玻璃仪器都用王水浸洗,再用二次水冲洗三遍。 13.3nm金种子的制备在剧烈搅拌下,将3ml溶液1加入到243ml水中,煮沸15分钟后,快速加入8.5ml溶液2,煮沸15分钟。最后使金溶胶在搅拌下冷却到室温。 第一种方法:盐酸羟胺作还原剂的金溶胶的合成 种子增长四个锥形瓶分别被标记为A、B、C、D。在A中,在剧烈搅拌下,36ml 金种子溶胶加入到135ml水中,接着1.25ml溶液3被加入,最后1.5ml溶液1被快速加入。继续搅拌30分钟。这样得到的金溶胶的大小是22.3±1.5nm。

一种纳米金颗粒的制备方法

说明书摘要 本发明公开了一种纳米金颗粒的制备方法,其步骤如下:(1)在去离子水中加入氯金酸溶液、CTAC、硼氢化钠溶液,得到老化的种子溶液;(2)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液1;(3)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液2;(4)取(1)中的老化好的种子溶液加入到(2)中的生长溶液1,反应完全后得一次生长的Au纳米颗粒分散溶液;(5)取(4)中的溶液加入到(3)中的生长溶液2,反应完全后得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。本发明以水为基液,具有经济性好、操作简单、分散性好的优点,所获得的产品粒径大小比较均匀,且可控,从10 nm到100 nm均可获得。

权利要求书 1、一种纳米金颗粒的制备方法,其特征在于所述方法步骤如下: (1)在5~20 ml去离子水中加入0.001 ~ 0.2 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,与氯金酸溶液混合后均匀后,再加入0.01 ~ 1 mL硼氢化钠溶液,摇晃10 ~ 20 s将溶液混合均匀,静置30 ~ 60 min 后得到老化的种子溶液; (2)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0 .001~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.01 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液1; (3)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0.001 ~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.001 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液2; (4)取(1)中的老化好的种子溶液1 ~ 100 μL加入到(2)中配置好的生长溶液1,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置5 ~ 30 min使其反应完全,得一次生长的Au纳米颗粒分散溶液; (5)取(4)中的溶液1 ~ 100 μL加入到(3)中配置好的生长溶液2,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置10 ~60 min使其反应完全,得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。 2、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述Au纳米颗粒的粒径为10 nm到100 nm。 3、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.01 mol/L。 4、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.00025 mol/L。 5、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于

聚合物表面银纳米颗粒的大面积均匀沉积及其应用

物理学报54卷 径可控制在5nm以下(约3.25nm,见表1,样品3) 图2银纳米颗粒的HRTEM照片(a)及其傅里叶变换图(b) 剥离CTA薄膜表面层,可以通过HRTEM得到银纳米颗粒在聚合物表面的分布情况.结果表明,尽管金属银颗粒的粒径大小会因AgNO,溶液浓度的不同而有所变化(见表1),但聚合物基片上银颗粒的密度分布均匀性都较好,没有通常制备方法中出现的颗粒聚集效应(图3是样品1表面银纳米颗粒分布的HRTEM照片). 复性好的大面积光敏胶片,制备工艺和设备要求较复杂.我们曾实现在CTA基片上直接生成非银盐光敏介质并成功记录了各种全息光栅∽1,其成像机理是通过交联聚合引起的折射率调制口0|.而直接在该聚合物基片上制备金属纳米颗粒形成的全息光栅,迄今为止,还未见相关文献报道.图4为通过接触拷贝方式在CTA基片上复制的振幅型全息光栅,光栅面积大小约2cm×2cm.由图可看见,光栅明暗相间,条纹对比度较高,分布均匀性良好.这为大面积均匀简化制备聚合物基片光存储材料,为廉价、快捷加工各种轻便、高性能衍射光学元器件,以及光加工聚合物.金属纳米结构功能材料,如金属.电介质光子晶体等n1’120创造了一条新途径. 图4金属纳米银颗粒在CTA基片上形成的光栅条纹分布 4.结论 本文提出并实现了一种制备大面积均匀分布的纳米银颗粒.聚合物复合膜的简单制作方法.通过控制化学浸润和光还原过程中的实验条件,成功获得了颗粒直径在5nm以下,颗粒密度和直径大小分布 图3 cTA基片上银纳米颗粒分布的HRTEM照片(样品1) 均匀的纳米银颗粒一CTA复合膜?该制备方法不仅适用于本文所用的CTA基片,还可以进一步推广到聚 3?3?光存储结果 乙烯醇(PvA),聚苯乙烯(PS)等各类常用聚合物衬CTA是普通照相和全息记录材料的一种基底材底,因此在聚合物非线性光学材料,纳米结构表面,料.通过在该基底上涂布各种光敏介质,即可获得各光电信息功能结构材料的制备等诸多方面具有广阔种记录胶片.很显然,通过涂布技术获得均匀性、重 应用前景.

最新 金纳米粒子在医学领域中的运用-精品

金纳米粒子在医学领域中的运用 金纳米粒子潜在的细胞毒性是制约其临床应用的一个重要原因,下面是小编搜集的一篇关于金纳米粒子在领域中的运用探究的,供大家阅读借鉴。 金是典型的惰性元素,由金制成的历史文物能够保留几千年的灿烂光泽不变色,如图1所示.金被广泛使用于珠宝、硬币和电子器件等方面.目前,20nm 厚的金薄膜已用在办公室的窗户上,因为它能够在传输大量可见光的同时有效地反射红外光线,并吸收光的热量.因金纳米粒子具有很好的稳定性、易操作性、灵敏的光学特性、易进行表面修饰以及良好的生物相容性,使其广泛应用于食品安全检测、环境安全检测和医学检测分析等领域[1-4].金纳米粒子尺寸范围为1nm~100nm.图2(a)为50nm的金纳米棒,(b)为二氧化硅包覆的金纳米颗粒,其中扇形金纳米粒子尺寸比较小,被二氧化硅包覆后的纳米粒子尺寸大约140nm,(c)为50nm的金纳米笼[5].由于其比较微小的结构,这些颗粒比小分子更能积聚在炎症或肿瘤增长部位.具有高效的光转热属性的金纳米颗粒,可以被应用于特异性地消融感染或患病组织.因金纳米颗粒具有吸收大量X射线的能力,而被用于改善癌症放射治疗或CT(断层扫描)诊断成像.另外,金纳米粒子可以屏蔽不稳定的药物或难溶造影剂,使之有效传递到身体各个部位. 1金纳米粒子在加载药物方面的应用 1.1金纳米粒子可作为内在药制剂 金基疗法有着悠久的历史,这是金自然的优异性能以及其神秘效应引起的药效应用.金基分子化合物已被发现可以显着限制艾滋病病毒的生长[6].目前,搭载药物的金纳米粒子常用于靶向癌细胞[7].将放射性金种子植入肿瘤中,对其内部进行放射疗法,实现近距离放射治疗[7].直径非常小的金纳米颗粒(小于2nm)能够渗透到细胞和细胞区室(如细胞核)[8].金纳米颗粒与其无毒的较大尺寸的表面修饰试剂[8],有杀菌和杀死癌细胞的功效,并有诱导细胞氧化的应激能力,促使损伤的线粒体和DNA相互作用. 最近,人们发现,纳米金(直径5nm)表现出抗血管生成性质(抑制新血管的生长).这些纳米颗粒可选择性结合肝素糖蛋白内皮细胞,并抑制它们的表面活性.因为上述纳米金的大小和生物分子或蛋白质差不多,在生理过程中,它们也可以相互修饰或作用,尤其在细胞和组织内.最近,El-Sayed和他的同事针对恶性生长与分裂的细胞核,已探索出微分细胞质. 通过将金纳米粒子聚集于细胞表面,从而认识到整合肽序列(细胞质交付)和核内蛋白(核周交付),并通过金纳米颗粒选择性地靶向恶性细胞,他们已证明凋亡效应(DNA的双链断裂).另外,使用类似的研究策略,已发现金纳米粒子可选择性地发挥抗增殖和放射增敏效应. 1.2基于金纳米粒子的光热疗法

CJT51-2018(45.4)城镇污水水质标准检验方法总镉的测定方法验证

方法验证报告 方法名称:城镇污水水质标准检验方法总镉的测定CJ/T 51-2018(45.4)石墨炉原子吸收分光光度法 验证人员:日期: 报告编制:日期: 审核人员:日期: 批准人员:日期:

城镇污水水质标准检验方法总镉的测定 石墨炉原子吸收分光光度法方法验证报告 1、验证目的 方法变更:城镇污水水质标准检验方法总镉的测定石墨炉原子吸收分光光度法CJ/T 51-2018(45.4)代替CJ/T 51-2004(22.4)。 2、变更内容 标准号变更,更改了试剂和材料的要求(由去离子水更改为无酚蒸馏水,部分试剂浓度结果的单位由g/L更改为g/ml),新增了标准曲线的消解操作,删除了CJ/T 51-2004(22.4)中的22.4.6.2.4试份的准备步骤,更改了标准内容的顺序。 3、适用范围 本标准规定了采用石墨炉原子吸收分光光度法测定城镇污水中镉的含量。 4、方法原理 方法基于样品经基体改进后,所含镉离子在石墨管内,生成难挥发的化合物,高温蒸发离解为原子蒸气,并吸收镉空心阴极灯发射的共振线,其吸收强度在一定范围内与镉浓度成正比,根据测得的吸收值与标准系列比较进行定量。 5、仪器设备、人员能力及实验场地 5.1、仪器设备 表5.1.1、仪器设备情况一览表 5.2、人员能力 参与本方法验证实验的人员皆经受过本公司或其他专家的关于此方法的学

习培训,并考核通过。人员情况见表5.2.1 表5.2.1、人员信息一览表 5.3、实验场地 本次方法验证实验的测定在无机前处理室前处理,在仪器一室分析,实验场所均不受其他实验环境影响,且实验温湿度均能满足实验要求。 5.4、标准物质 表5.4.1、标准溶液/样品一览表 6、样品 应用聚乙烯瓶采样,采样瓶使用前先用洗涤剂洗涤,再用5%硝酸浸泡,最后用水冲洗洁净。采样后应立即用浓硝酸调节pH值小于2。 7、分析步骤 7.1、测定 测定步骤如下: a.消解:取适量样品(50ml~100ml,根据样品情况而定),移入250ml高型烧杯中,加5ml浓硝酸,在电热板上缓慢加热,保持微沸状态,蒸发到尽可能小的体积(大约10ml,但不得出现沉淀和析出盐分),再加入5ml浓硝酸,盖上玻璃表面皿,加热样品使之发生缓慢回流,继续加热,必要时再加入浓硝酸直至消化完全,此时溶液呈清澈浅色,最后加入1ml~2ml浓硝酸,微微加热以后溶

磁性纳米材料的特性、发展及其应用

2011412690 应用化学董会艳 题目纳米材料的磁学性质、发展及其应用前景 内容摘要:磁性纳米材料的特性不同于一般的磁性材料,当与磁性相关联的特征物理长度恰好出于纳米量级,以及电子平均自由路程等大致处于1~100nm量级,或磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学与电学性质。不同分类的磁性纳米材料有着大不相同的特性。从纳米科技诞生的那一刻起就对人类产生着深远的影响。同时磁性材料一直是国民经济,国防工业的重要支柱与基础,与此同时在信息化高度发展的今天,磁性纳米材料的地位显的更加的重要与不可替代。 关键词:磁性,纳米,磁性纳米材料,应用 Abstract:Characteristics of magnetic nanomaterials is different from the general magnetic materials and magnetic properties associated with the characteristics of the physical length of just for the nanoscale, and the electron mean free path, etc. generally in the 1 ~ 100nm orders of magnitude, or magnetic body size and characteristicsphysical length is quite showing the anomalous magnetic and electrical properties. Different classification of magnetic nanomaterials differ materially from those features. The moment of the birth of nanotechnology on humans with far-reaching impact. Magnetic materials has been an important pillar and foundation of the national economy, defense industry, at the same time in the development of information technology today, the status of magnetic nanomaterials significantly more important and irreplaceable. Key words:Magnetic ,Nano ,Magnetic nanomaterials,Application 前言:在社会发展和科技进步的同时,磁性纳米材料的研究和应用也有了很大的突 破。磁性纳米材料在于与磁性相关联的特征物理长度恰好出于纳米量级,例如,磁单畴尺寸,超顺磁性临界尺寸以及电子平均自由路程等大致处于1~100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学与电学性质。 当磁性微粒处于单畴尺寸时, 矫顽力将呈现极大值。铁磁材料, 如铁、钻等磁性单畴临界尺寸大约在l0 nm 量级,可以作为高矫顽力的永磁材料和磁记录材料。由于颗粒磁性与其尺寸有关, 如果尺寸进一步减小, 颗粒将在一定的温度范围内呈现出超顺磁性。利用微粒的这个特性, 人们在开始对镍纳米微粒进行低温磁性研究, 并提出磁宏观量子隧道效应的概念, 随后在60年代末期研制成了磁性液体。80 年代以后, 在理论与实验二方面, 开始研究纳米磁性微粒的磁宏观量子隧道效应,在1988 年首先在Fe/ Cr 多层膜中发现了巨磁电阻效应, 也为磁性纳米材料的研究奠定了更夯实的基础。 正文 磁性纳米材料的特性不同于常规的磁性材料,其原因在于与磁性相关联的特征物理长度恰好出于纳米量级,例如,磁单畴尺寸,超顺磁性临界尺寸,交换作用长度,以及电子平均自由路程等大致处于1~100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学与电学性质。利用这些新特性已涌现出一系列新材料,尤其在信息存储,处理与传输中已成为不可或缺的组成部分,广泛地应用于电信,自动控制,通讯,家用电器等领域,信息化发展的总趋势是向小,轻,薄以及多功能方

金纳米粒子的制备方法

金纳米粒子的制备方法 由于不同状态的纳米粒子的性质有较大的差异,故人们已经尝试很多方法用简单和多样的合成方法制备特定形貌和大小的金纳米粒子,如纳米线、纳米棒、纳米球纳米片和纳米立方。下面将介绍下目前合成金纳米粒子最常用的方法。 1梓檬酸盐还原法 目前在众多的合成金纳米粒子方法中,最方便的方法是还原Au的衍生物。很长的一段时间最流行的方法是在1951年Turkevitch提出的水溶液中用梓檬酸盐还原HAuCl4的方法,可得到20mn左右的金纳米粒子。金纳米粒子在水溶液中合成的方法主要分为三个步骤:第一,金的盐溶液在适当的溶液中分解;第二,在某种还原剂中还原金的盐溶液;最后,在稳定剂中合成稳定的金纳米粒子。目前,最流行的制备金纳米粒子的方法是在加热的条件下,在水溶液中用梓檬酸盐还原HAuCl4。对于这个方法,通过改变金的浓度和梓檬酸盐的浓度,可以制备出大量的平均粒度的金纳米粒子。 2 Brust-Schiffrin法:两相合成并通过硫醇稳定 人们于1994年提出了合成金纳米粒子的Brust-Schiffrin方法。由于热稳定合成方法简单易行,在不到十年的时间内,此方法在所有领域都有重要的影响。金纳米粒子在有机溶剂中能分散和再溶解,并且没有不可逆的团聚或分解。作为有机分子化合物,它们能很容易的控制和功能化。Faraday的两相合成体系给予合成技术一定的启发,由于Au和S的软性质,这种方法便利用硫醇配体强烈绑住金。四正辛基溴化按作为相转移试剂将AuCV转移到甲苯溶液中,并用NaBH4在正十二硫醇中还原AuCLT。在NaBH4还原过程中,橙色相在几秒内向

深棕色转变(图1): 图1 Au化合物在硫醇溶液中被还原,其Au纳米粒子表面被有机外壳所覆盖 其反应机理如下: 3其它含硫配体 其它含硫配体已经用于稳定金纳米粒子,如黄酸盐和二硫化物等。二硫化物不如硫醇的稳定,但是在催化方面有明显的效果。同样,硫醚不能很好的约束金纳米粒子,但是Rheinhout 团队利用聚硫醚就能很好的解决这个问题。另外,利用碘氧化以硫醇为包覆剂的金纳米粒子,使其分解为金的碘化物和二硫化物。Crook等人利用这一现象制备了以金纳米粒子为模版的环胡精的空心球。 4微乳液,反向胶束,表面活性剂,细胞膜和聚合电解质类 在有或是没有硫醇溶液的情况下,使用微乳液,共聚物胶束,反相胶束,表面活性剂,细胞膜和其它两亲物都是合成稳定的金纳米粒子重要探究领域。用表面活性剂合成的两相系统会引起微乳液或是胶束的形成,将金属离子从水相抽离到有机相,从而维持良好的微环境。表面活性剂的双重角色和硫醇与金纳米粒子的相互作用可以控制金纳米粒子或是纳米晶体的稳定和生长。聚合电解质也广泛用于金纳米粒子的合成。酸衍生的金纳米粒子的聚合电解质包覆剂己经通过带电的聚合电解质静电自组装 得到了。

3.1 金纳米粒子性质

金纳米粒子性质 1 金纳米粒子类型 不同形状的金纳米粒子对应着不同的应用目的。目前为止,人们已经制备了多种不同形状的金纳米粒子,主要有棒状,球状,壳状,笼状,多面体,星状等,不同形状的金纳米粒子有着自身独特的优势。例如棒状的金纳米粒子具有良好的光热性能,而笼状的金纳米粒子更适合于内部物质的负载等。 根据金纳米粒子的尺寸可以将其分为金纳米团簇及金纳米晶,通常来说,金属粒子具有一定的导电性,而当金纳米粒子的尺寸小于2 nm时,金纳米粒子的性质由原来的金属导电性质变为了绝缘体性质,因此这个尺寸被称为临界尺寸。通过这个临界尺寸可以将金纳米粒子分成两类:尺寸小于2 nm的金纳米粒子,被称为金纳米团簇;而金粒子的粒径尺寸大于2 nm时,通常被称为金纳米晶。 2 金纳米粒子特性 块状的金在通常被认为是惰性金属,而纳米金却显示出了区别于宏观尺寸的高活性。金纳米粒子作为纳米材料中的贵金属纳米粒子的一类,金纳米粒子除了具有纳米材料的普遍特性之外还具有自身独特的性质,主要表现在以下几个方面: 2.1 表面等离子体共振特性 有较高的比表面积,其表面自由电子较多,自由电子受到原子核的正电荷束缚较小,电子云在表面自由运动,当表面的电子云产生相对于核的位移时,来自电子和核之间的库仑引力会产生一个恢复力,从而产生表面电子云的震荡,振荡频率由四个因素决定:电子密度、有效电子质量电荷分布的形状和大小。表面等离子体(surface plasmons),又被称为表面等离子体激元,是由于金属粒子表面的自由电子的集体谐振而产生。当金属纳米粒子被一定波长的光照射后,入射的光子与表面自由电子相互作用,入射的光子与金属表面自由电子耦合后产生的疏密波。当入射光的振动频率与金属粒子表面的自由电子谐振频率相同时产生的共振被称为表面等离子体共振。 金纳米粒子的表面等离子体共振对光子产生的吸收能够使用UV-vis-vis光谱检测,通过不同的吸收峰值反映金纳米粒子的形貌,大小等特性,实心球形的金纳米粒子具有一个单峰,不同尺寸的金纳米粒子具有的峰位不同,而金棒具有两个典型的吸收峰,分别为横向和纵向,而笼状的金粒子的吸收峰也有别于球状和棒状,而即使同为球形金粒子,壳层结构的金粒子的吸收峰也有很大的区别。金纳米粒子的这种表面等离子体共振特性被广泛应用与检测,传

3.7 金纳米粒子的合成方法

1 金纳米粒子的合成方法 1.1 物理法 物理法即采用高能消耗的方式将块体金细化成为纳米级小颗粒,主要包括块状固体粉碎法(又称为磨球法或机械研磨法)、气相法、电弧法、金属蒸汽溶剂化法、辐照分解和热分解等。辐照分解包括近红外辐照和紫外辐照。近红外辐照通过使硫醇包裹的纳米粒子的粒径变大,从而可以获得粒径较大的金纳米粒子;紫外辐照通过影响种子和胶束的协同作用,从而控制金纳米粒子的合成。另外,激光消融通过对温度、反应器位置、异丙醇用量、超声场等实验条件的控制,可以合成形貌,粒径不同的金纳米粒子。总之,金纳米粒子合成的关键在于同时精确地控制其尺寸和形貌。通过物理法制备的金纳米粒子虽然纯度较高,但其产量低下,设备成本极高。 1.2 化学法 化学法主要是以金盐为原料,利用还原反应生成金纳米粒子,在形成过程中通过控制粒子的生长从而控制其尺寸。化学法主要包括水相氧化还原法、相转移法(主要为Brust法)、晶种生长法(又称种金生长法)、模板法、反相胶束法、湿化学合成法、电化学法、光化学法。相对物理法而言,化学法制备金纳米粒子所得到的产物粒径均匀、稳定性高,并且易于控制形貌,是最为方便和经济的方法。 1.2.1 水相氧化还原法 水相氧化还原法合成金纳米粒子主要是指在含有Au3+的溶液中,利用适当的还原剂(例如鞣酸,柠檬酸等,还原剂的选择根据所要合成的金纳米粒子的粒径而定),将Au3+还原成零价,从而聚集成粒径为纳米级的金纳米粒子。常见的方法有AA还原法、白磷还原法、柠檬酸钠还原法和鞣酸-柠檬酸钠还原法。制备粒径在5~12nm的金纳米粒子,一般采用AA还原或白磷还原HAuCl4溶液;制备粒径在大于12nm的金纳米粒子,则采用柠檬酸钠还原HAuCl4溶液。柠檬酸钠法还原Au3+合成金纳米粒子是最早且应用最为广泛的方法。 1951年,Turkevitch首次报道了柠檬酸钠还原HAuCl4溶液的方法制备金纳米粒子,其粒径分布在20nm左右。基于此,Frens发现,通过控制柠檬酸钠和金的比率来控制金纳米粒子的形成,从而可以得到特定尺寸(粒径可以控制在16~147 nm)的金纳米粒子。经典的Frens法至今仍得到了广泛的使用,用于保护和稳定金纳米粒子的柠檬酸根与金纳米粒子的结合能力较弱,易于被其他稳定剂所取代,因此可用于分析DNA,从而扩大了金纳米粒子的应用领域。

14.1 DNA功能化的金纳米粒子及其应用

DNA功能化的金纳米粒子 1 DNA功能化的金纳米粒子及其应用 用DNA分子修饰无机纳米粒子为其在传感,药物和基因传输,光学和能源领域的应用带来了新的机遇。同时利用DNA对纳米颗粒间相互作用的控制,基于DNA的平台也能为构建复杂纳米粒子组装结构提供灵活性和多样性。DNA金纳米粒子复合物(DNA-AuNPs)是一种纳米生物复合物,由内层的纳米粒子和外层的DNA组成,起到了连接生物体系和纳米材料的作用。上世纪九十年代中期,Mirkin研究组和Alivisatos研究组在他们的开创性工作中,首次报道了DNA功能化的金纳米粒子体系。Mirkin等人合成了13 nm的金纳米粒子(在溶液中呈现均一的红色,紫外吸收峰波长为520 nm),然后将末端为巯基修饰的DNA通过S-Au化学键相互作用固定到金纳米粒子表面得到DNA.金纳米粒子复合物(图1.9),后来他们将这种复合物重新命名为球形核酸(spherical nucleic acid,SNA)。由于这种DNA修饰的金纳米粒子复合物既具有金纳米粒子的光学和物理化学特性,又具有DNA分子的可编程特性和生物特性,自从Mirkin等人的开创性工作发表以来,DNA功能化的金纳米粒子发展应用迅速,已经被广泛应用于生物传感,离子检测,核酸比色检测,金纳米粒子结晶组装,生物成像等领域。 图1.9 Spherical nucleic acid(SNA) conjugates. 1.1 DNA功能化的金纳米粒子在核酸检测中的应用 基因突变的检测可以为诊断提供重要的目树,使人们对用于包括癌症在内的许多疾病早期诊断的核酸检测越来越感兴趣。荧光和放射性检测读出方法(如PCR,PT-PCR,分子印迹法,以及高密度微阵列法等)是传统的核酸检测方法。金纳米粒子比色法已经被证明是核酸目标链检测方面的一种极具竞争力的检测技术。在金纳米粒子比色法中,待检测目标物直接

相关主题
文本预览
相关文档 最新文档