当前位置:文档之家› 光纤通信、移动通信、微波通信、卫星通信

光纤通信、移动通信、微波通信、卫星通信

现代通信技术

摘要

现代通信中光纤已经取代了电缆,成为长距离、大容量传输的主要手段。微波在灵活性、抗灾性和移动性方面的优势是光纤传输不可缺少的补充和保护手段,移动通信是当今最热门的领域之一,具有大覆盖范围的卫星通信与之结合使得信息能够传到地球的每个角落。本文重点介绍光纤通信、数字微波中继通信、卫星通信和移动通信的特点、异同及发展趋势。

关键字光纤通信移动通信微波通信卫星通信

第一章光纤通信技术

光纤通信的发展依赖于光纤通信技术的进步。目前,光纤通信技术已有了长足的发展,新技术也不断涌现,进而大幅度提高了通信能力,并不断扩大了光纤通信的应用范围。

1.1光纤通信技术发展现状

1.1.1波分复用技术

波分复用WDM(Wavelength Division Multiplexing)技术可以充分利用单模光纤低损耗区带来的巨大带宽资源。根据每一信道光波的频率(或波长)不同,将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,在发送端采用波分复用器(合波器),将不同规定波长的信号光载波合并起来送入一根光纤进行传输。在接收端,再由一波分复用器(分波器)将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看作互相独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。自从上个世纪末,波分复用技术出现以来,由于它能极大地提高光纤传输系统的传输容量,迅速得到了广泛的应用。

1995年以来,为了解决超大容量、超高速率和超长中继距离传输问题,密集波分复用DWDM(Dens Wavelength Division Multi-plexing)技术成为国际上的主要研究对象。DWDM光纤通信系统极大地增加了每对光纤的传输容量,经济有效地解决了通信网的瓶颈问题。据统计,截止到2002年,商用的DWDM系统传输容量已达400Gbit/s。以10Gbit/s为基础的DWDM系统已逐渐成为核心网的主流。DWDM 系统除了波长数和传输容量不断增加外,光传输距离也从600km左右大幅度扩展到2000km以上。

与此同时,随着波分复用技术从长途网向城域网扩展,粗波分复用

CWDM(Coarse Wavelength Division Multiplexing)技术应运而生。CWDM的信道间隔一般为20nm,通过降低对波长的窗口要求而实现全波长范围内(1260nm~1620nm)的波分复用,并大大降低光器件的成本,可实现在0km~80km内较高的性能价格比,因而受到运营商的欢迎。

1.1.2光纤接入技术

光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达位置的不同,有FTTB、FTTC、FTTCab和FTTH等不同的应用,统称FTTx。

FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从2003年起,在“863”项目的推动下,开始了FTTH的应用和推广工作。迄今已经在30多个城市建立了试验网和试商用网,包括居民用户、企

业用户、网吧等多种应用类型,也包括运营商主导、驻地网运营商主导、企业主导、房地产开发商主导和政府主导等多种模式,发展势头良好。不少城市制订了FTTH的技术标准和建设标准,有的城市还制订了相应的优惠政策,这些都为FTTH 在我国的发展创造了良好的条件。

在FTTH应用中,主要采用两种技术,即点到点的P2P技术和点到多点的xPON 技术,亦可称为光纤有源接入技术和光纤无源接入技术。P2P技术主要采用通常所说的MC(媒介转换器)实现用户和局端的直接连接,它可以为用户提供高带宽的接入。目前,国内的技术可以为用户提供FE或GE的带宽,对大中型企业用户来说,是比较理想的接入方式[1]。

1.2光纤通信技术的发展趋势

近几年来,随着技术的进步,电信管理体制的改革以及电信市场的逐步全面开放,光纤通信的发展又一次呈现了蓬勃发展的新局面,以下在对光纤通信领域的主要发展热点作一简述与展望。

1.2.1向超高速系统的发展

从过去20多年的电信发展史看,网络容量的需求和传输速率的提高一直是一对主要矛盾。传统光纤通信的发展始终按照电的时分复用(TDM)方式进行,每当传输速率提高4倍,传输每比特的成本大约下降30%~40%;因而高比特率系统的经济效益大致按指数规律增长,这就是为什么光纤通信系统的传输速率在过去20多年来一直在持续增加的根本原因。目前商用系统已从45Mbps增加到10Gbps,其速率在20年时间里增加了20O0倍,比同期微电子技术的集成度增加速度还快得多。高速系统的出现不仅增加了业务传输容量,而且也为各种各样的新业务,特别是宽带业务和多媒体提供了实现的可能。目前10Gbps系统已开始大批量装备网络,全世界安装的终端和中继器已超过5000个,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。

1.2.2向超大容量WDM系统的演进

采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用了不到1%,99%的资源尚待发掘。如果将多个发送波长适当错开的光源信号同时在一极光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。采用波分复用系统的主要好处是:1)可以充分利用光纤的巨大带宽资源,使容量可以迅速扩大几倍至上百倍;2)在大容量长途传输时可以节约大量光纤和再生器,从而大大降低了传输成本;3)与信号速率及电调制方式无关,是引入宽带新业务的方便手段;4)利用WDM网络实现网络交换和恢复可望实现未来透明的、具有高度生存性的光联网。

鉴于上述应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。预计不久实用化系统的容量即可达到1Tbps的水平。

1.2.3实现光联网

上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。如果在光路上也能实现

类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光的分插复用器(OADM)和光的交叉连接设备(OXC)均已在实验室研制成功,前者已投入商用。

实现光联网的基本目的是:1)实现超大容量光网络;2)实现网络扩展性,允许网络的节点数和业务量的不断增长;3)实现网络可重构性,达到灵活重组网络的目的;4)实现网络的透明性,允许互连任何系统和不同制式的信号;5)实现快速网络恢复,恢复时间可达100ms。鉴于光联网具有上述潜在的巨大优势,发达国家投入了大量的人力、物力和财力进行预研。光联网已经成为继SDH电联网以后的又一新的光通信发展高潮[2]。

1.2.4新一代的光纤

近几年来随着IP业务量的爆炸式增长,电信网正开始向下一代可持续发展的方向发展,而构筑具有巨大传输容量的光纤基础设施是下一代网络的物理基础。传统的G.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分。目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光纤(G.655光纤)和无水吸收峰光纤(全波光纤)。

1.2.5光接入网

过去几年间,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都已更新了好几代。不久,网络的这一部分将成为全数字化的、软件主宰和控制的、高度集成和智能化的网络。而另一方面,现存的接入网仍然是被双绞线铜线主宰的(90%以上)、原始落后的模拟系统。两者在技术上的巨大反差说明接入网已确实成为制约全网进一步发展的瓶颈。唯一能够根本上彻底解决这一瓶颈问题的长远技术手段是光接入网。接入网中采用光接入网的主要目的是:减少维护管理费用和故障率;开发新设备,增加新收入;配合本地网络结构的调整,减少节点,扩大覆盖;充分利用光纤化所带来的一系列好处;建设透明光网络,迎接多媒体时代。

第二章移动通信

2.1GSM向第三代移动通信的演进

2.1.1演进中需要考虑的若干问题

GSM向第三代移动通信的演进面临着许多的问题,主要分为一下三类:

○1与GSM系统兼容性

3G网络的建设是一个长期的过程。由于建设初期存在网络覆盖问题,并且同时大规模建设核心网和接入网需要很高的投入,因此,世界各国普遍采用以2G网络为基础发展3G移动通信的演进策略,即尽量与2G系统兼容,实现2G到3G的平滑过渡,以解决3G建设初期的漫游问题和庞大投入问题。

○2市场需求的推动力

3G系统最主要的优势是支持宽带数据和多媒体业务,而发展移动数据业务

市场需要有一个培育的过程,同时也需要运营商和用户双方的促进。虽然话音通信在相当长的一段时间内仍是移动通信的主要业务,但随着社会的进步和经济的发展,人们对移动数据通信的需求将逐步增大,从而使数据业务在通信中所占的比例最终会超过话音业务。特别是互联网的飞速发展,将极大地促进移动用户上网需求,加快移动数据通信应用市场的发展步伐。

○3新技术的驱动力

新技术的应用,可以更加有利地支持移动数据与多媒体业务,它也是推动现有系统演进的一个重要因素。事实表明,一项新技术的出现,往往会造就出一代新的产品,从而推动市场的发展。但是,新技术有无生命力,必须要有正确的市场定位并经受住市场考验。目前,许多国家已开始3G网的运营,我国的3G技术已趋于成熟,部分城市已初步开通3G网络[3]。

2.2 核心网演进的策略

目前我国的2G网络以GSM为主,这就决定我国的第二代核心网络GSM网络的演进。因此采用GPRS技术构成的核心网络将是主要的过渡方式。所以,国内GSM向第三代演进的步骤应该是:(1)研究从GSM到第二代的演进过渡方案,大力发展GPRS网络。(2)通过升级GSM /GPRS网络节点MSG / GSN的功能,使之提供Iu接口并增加UMTS系统协议处理能力,在保证与原有GSM / GPRS兼容的条件下,实现UTRAN接入。

○1 GPRS的结构和优势

GPRS是在GSM网络的基础上增加SGSN和GGSN两种网络实体以及Gb、Gn、Gi、Ge等接口构成的。SGSN(服务GPRS支持节点)和GGSN(网关GPRS网络的核心实体),它们也通称为GSN。SGSN节点可以实现MS移动性管理、路由选择等功能;GGSN节点用于与外部网络的互连和业务支持。

GPRS的优势:(1)经济有效的分组数据传输技术;(2)支持移动上网浏览的功能;(3)实现按比特收取用户通信费用;(4)对GSM网络的改动较少,充分保护投资;(5)可满足初期大部分用户对3G业务的需求;(6 )很快为运营商带来效益,提高竞争能力。所以,GPRS作为2.5代的产品可以迅速进入市场,能够有效地保护电信运营商的已有投资,更容易与现有的网络在业务上兼容。

○2从GSM网络向3G网络的演进

在GSM经GPRS直接过渡到3G系统的情况下,其核心网络的演进可分成以下两个阶段:(1)第三代UMTS的接入网UTRAN可先引入GSM / GPRRS网络中,并通过网络互通单元1WU接入2G的核心网络。(2)引入3G 核心网络:第二、三两代核心网络混合组网,核心网之间通过网络互连实现业务互通。

○3 3G核心网——全IP网络的结构

3G核心网结构将采用全IP的核心网络结构,用IP将作为用户语音、数据以及信令的统一载体。

全IP网络的结构分为5部分:可支持UTAN 、ERAN和其它方式接入的接入网络;GPRS网络;呼叫控制;与外部网络的关口;业务生成结构。通过在IP网上构建逻辑独立的信令处理服务器来处理控制信令(相当于MSC / SGSN的信令处

理功能),并且构建业务应用服务器来提供,从而可以实现“业务/控制/交换/适配”的逻辑分离。

全IP网络是通信发展的趋势,只是目前技术尚未完全成熟,难以马上实施。一旦VoIP和IP QoS技术发展成熟,即可用IP技术统一传输语音、数据和多媒体业务,实现移动网络与IP网络的融合。全IP网络是3G网络的发展趋势,采用构建语音/数据/图像一体化平台的UMTS核心网的方式,可以逐步实现向全IP 的3G网络的平滑过渡。

2.3 对3G标准的分析认识及其见解

WCDMA、CDMA2000、TD-SCDMA作为3G的三大标准,它们本身有着各自的特点,因而向3G不同网的演进更是采用不同的演进路线及技术。

WCDMA能够基于现有的GSM网络上,可以较轻易地过渡到3G,而GSM系统的相对普及使得WCDMA具有先天的市场优势。它的主要特点是无线接入网采用WCDMA技术,核心网络采用电路交换和分组交换,分别支持话音和数据业务,并提出了开放业务接入的概念。

CDMA2000是窄带CDMA (CDMA IS-95)技术发展而来的宽带CDMA技术,由美国主推,该标准提出了从CDMA IS95 (2G)→CDMA2000 1X→CDMA2000 (3G)的演进策略。CDMA-2000的技术特点是具有多种信道带宽,可以更加有效利用无线资源,可实现CDMA 1X向CDMA2000系统的平滑过渡。

TD-SCDMA该标准是由中国独自制订的3G标准,在频谱利用率、业务支持、频率灵活性及成本等方面具有独特优势。这个标准是中国电信行业近百年来地一个完整的通信技术标准,是集CDMA(码分多址)、TDMA(时分多址)、FDMA频分多址)技术优势于一体,系统容量大、频率利用率高、抗干扰能力强的移动通信技术。

由此可见,TD-CDMA系统的兼容性更好,集多种技术优势于一体,可以适应现有的GSM和CDMA的多种接口的要求,它的基站子系统可以既作为2G和2.5G GSM基站的扩容,又可以作为3G网中的基站子系统,系统容量大、频率利用率高、抗干扰能力强,能同时兼顾现在的需求和未来的发展,非常适用于GSM系统向3G升级[4]。

2.4 4G移动通信简介

第四代移动通信技术的概念可称为宽带接入和分布网络,具有非对称的超过2Mbit/s的数据传输能力。它包括宽带无线固定接入、宽带无线局域网、移动宽带系统和交互式广播网络。第四代移动通信标准比第三代标准拥有更多的功能。第四代移动通信可以在不同的固定、无线平台和跨越不同的频带的网络中提供无线服务,可以在任何地方用宽带接入互联网(包括卫星通信和平流层通信),能够提供定位定时、数据采集、远程控制等综合功能。此外,第四代移动通信系统是集成多功能的宽带移动通信系统,是宽带接入IP系统。目前正在开发和研制中的4G通信将具有以下特征:

(一)通信速度更快

由于人们研究4G通信的最初目的就是提高蜂窝电话和其他移动装置无线访问Internet的速率,因此4G通信的特征莫过于它具有更快的无线通信速度。专家预估,第四代移动通信系统的速度可达到10-20Mbit/s,最高可以达到100Mbit/s。

(二)网络频谱更宽

要想使4G通信达到100Mbit/s的传输速度,通信运营商必须在3G通信网络的基础上对其进行大幅度的改造,以便使4G网络在通信带宽上比3G网络的带宽高出许多。据研究,每个4G信道将占有100MHz的频谱,相当于W-CDMA3G网络的20倍。

(三)多种业务的完整融合

个人通信、信息系统、广播、娱乐等业务无缝连接为一个整体,满足用户的各种需求。4G应能集成不同模式的无线通信——从无线局域网和蓝牙等室内网络、蜂窝信号、广播电视到卫星通信,移动用户可以自由地从一个标准漫游到另一个标准。各种业务应用、各种系统平台间的互联更便捷、安全,面向不同用户要求,更富有个性化。而且4G手机从外观和式样上看将有更惊人的突破,可以想象的是,眼镜、手表、化妆盒、旅游鞋都有可能成为4G终端。

(四)智能性能更高

第四代移动通信的智能性更高,不仅表现在4G通信的终端设备的设计和操作具有智能化,更重要的是4G手机可以实现许多难以想象的功能。例如,4G手机将能根据环境、时间以及其他因素来适时提醒手机的主人。

(五)兼容性能更平滑

要使4G通信尽快地被人们接受,还应该考虑到让更多的用户在投资最少的情况下轻易地过渡到4G通信。因此,从这个角度来看,4G通信系统应当具备全球漫游、接口开放、能跟多种网络互联、终端多样化以及能从2G、3G平稳过渡等特点。

(六)实现更高质量的多媒体通信

4G通信提供的无线多媒体通信服务将包括语音、数据、影像等,大量信息透过宽频的信道传送出去,为此4G也称为“多媒体移动通信”。

(七)通信费用更加便宜

由于4G通信不仅解决了与3G的兼容性问题,让更多的现有通信用户能轻易地升级到4G通信,而且4G通信引入了许多尖端通信技术,因此,相对其他技术来说,4G通信部署起来就容易、迅速得多。同时在建设4G通信网络系统时,通信运营商们将考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,这样就能够有效地降低运营成本。

2.5 4G移动通信的接入系统

4G移动通信接入系统的显著特点是,智能化多模式终端(multi-modeterminal)基于公共平台,通过各种接技术,在各种网络系统(平台)之间实现无缝连接和协作。在4G移动通信中,各种专门的接入系统都基于一个公共平台,相互协作,以最优化的方式工作,来满足不同用户的通信需求。当多模式终端接入系统时,网络会自适应分配频带、给出最优化路由,以达到最佳通信效果。目前,4G移动通信的主要接入技术有:无线蜂窝移动通信系统(例如2G、3G);无绳系统(如DECT);短距离连接系统(如蓝牙);WLAN系统;固定无线接入系统;卫星系统;平流层通信(STS);广播电视接入系统(如DAB、DVB-T、CATV)。随着技术发展和市场需求变化,新的接入技术将不断出现。

不同类型的接入技术针对不同业务而设计,因此,我们根据接入技术的适用领域、移动小区半径和工作环境,对接入技术进行分层。

分配层:主要由平流层通信、卫星通信和广播电视通信组成,服务范围覆盖

面积大。

蜂窝层:主要由2G、3G通信系统组成,服务范围覆盖面积较大。

热点小区层:主要由WLAN网络组成,服务范围集中在校园、社区、会议中心等,移动通信能力很有限。

个人网络层:主要应用于家庭、办公室等场所,服务范围覆盖面积很小。移动通信能力有限,但可通过网络接入系统连接其他网络层。

固定网络层:主要指双绞线、同轴电缆、光纤组成的固定通信系统。

网络接入系统在整个移动网络中处于十分重要的位置。未来的接入系统将主要在以下三个方面进行技术革新和突破:为最大限度开发利用有限的频率资源,在接入系统的物理层,优化调制、信道编码和信号传输技术,提高信号处理算法、信号检测和数据压缩技术,并在频谱共享和新型天线方面做进一步研究。为提高网络性能,在接入系统的高层协议方面,研究网络自我优化和自动重构技术,动态频谱分配和资源分配技术,网络管理和不同接入系统间协作。提高和扩展IP 技术在移动网络中的应用;加强软件无线电技术;优化无线电传输技术,如支持实时和非实时业务、无缝连接和网络安全。

2.6 4G移动通信系统中的关键技术

(一)定位技术

定位是指移动终端位置的测量方法和计算方法。它主要分为基于移动终端定位、基于移动网络定位或者混合定位三种方式。在4G移动通信系统中,移动终端可能在不同系统(平台)间进行移动通信。因此,对移动终端的定位和跟踪,是实现移动终端在不同系统(平台)间无缝连接和系统中高速率和高质量的移动通信的前提和保障。

(二)切换技术

切换技术适用于移动终端在不同移动小区之间、不同频率之间通信或者信号降低信道选择等情况。切换技术是未来移动终端在众多通信系统、移动小区之间建立可靠移动通信的基础和重要技术。它主要有软切换和硬切换。在4G通信系统中,切换技术的适用范围更为广泛,并朝着软切换和硬切换相结合的方向发展。

(三)软件无线电技术

在4G移动通信系统中,软件将会变得非常繁杂。为此,专家们提议引入软件无线电技术,将其作为从第二代移动通信通向第三代和第四代移动通信的桥梁。软件无线电技术能够将模拟信号的数字化过程尽可能地接近天线,即将A/D 和D/A转换器尽可能地靠近RF前端,利用DSP进行信道分离、调制解调和信道编译码等工作。它旨在建立一个无线电通信平台,在平台上运行各种软件系统,以实现多通路、多层次和多模式的无线通信。因此,应用软件无线电技术,一个移动终端,就可以实现在不同系统和平台之间,畅通无阻的使用。目前比较成熟的软件无线电技术有参数控制软件无线电系统。

(四)智能天线技术

智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,能满足数据中心、移动IP网络的性能要求。智能天线成形波束能在空间域内抑制交互干扰,增强特殊范围内想要的信号,这种技术既能改善信号质量又能增加传输容量。

(五)交互干扰抑制和多用户识别

待开发的交互干扰抑制和多用户识别技术应成为4G的组成部分,它们以交互干扰抑制的方式引入到基站和移动电话系统,消除不必要的邻近和共信道用户的交互干扰,确保接收机的高质量接收信号。这种组合将满足更大用户容量的需求,还能增加覆盖范围。交互干扰抑制和多用户识别两种技术的组合将大大减少网络基础设施的部署,确保业务质量的改善。

(六)新的调制和信号传输技术

在高频段进行高速移动通信,将面临严重的选频衰落(frequency-selectivefading)。为提高信号性能,研究和发展智能调制和解调技术,来有效抑制这种衰落。例如正交频分复用技术(OFDM)、自适应均衡器等。另一方面,采用TPC、Rake扩频接收、跳频、FEC(如AQR和Turbo编码)等技术,来获取更好的信号能量噪声比[5]。

2.7 OFDM技术在4G中的应用

若以技术层面来看,第三代移动通信系统主要是以CDMA为核心技术,第四代移动通信系统技术则以正交频分复用(Orthogonal Freqency Division Multiplexer,OFDM)最受瞩目,特别是有不少专家学者针对OFDM技术在移动通信技术上的应用,提出相关的理论基础。例如无线区域环路(WLL)、数字音讯广播(DAB)等,都将在未来采用OFDM技术,而第四代移动通信系统则计划以OFDM为核心技术,提供增值服务。

在时代交替之际,旧有系统之整合与升级是产业关心的话题,目前大家谈的是GSM如何升级到第三代移动通信系统;而未来则是CDMA如何与OFDM技术相结合。可以预计,CDMA绝对不会在第四代移动通信系统中消失,而是成为其应用技术的一部份,或许未来也会有新的整合技术如OFDM/CDMA产生,前文所提到的数字音讯广播,其实它真正运用的技术是OFDM/FDMA的整合技术,同样是利用两种技术的结合。因此未来以OFDM为核心技术的第四代移动通信系统,也将会结合两项技术的优点,一部份将是以CDMA的延伸技术。

2.8 结束语

对于现在的人来说,未来的4G通信的确显得很神秘,不少人都认为第四代无线通信网络系统是人类有史以来最复杂的技术系统。总的来说,要顺利、全面地实施4G通信,还将可能遇到一些困难。

首先,人们对未来的4G通信的需求是它的通信传输速度将会得到极大提升,从理论上说最高可达到100Mbit/s,但手机的速度将受到通信系统容量的限制。据有关行家分析,4G手机将很难达到其理论速度。

其次,4G的发展还将面临极大的市场压力。有专家预测,在10年以后,2G 的多媒体服务将进入第三个发展阶段,此时覆盖全球的3G网络已经基本建成,全球25%以上的人口使用3G,到那时,整个行业正在消化吸收第三代技术,对于4G技术的接受还需要一个逐步过渡的过程。

因此,在建设4G通信网络系统时,通信运营商们将考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,使移动通信从3G逐步向4G过渡。

第三章数字微波通信

数字微波通信是在数字通信和模拟微波通信基础上发展起来的一种先进的利用微波作为载体传送数字信息的通信传输手段,它兼有数字通信和微波通信两者的优点。由于微波具有在空间直线传播的特点,故这种通信方式亦称为视距数

字微波中继通信。

数字微波中继通信由于通信容量大、传输质量稳定、上下话路方便、建站较快、投资较少等优点,和卫星、光纤一起被称作现代通信传输的三大支柱。

3.1 微波通信的工作频段

微波是指波长为1m-1mm,或频率为300MHz-300GHz范围内的电磁波。微波通信是指用微波波段电磁波进行的通信。

微波波段还可以细分如下:

分米波:波长为1m-10cm;

厘米波:波长为10cm-1cm;

毫米波:波长为1 cm-1mm.

3.2 微波通信与光纤通信

微波中继通信,尤其是数字微波采用了数字中继和更高的频段克服了噪声的累积,采用QAM调制提高了频带利用率,是其具有通信容量大、传输质量高等优点,但是微波通信同光纤通信相比,其通信容量、通信质量的稳定性等方面就远不及光纤通信,但因其组网灵活、建网迅速,并能适应各种业务传输的需要,因而微波通信与光纤通信在未来通信网中有相互补充、相互完善的趋势。

3.3 数字微波通信系统

数字微波通信系统由微波发送机、接收机和中继站组成。数字微波中继通信系统中继站按转接方式不同可以分为再生转接、中频转接和微波转接三种,如下图

再生转接方式

载频为f1的接受信号经天线、馈线和微波低噪声放大器放大后与接收机的本振信号混频,混频输出为中频调制信号,经中放后送往解调器,解调后信号经判决再生电路还原出数据码元。此数据码元再对发射机的载频进行数字调制,再经上变频和功率放大后以f2的载频经由天线发射出去,如上图,这种转接方式采用数字接口,可用这种转接方式时,微波终端站和中继站的设备通用[6]。

近年来,由于微波射频放大器高线性功率输出幅度的提高,产生了一种价格低廉、安装容易的微波射频直放中继站。它是有源、双向、不进行频率变换的信号放大装置,由一个微波低噪声宽频带放大器、一个微波宽频带线性频率线性功率放大器以及微波分路滤波器组成,无论是模拟微波中继通信还是数字微波中继通信都可以配套使用。直放站因无变频系统,结构大为简化,体积甚小,可以直接安装在天线支架上。

微波中继通信是利用微波的视距传输信号的。微波视距传播具有质量较稳

定、受外界干扰较小的优点,但是它也会受大气及地面的影响,产生衰落与传播失真。电波在自由空间(均匀、理想的介质)传播时,虽不产生反射、折射、吸收和散射等现象(也就是说,总能量没有被损耗掉),但其能量会因向空间扩散而衰减,这是因为电波由天线辐射后,便向周围空间传播,到达接受地点的能量仅是总能量的小部分。距离越远,这部分能量越小。因而在微波通信中实际使用的天线为有方向性天线。

第四章卫星通信技术及其发展趋势

综述了卫星通信网中使用的CDMA、抗干扰、MPLS等技术和卫星通信的发展趋势,并对我国卫星通信的发展进行了展望。卫星通信是以卫星作为中继的一种通信方式,是在地面微波中继通信和空间电子技术的基础上发展起来的,具有通信距离远、覆盖范围广、不受地面条件的约束、建站成本与通信距离无关、灵活机动、能多址连接且通信容量较大等优点,在全球许多领域应用效果很好,尤其在军事上具有重要的应用价值。

4.1 卫星通信网络的定义

卫星通信网络是利用人造地球卫星作为中继站转发无线电波,从而实现两个或多个地面站之间通信的网络。其中,地面站是指设在地球表面(包括地面、水面和大气层)的通信站,也称为地球站。通信卫星的作用相当于离地面很高的中继站。卫星通信网络分为延迟转发式通信网络和立即转发式通信网络。

当卫星的运行轨道属于低轨道时,对于相对较远的地面站而言,要进行远距离实时通信,除采用延迟转发方式(利用一颗卫星)外,也可以利用多颗低轨道卫星进行转发,这种网络就是通常所说的低轨道移动卫星通信网络。

4.2 卫星通信中的主要技术

4.2.1 CDMA技术

CDMA(码分多址)系统通过采用话音激活技术、前向纠错(FEC)技术、功率控制技术、频率复用技术、扇区技术等技术手段,可使CDMA系统容量大幅扩大,同时,它还具有抗多径干扰能力、更好的话音质量和更低的功耗以及软区切换等优点。CDMA以其本身所具有的特点及优越性而广泛应用于数字卫星通信系统中。特别是近年来,小卫星技术的发展为实现全球移动通信和卫星通信提供了条件,利用分布在中、低轨道的许多小卫星实现全球个人通信,已在国际上逐渐形成完善的体系。

CDMA移动卫星通信系统根据导频信号的幅度实现功率控制, 减少用户对星上功率的要求从而增加系统的容量,减少多址干扰;CDMA移动卫星通信系统可利用多个卫星分集接收,大大降低多径衰落的影响,改善传输的可靠性。此外,由于CDMA多址方式具有优越的抗干扰性能、很好的保密性和隐蔽性、连接灵活方便所等特点,决定了它在军事卫星通信上具有重要的意义。

4.2.2 抗干扰技术

现代军事斗争中,敌我双方对卫星通信干扰与抗干扰技术对抗越来越激烈。未来战争中电磁环境将变得越来越复杂,卫星通信因其固有的特点而面临极大的威胁。由于通信卫星始终暴露在太空中,且信道是开放的,易于受对方攻击。因此,军事卫星通信中干扰和抗干扰是斗争双方关注的焦点,研究在复杂电磁环境下卫星通信抗干扰技术体制已成为提高军事通信装备生存能力、确保军事指挥顺畅的关键。

卫星通信抗干扰主要通过传输链路抗干扰、软硬件设备抗干扰以及建立综合智能抗干扰体系等措施实现。

传输链路抗干扰主要有DS/FH混合扩频、自适应选频、自适应频域滤波、猝发通信、时域适应干扰消除、基于多用户检测的抗干扰、跳时(TH)、自适应信号功率管理、自适应调零天线、多波束天线、星上SmartAGC、分集抗干扰、变换域干扰消除、纠错编码和交织编码抗干扰技术等。软硬件设备抗干扰主要有光电隔离、硬件滤波、屏蔽、数字滤波、指令冗余、程序运行监视等技术。建立综合智能抗干扰体系可以通过建立软件化抗干扰硬件平台、建立智能化抗干扰软件应用系统,如:智能抗干扰系统、网络监测控制系统、专家策略支持系统等措施实现。

特别值得一提的一种抗干扰、抗搜索、抗截获的技术是跳频通信技术,它是在现代信息对抗日益激烈的形势下迅速发展起来的。各国军方对这一先进技术的发展和应用十分重视,不断加强对跳频抗干扰通信的研究和推广应用。目前,跳频技术装备正朝着宽频带、高速率、数字化、低功耗的方向快速发展,其信息战潜力巨大[7]。

4.2.3 基于MPLS的移动卫星通信网络体系构架

MPLS(多协议标签交换)技术由于可将IP路由的控制和第二层交换无缝地集成起来,具有IP的许多优点(如扩展性、兼容性好),又可很好地支持QoS和流量工程,是目前最有前途的网络通信技术之一。近年来,在地面固定网MPLS 技术逐渐成熟后,该技术已向光通信、无线通信和卫星通信等领域扩展。现有的宽带卫星系统设计主要采用卫星ATM 技术,研究表明该技术可给不同的业务提供很好的QoS保证,并可利用面向连接的虚通路设计以及流量分类等方法为网络提供有效的流量工程设计。

卫星MPLS体系结构分为用户层、接入层、核心层三部分,其中,用户层包括卫星手持移动终端(直接接入移动卫星网)、小型专用局域网用户(通过小型地面移动终端接入卫星网)、其他网络用户(通过地面网关站接入卫星网络)等。接入层由标签边缘交换路由器(LER)组成,完成卫星MPLS网同其他网络以及卫星手持移动终端的连接,其主要功能包括实现对业务的分类、建立FEC和标签之间的绑定、约束LSP的计算、分发标签、剥去标签以及用户QoS接纳管理和相应的接入流量工程控制等。核心层由标签交换路由器(LSR)组成,完成信息按MPLS标签进行交换转发,其上主要运行MPLS控制协议和第三层路由协议,并负责与其他标签交换路由器交换路由信息来建立路由表、分发标签绑定信息、建立和维护标签转发表等工作。

4.3 卫星通信的发展趋势

在目前的通信卫星中,已采用许多代表当今世界通信卫星的先进技术,如氙粒子发动机、高能太阳电池和蓄电池、大天线和多点波束(如:THURYU、ASES、TORSS、GALILEO等卫星天线)、卫星星上处理器(如:窄带信道化器、数字波束成形网络和BUTLER矩阵放大器)以及射频功率动态按需分配等技术,这些技术的发展,对通信卫星和卫星通信的发展产生了深刻的影响。

4.3.1通信卫星向大、小两极发展

现代卫星通信的发展趋势之一就是卫星星体本身正在向大型化和微型化两个方向发展。一方面,各国为了提高卫星的灵敏度和星上处理能力,以及实现卫星的一星多能,把卫星星体造得越来越大,重量也越来越重。卫星大了也有弱点,

易受电磁干扰和敌方反卫星武器的破坏,而小卫星、微小卫星却能克服这种弱点。如果用多颗小卫星组网来代替单颗大卫星,就可以提高卫星系统的生存能力。4.3.2 卫星通信向卫星移动通信方向演进

卫星移动通信是指利用卫星实现移动用户间或移动用户与固定用户间的相互通信。随着技术的发展,卫星的功能逐渐增强,许多原来由地球站执行的功能被转移到卫星上去完成,从而使地面设备变得越来越简单,天线尺寸也随之大幅度减小。随着频谱扩展、数字无线接入、智能网络技术的不断发展,卫星移动通信在向卫星个人通信方向演进,用手持机可实现在任何地点、任何时间与世界任何地方接入卫星移动通信网的用户进行双向通信。

4.3.3 卫星通信与互联网技术相结合

由于卫星通信和计算机技术的飞速发展,产生了卫星互联网技术。目前卫星互联网的连接方式主要有两种:一种是利用宽带卫星的双向传输;另一种则是利用卫星的高速下载和地面网络反馈的外交互通信方式,即将卫星链路作为下行数据链路,而将电话拨号、局域网等其他通信链路作为上行数据链路,这种方式是基于当前互联网信息流量的非对称性提出来的,它是卫星通信的一个热点[8]。4.3.4 卫星通信宽带化

为了满足卫星通信系统用户对带宽的需求,卫星通信技术已向Ka、Q等波段发展。一些国家卫星系统已拓展直EHF频段。采用EHF频段有很多现有其他频段无可比拟的优点,一是扩大EHF频段的容量,大大减轻现有频谱拥挤现象;二是EHF的波束窄,可减少受核爆炸影响出现的信号闪烁和衰落,抗干扰和抗截收能力强。三是EHF 频段系统使用的部件尺寸和重量都可大大缩小和减轻。

4.3.5 卫星光通信

卫星光通信就是用激光进行卫星间通信,使卫星间通信容量大为增加,而卫星通信设备的体积和重量却大大减小,同时也增加了卫星通信的保密性。卫星光通信系统主要由以下几个子系统组成:光源子系统,发射、接收子系统以及瞄准、捕获、跟踪子系统,此外还包括伺服系统、控制系统等。

4.4 我国卫星通信发展展望

卫星通信在国防现代化建设、社会经济发展以及我国参与全球经济一体化活动等方面都占有重要地位。我国只有紧紧抓住这一有利时机,真正把发展卫星通信事业摆在重要地位,及时跟踪、赶超国外卫星通信的先进技术,才能使我国在新一轮的国际竞争中占据有利地位。

随着Internet、地面移动网快速发展,卫星通信将会迎来一个更大的发展,我国将以自主的、大容量通信卫星为主体,建立起完善、长期稳定运行的卫星通信系统。同时,我国将积极对外开放,广泛进行国际合作,利用国际的先进卫星通信技术来发展我国的卫星通信。

我国卫星通信技术的发展应注意开发新频段,提高现有频段频谱的利用率,公用干线通信网应进一步向宽带化方向发展,利用IP、ATM建立卫星宽带综合业务数字通信网——国家信息高速公路。

对于专用卫星通信网应进一步向小型化、智能化、经济化方向发展。发展移动卫星通信系统的信关站技术和其他各类高增益、高跟踪精度的轻型移动天线、伺服、跟踪技术。发展网络管理、控制及网络动态分配处理技术,发展网同步技术,发展适应卫星信道特点的卫星IP、卫星ATM与异构网互联的路由器技术。通信卫星向大功率、大容量、长寿命、高可靠大卫星平台发展,向星上交换、星

上处理、星上抗干扰技术发展,中低轨道移动通信卫星向现代“小卫星”技术发展。

在Internet、卫星宽带多媒体业务、卫星IP传输业务、卫星ATM和地面蜂窝业务发展的推动下,卫星通信将获得更大发展。尤其是光开关、光交换、光信息处理、智能化星上网控、超导、新的发射运载工具和新的轨道技术等各种新技术、新工艺的实现,将使卫星通信产生革命性的变化。卫星通信作为全球信息化网络设施的重要组成部分,将对我国和世界经济、社会、军事的发展产生重大的促进作用。

参考文献

[1]张宝富,张曙光.现代通信技术与网络应用[M].西安电子科技大学出版社,2010,79~139.

[2]张煦.光纤通信技术[M].中国科学技术出版社,2007,20~56.

[3]曾庆珠,方磊.移动通信[M].北京理工大学出版社,2009,199~222.

[4]雷震洲著.蜂窝移动通信技术演进历程回顾及未来发展趋势.工业和信息化部电信研究院.

[5]苏方宁,邓再德著.3G标准TD-SCDMA及其进展.华南理工大学材料学院通信材料研究院.

[6] 吴诗其.卫星移动通信新技术.北京:国防工业出版社,2001

[7] 马刈非.卫星通信网络技术.北京:国防工业出版社,2003

[8] 丁龙刚.卫星通信技术.北京:机械工业出版社,2006

相关主题
文本预览
相关文档 最新文档