当前位置:文档之家› 高分子物理第七章

高分子物理第七章

高分子物理第1、2章习题答案

高分子物理答案详解(第三版) 第1章高分子的链结构 1.写出聚氯丁二烯的各种可能构型。 所谓构型(configuration),包括:旋光异构(全同、间同、无规立构),由不对称中心(或手性C原子)的存在而引起的;几何异构(顺、反异构),由主链上存在双键引起的;键接异构(头尾、头头、尾尾相连)。聚氯丁二烯的各种可能构型有如下六种: 2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么? 答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。 (2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。 3.为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象?答:(1)由于等规立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。 (2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。 4.哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差; (2)特征比Cn,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。该聚合物为什么室温下为塑料而不是橡胶? 答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。 6.从结构出发,简述下列各组聚合物的性能差异:

高分子物理第四章习题及解答教案资料

高分子物理第四章习 题及解答

第四章 4.1 高聚物相对分子质量的统计意义 4.1.1 利用定义式计算相对分子质量 例4-1 假定A与B两聚合物试样中都含有三个组分,其相对分子质量分别为1万、10万和20万,相应的重量分数分别为:A是0.3、0.4和0.3,B是0.1、0.8和0.1,计算此二试样的、和,并求其分布宽度指数、和多分散系数d。 解:(1)对于A (2)对于B

例4-2 假定某聚合物试样中含有三个组分,其相对分子质量分别为1万、2万和3万,今测得该试样的数均相对分子质量为2万、重均相对分子质量为2.3万,试计算此试样中各组分的摩尔分数和重量分数。 解:(1) 解得,, (2) 解得,, 例4-3 假定PMMA样品由相对分子质量100,000和400,000两个单分散级分以1:2的重量比组成

,求它的,和,(假定a=0.5)并比较它们的大小. 解: 可见 例4-4 一个聚合物样品由相对分子质量为10000、30000和100000三个单分散组份组成,计算下述混合物的和 (1)每个组份的分子数相等

(2)每个组份的重量相等 (3)只混合其中的10000和100000两个组份,混合的重量比分别为0.145:0.855:0.5:0.5:0.855:0.145,评价值. 解:(1) (2) (3)当比例为0.145:0.855时 ,, 当比例为0.5:0.5时, ,, 当比例为0.855:0.145时, ,, 可见,组成接近时d值较大。故用d值衡量是合理的。

例4-5假定某一聚合物由单分散组分A和B组成,A和B的相对分子质量分别为100, 000和400,000。问分别以(1)A∶B=1∶2(重量比);(2)A∶B=2∶1混合样品, 混合物的和为多少?(3)A∶B=1∶2,a=0.72,计算, 并比较、、的大小。 解:(1)=1/100,000=1×10-5 =2/400,000=0.5×10-5 =2.0×10-5 (2)=2/100,000=2×10-5 =1/400,000=0.25×10-5

高分子物理第三章习题及解答

高分子的溶解 溶解与溶胀 例3-1 简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢 解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。整个过程往往需要较长的时间。 高聚物的聚集态又有非晶态和晶态之分。非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难,因此晶态高聚物的溶解要困难得多。非极性的晶态高聚物(如PE)在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。

例3-2.用热力学原理解释溶解和溶胀。 解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合: 上式表明溶解的可能性取决于两个因素:焓的因素()和熵的因素()。焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。但一般来说,高聚物的溶解过程都是增加的,即>0。显然,要使<0,则要求越小越好,最好为负值或较小的正值。极性高聚物溶于极性溶剂,常因溶剂化作用而放热。因此,总小于零,即<0,溶解过程自发进行。根据晶格理论得 =(3-1) 式中称为Huggins参数,它反映高分子与溶剂混合时相互作用能的变化。的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为)。而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即),其的计算可用Hildebrand的溶度公式:=(3-2) 式中是体积分数,是溶度参数,下标1和2分别表示溶剂和

高分子物理各章节答案第1章分解

第一章 填空题 1、对于聚乙稀自由旋转链,均方末端距与链长的关系是()。 解: 2、等规聚丙烯经体中分子链处于()构象。 解:螺旋 3、C5链至少有()种构象。 解:9 4、高分子链的柔顺性越大,它在溶液中的构象数越(),其均方末端距越()。 解:多 小 5、聚异戊二烯可以生成()种有规异构体,它们是()。 解:六 顺式1,4加成聚异戊二烯,反式1,4加成聚异戊二烯,全同1,2加成聚异戊二烯,间同1,2加成聚异戊二烯,全同3,4加成聚异戊二烯,间同3,4加成聚异戊二烯 判断题 1、下列聚合物分子链柔顺性的顺序是() 硅橡胶>聚异丁烯>聚甲基丙烯酸甲酯>聚二甲基苯基醚氧 解析:表述正确。 2、-{-CH2CH2-St-}-和-{-CH=CH-St-}-两种聚合物的分子链都含有苯环,所以刚性较好,在 室温下都可以作为塑料使用() 解析:高分子链的柔性与实际材料的刚柔性不能混为一谈。判断材料的刚柔性,必须同时考虑分子内的相互作用以及分子间的相互作用和凝聚状态。 3、不同聚合物分子链的均方末端距越短,表示分子链柔顺性越好() 解析:这种说法是错误的。 4、高斯链的均方末端距远大于自由旋转链的均方末端距() 解析:这种说法是错误的。 5、理想的柔性链运动单元为单键() 解析:表述正确。对于真实的柔性链运动单元为链段。 6、因为天然橡胶相对分子质量很大,加工困难,故加工前必须塑炼() 解析:表述正确。 7、因为聚氯乙烯分子链柔顺性小于聚乙稀,所以聚氯乙烯塑料比聚乙稀塑料硬(对?)解析:表述正确。 8、无规聚丙烯分子链中的-C-C-单键是可以内旋转的,通过单键内旋转可以把无规立构

高分子物理第五章习题与解答说课讲解

高分子物理第五章习 题与解答

一.选择题 1.聚乙烯(PE)、聚氯乙烯(PVC)、聚偏二氯乙烯(PVDC)三种聚合物的结 晶能力的强弱顺序为() (a)PE>PVC>PVDC (b)PVDC>PE>PVC (c)PE>PVDC>PVC (d)PVDC>PVC>PE 2.退火处理使得聚合物的结晶度() (a)增加(b)减小(c)不变 3.聚丙烯的熔融过程和聚苯乙烯的玻璃化转变过程分别是:()。 A. 都是力学状态转变过程; B. 都是热力学相变过程; C. 前 者是热力学相变过程,后者是力学状态转变过程 4. 聚合物的玻璃化转变温度不能用以下哪个方法测定?() A.差示量热扫描仪; B. 膨胀计; C. 熔融指数仪 5.玻璃态高聚物和结晶高聚物的拉伸情况的区别在于:() A.前者只发生分子链的取向,不发生相变;而后者还包含有结晶的破坏、取 向和再结晶等过程; B.两者都只发生分子链的取向,不发生相变; C.两者都发生结晶的破坏、取向和再结晶等过程 6.结晶高聚物的熔点与其结晶温度的关系是() A. 在越低温度下结晶,熔点越低,而且熔限越窄; B. 在越低温度下结晶,熔点越高,而且熔限越宽; C. 在越高温度下结晶,熔点越高,而且熔限越窄; 7.共聚物的玻璃化转变温度通常是()

A.低; B.高; C.介于两者之间 8.下列聚合物结晶能力从大到小的顺序是:() A.高密度聚乙烯>聚异丁烯>自由基聚合得到的聚苯乙烯 B.自由基聚合得到的聚苯乙烯>聚异丁烯>高密度聚乙烯 C.聚异丁烯>高密度聚乙烯>自由基聚合得到的聚苯乙烯 9.下列聚合物的玻璃化转变温度从高到低的顺序是:() A.聚甲基丙烯酸甲酯>聚丙烯酸丁酯>聚丙烯酸甲酯 B.聚丙烯酸丁酯>聚丙烯酸甲酯>聚甲基丙烯酸甲酯 C.聚甲基丙烯酸甲酯>聚丙烯酸甲酯>聚丙烯酸丁酯 10.聚合物在结晶过程中,体积() A.变大 B.变小 C.不变 11.下列方法中不能测定玻璃化温度的是:() A.体膨胀计B. 差示扫描量热法C. 动态机械分析仪D. X 射线衍射仪 12.下列聚合物中,熔点最高的是() A.尼龙10 B.尼龙11 C.尼龙12 13.下列聚合物中,玻璃化温度最高的是() A.PDMS B.PE C.PS D.PP 14.测定熔点的方法有() A.偏光显微镜 B.DSC C.DMA D.密度法 15.非晶态聚合物的玻璃化转变即玻璃-橡胶转变,下列说法正确的是()。 A、T g是塑料的最低使用温度,又是橡胶的最高使用温度。

高分子物理第三章习题及解答

第三章 3.1 高分子的溶解 3.1.1 溶解与溶胀 例3-1 简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢? 解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。整个过程往往需要较长的时间。 高聚物的聚集态又有非晶态和晶态之分。非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难,因此晶态高聚物的溶解要困难得多。非极性的晶态高聚物(如PE)在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。 例3-2.用热力学原理解释溶解和溶胀。 解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合: 上式表明溶解的可能性取决于两个因素:焓的因素()和熵的因素()。焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。但一般来说,高聚物的溶解过程都是增加的,即>0。显然,要使<0,则要求越小越好,最好为负值或较小的正值。极性高聚物溶于极性溶剂,常因溶剂化作用而放热。因此,总小于零,即<0,溶解过程自发进行。根据晶格理论得 =(3-1) 式中称为Huggins参数,它反映高分子与溶剂混合时相互作用能的变化。的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为)。而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即),其的计算可用Hildebrand的溶度公式: =(3-2) 式中是体积分数,是溶度参数,下标1和2分别表示溶剂和溶质,是溶液的总体积。从式中可知总是正的,当 时,。一般要求与的差不超过1.7~2。综上所述,便知选择溶剂时要求越小或和 相差越小越好的道理。 注意: ①Hildebrand公式中仅适用于非晶态、非极性的聚合物,仅考虑结构单元之间的色散力,因此用相近原则选择溶剂时有例外。相近原则只是必要条件,充分条件还应有溶剂与溶质的极性和形成的氢键程度要大致相等,即当考虑结构单元间除有色散力外,还有偶极力和氢键作用时,则有

高分子物理作业答案

第五章聚合物的转变与松弛 1.以分子运动观点和分子间物理缠结概念说明非晶态聚合物随着温度升高粘弹行为的5个区域.并讨论分子量对应力松弛模量—温度曲线的影响规律。 (1)玻璃态区类似玻璃,脆性,如:室温下的PS、PMMA。 温度不足以克服内旋转位垒,链段以上运动“冻结”,分子运动主要限于振动和短程的旋转运动 (2)玻璃—橡胶转变区远程、协同分子运动的开始。链段(约10—50个主链原子)获得了足够的热能开始以协同方式运动,不断改变构象 (3)橡胶-弹性平台区分子间存在物理缠结,聚合物呈现远程橡胶弹性(蜷曲链受力扩张,产生大形变外力除去后,自发地回复到蜷曲形态) (4) 粘弹转变区分子链发生解缠作用,导致由链段运动向整个分子滑移运动过渡。 (5) 粘流区聚合物容易流动,类似糖浆;热运动能量足以使分子链解缠蠕动,导致整链运 动。 2. 讨论结晶、交联聚合物的模量-温度曲线和结晶度、交联度对曲线的影响规律。 答:在轻度结晶的高聚物中,微晶体起着类似交联点的作用,这种试样仍然存在明显的玻璃化转变,随着结晶度的增加,相当于交联度的增加,非晶部分处在高弹态的结晶高聚物的硬度将逐渐增加,到结晶度大于40%后,微晶体彼此衔接,形成贯穿整个材料的连续晶相,宏观上不易察觉明显的玻璃化转变,其曲线在熔点以前不出现明显的转折。 交联聚合物,不存在(4)(5)区,因为交联阻止了滑移运动,在达到聚合物的分解温度之前,一直保持在③区状态。 结晶聚合物 1.处于晶态

a.轻度结晶 微晶体起着类似交联点的作用,存在明显的玻璃化转变, 形变小于非晶 b.结晶度大于40%时,无玻璃化转变,在熔点以前不出现明显的转折。 ?分子量不太大,T f T m熔融后→高弹态→粘流态 2.处于非晶态 类似于非晶态高聚物但有可能出现冷结晶现象。即T>Tg 后,链段排入晶格→结晶,使形变变小。 (图见讲义) 3. 写出四种测定聚合物玻璃化温度的方法,不同实验方法所得结果是否相同?为什么? 答:①膨胀计法②量热法(DSC法)③温度-形变法(热机械法)④核磁共振法(NMR) 4.聚合物的玻璃化转变是否是热力学相变?为什么? 答:玻璃化温度与测定过程的冷却速度有关,不是热力学的平衡过程,而是属于力学松弛过程。因为在玻璃化转变前后聚合物都是无规的,热力学上都属于液态。 5. 试用玻璃化转变的自由体积理论解释: 按自由体积理论(熔体降温为固体) 冷却速度过快,则链段来不及调整构象就被冻结,使自由体积高于平衡态时的Vf,这样,Tg以下体积-温度曲线向上平移,使依据两条曲线交点确定的Tg偏高。 按松弛理论(固体升温变为熔体) 因Tg是链段运动的松弛时间与观察时间匹配时的温度,升温速率越快,观察时间越短,相应的更短松弛时间的温度就越高,故测得的Tg就越高。 7. 聚合物晶体结构和结晶过程与小分子晶体结构和结晶过程有何差别?造成这些差别的原因是什么? 相似:都发生突变,有明显的转折,都属于热力学一级相转变过程 差异:小分子熔点0.2度高聚物是一5~10℃温度范围,熔限 原因:结晶高聚物中有完善程度不同的晶体(结晶时造成的),结晶比较完善的晶体在较高温度下才能熔融,而结晶不完善的晶体在较低温度就能熔融,如果熔化过程中升温速度比较缓慢,不完整晶体可以再结晶形成比较完善的晶体,熔限也相应变窄; 8. 测定聚合物结晶速度有哪些方法? 答:(1)膨胀计法、光学解偏振法和差示扫描量热法(Dsc) (2)偏光显微镜法和小角激光光散射法 9. 比较下列各组聚合物的Tg高低并说明理由; (1) 聚二甲基硅氧烷,顺式聚1,4—丁二烯; (2) 聚已二酸乙二醇酯,聚对苯二甲酸乙二醇酯 (3) 聚丙烯,聚4-甲基1-戊烯; (4) 聚氯乙烯,聚偏二氯乙烯。 解:(1)Tg:聚二甲基硅氧烷< 顺式聚1,4—丁二烯,聚二甲基硅氧烷主链为饱和单

何曼君 高分子物理课后答案_第三版

第三章 高分子的溶解过程与小分子相比有什么不同? 高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的高分子只停留在溶胀阶段,不会溶解。 第二维里系数A2的物理意义? 第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。它与溶剂化作用和高分子在溶液里的形态有密切关系。良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。 高分子的理想链和真实链有哪些区别? ①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。 ②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。 高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别? 三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同: ①稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团 之间的相互作用可以忽略。 ②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。 ②亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整 个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。 第四章 一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别? 由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。两种聚合物共混时,由于混合熵很小,混合晗决定于聚合物之间的相互作用,通常较小,所以两种聚合物混合自由能通常大于零,是分相的。而一般共混物两相界面之间的作用力是分子间作用力或氢键,其分相可能是宏观可见的,添加增容剂后,并经强烈的机械混合,增容剂提高了两相界面之间的相互作用,可形成稳定的微相分离结构 第五章聚合物的非晶态 3.何谓“松弛”?请举例说明松弛现象。用什么物理量表示松弛过程的快慢? 答:“松弛”过程是指一个从非平衡态到平衡态进行的过程,它首先是很快地进行,然后逐步放慢甚至于时间达到无穷长。√ 例如,一直杆的长度比两刚壁之间的固定距离L稍长;将直杆强制地装入两刚壁之间,在开始时,直杆与刚壁的接触面之间有相互作用的压力P,在直杆内任一截面上也有内压力P;以后,随着时间的增长,这些压力的数值渐渐减小,而且温度越高时减小得越快。岩石和

高分子物理第三章 习题参考答案

第三章 习题参考答案 1. 什么是溶度参数δ? 聚合物的δ怎样测定? 根据热力学原理解释非极性聚合物为什么能够溶解在其δ相近的溶剂中? 解:(1)溶度参数是内聚能密度的开方,它反映聚合物分子间作用力的大小。 (2)由于聚合物不能汽化,不能通过测汽化热来计算δ。聚合物的δ常用溶胀度法,浊度法和黏度法测定。 (3)溶解自发进行的条件是混合自由能0?M H (吸热), 所以只有当M M S T H ??,∴M H ?越小越好。 ()2 2121δδφφ-=?V H M ∴ 越小越好 ,即1δ与2δ越接近越好。 2. 用热力学原理解释溶解和溶胀。 解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合: 0≤?-?=?S T H G 上式表明溶解的可能性取决于两个因素:焓的因素(H ?)和熵的因素(S ?)。焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。但一般来说,高聚物的溶解过程S ?都是增加的,即S ?>0。显然,要使G ?<0,则要求H ?越小越好,最好为负值或较小 的正值。极性高聚物溶于极性溶剂,常因溶剂化作用而放热。因此,H ?总小于零,即G ?<0, 溶解过程自发进行。根据晶格理论得 H ?=211φχKTN (3-1) 式中1χ称为Huggins 参数,它反映高分子与溶剂混合时相互作用能的变化。KT 1χ的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为KT H N 111,1,1χφ≈?≈=) 。而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即0=?V ),其H ?的计算可用Hildebrand 的溶度公式: H ?=22121)(δδφφ-V (3-2) 式中φ是体积分数,δ是溶度参数,下标1和2分别表示溶剂和溶质,V 是溶液的总体 积。从式中可知H ?总是正的,当1δ2δ?→?时,H ?0?→? 。一般要求1δ与2δ的差不超过1.7~2。综上所述,便知选择溶剂时要求1χ越小或1δ和2δ相差越小越好的道理。 注意: ①Hildebrand 公式中δ仅适用于非晶态、非极性的聚合物,仅考虑结构单元之间的色散力,因此用δ相近原则选择溶剂时有例外。δ相近原则只是必要条件,充分条件还应有溶

高分子物理学习题 第一章 答案

高分子物理学思考题及习题 第1章 思考题 1-1 重要概念:高分子化合物;高分子材料(聚合物);天然高分子材料;人工合成高分子材料;塑料;橡胶;纤维;功能高分子;结构单元;聚合度;线形分子链(线形高分子);支化分子链(支化高分子);交联网络(交联高分子)。 1-2 了解高分子材料的分类法和命名法。 1-3 与小分子化合物和小分子材料相比,高分子化合物与高分子材料的结构有哪些重要特点使之具有独特的性能?将这些特点牢记在心。 1-4 仔细阅读关于高分子材料的“多分散性和多尺度性”、“软物质性”及“标度性”的说明,理解其意义。 1-5 了解高分子物理学的核心内容和主要学习线索,体会“高分子物理学是研究高分子材料结构、分子运动与性能的关系的学说”。 1-6 阅读“高分子物理学发展简史及研究热点”一节,了解当前高分子物理学的热点问题和发展方向。 1-7 根据生活经验,列举一些适合用作塑料、橡胶或纤维的聚合物名称。 1-8 下列一些聚合物(我国的商品名称):丁苯橡胶,氯丁橡胶,硅橡胶,环氧树脂,脲醛树脂,聚氯乙烯,聚碳酸脂,涤纶,锦纶,腈纶。试分别写出各自结构单元的化学结构式及合成所需单体的化学结构式。 第一章习题可能与高分子化学学习内容重复,可不做。 第2章 思考题及习题 2-1重要概念:近程结构;远程结构;构型;构象;无规线团;内旋转;内旋转

势垒;分子链柔顺性(静态和动态);链段;均方末端距;均方旋转半径;自由连接链;自由旋转链;等效自由连接链;Kuhn等效链段;高斯链;θ条件/θ状态;Flory特征比(刚性因子)。 (1)近程结构:包括构造和构型。构造是指链中原子的种类和排列,取代基和端基的种类,单体单元的排列顺序,支链的类型和长度等。构型是指由化学键所固定的链中原子或基团在空间的排列。 注意:近程结构相当于“链的细节”。构造着重于链上的原子的种类、数目比例、相互连接关系。构型涉及空间立体异构(顺反异构、旋光异构)。 (2)远程结构:包括分子的大小、构象和形态,链的柔顺性。 注意:因为高分子的长链形状,才产生了如此多的结构层次。 (3)无规线团:高斯链的空间形态。换言之,无规蜷曲的柔性链的空间形态。(4)内旋转:sigma键的电子云轴对称,因此形成sigma键的两个原子可以绕键对称轴旋转。 注意:无论高分子或小分子,只要是sigma键就可内旋转。小分子的三维尺寸差不多,内旋转意义不大;而高分子的长短与粗细相差悬殊,故内旋转能导致高分子链出现天文数字的空间形态。我们一般只关注“主链上单键的内旋转”,不太关心侧基上单键。 (5)内旋转势垒:顺式构象与反式构象的位能差。 注意:参考图2-5。相当于内旋转活化能,内旋转势能峰高度。是ΔE而不是Δε。 (6)柔顺性:大分子链通过主链上单键的内旋转可以改变构象和形态的性质。(7)链段:大分子链上由相邻几个单键组成的能够自由取向的最小单位。 注意:链段实际上不存在,是一个人为的划分。很多时候算出来的链段长度是个非整数(譬如聚乙烯,le=8.28倍单键投影长度)。但是链段有明确的物理意义,即链越柔顺,le越小。 (8)均方末端距:末端距平方的平均值。 注意:如何理解“平均值”?有两种“平均”方法,(1)可只对一个链进行时间平均;(2)也可对所有链(某一时刻)作平均。根据统计力学原理,二者的结果相同。

高分子物理学第三章课后答案

第三章;高分子的溶解过程与小分子相比有什么不同?;高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动;第二维里系数A2的物理意义?;第二维利系数的物理意义是高分子链段和链段间的内排;高分子的理想链和真实链有哪些区别?;①理想链是一种理论模型,认为化学键不占体积,自由;②理想链没有考虑远程相互作用和近程相互作用,而真;高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的 第三章 高分子的溶解过程与小分子相比有什么不同? 高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的高分子只停留在溶胀阶段,不会溶解。 第二维里系数A2的物理意义? 第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。它与溶剂化作用和高分子在溶液里的形态有密切关系。良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。 高分子的理想链和真实链有哪些区别?

①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。 ②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。 高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别? 三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同: ① 稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团 之间的相互作用可以忽略。 ②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。② 亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整 个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。 第四章一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别? 由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。两种聚合物共混时,由于混合熵很小,混合晗决定于聚合物之间的相互作用,通常较小,所以两种聚

高分子物理第章五

高分子物理第章五 第五章聚合物的转变与松弛 1.以分子运动观点和分子间物理缠结概念说明非晶态聚合物随着温度升高粘弹行为的4个区域.并讨论分子量对应力松弛模量—温度曲线的影响规律。 答:①玻璃态区:在此区域内聚合物类似玻璃通常是脆性的分子运动主要限于振动和短程的旋转运动 ②玻璃-橡胶转变区:此区域内在20~30℃范围模量下降了近1000倍聚合物的行为与皮革相似。玻璃化转变温度(Tg )通常取作模量下降速度最大处的温度。 ③橡胶-弹性平台区:在此区域内由于分子间存在物理缠结、聚合物呈现远程橡胶弹性 ④橡胶流动区:在这个区域内聚合物既呈现橡胶弹性又呈现流动性。 2. 讨论结晶、交联聚合物的模量-温度曲线和结晶度、交联度对曲线的影响规律。 答:在轻度结晶的高聚物中微晶体起着类似交联点的作用这种试样仍然存在明显的玻璃化转变随着结晶度的增加相当于交联度的增加非晶部分处在高弹态的结晶高聚物的硬度将逐渐增加到结晶度大于40%后微晶体彼此衔接形成贯穿整个材料的连续晶相宏观上不易察觉明显的玻璃化转变其曲线在熔点以前不出现明显的转。 3. 写出四种测定聚合物玻璃化温度的方法简述其基本原理。不同实验方法所得结果是否相同?为什么? 答:①膨胀计法原理:Tg前后试样比容发生突变膨胀计内的水银高度发生偏; ②量热法(DSC法)原理:给基准物和样品相同的热量(仪器采用两侧等速升温或降温进行控制)基准物是热惰性的而样品在温度改变时会出现各种转变会吸热或放热与基准物的温度有一差值(通过热电偶测出)将温度差值—温度作一图线就可以得到差热曲线。曲线上的转对应于Tg;

③温度-形变法(热机械法)原理:动态模量和力学损耗一温度的变化制成样品在仪器上进测试得到内耗-温度曲线最高损耗峰的峰位对应的温度就是Tg; ④核磁共振法(NMR) 原理:在Tg变化前后核磁共振谱线的宽度有很大变化根据线宽的变化就可以得到Tg。 不同的测试方法所得结果不同因为实验速率不同 4.聚合物的玻璃化转变是否是热力学相变?为什么? 答:玻璃化温度与测定过程的冷却速度有关不是热力学的平衡过程而是属于力学松弛过程。因为在玻璃化转变前后聚合物都是无规的类似于液态。 5. 试用玻璃化转变的自由体积理论解释: (1)非晶态聚合物冷却时体积收缩速率发生变化; Tg前后聚合物自由体积膨胀情况不同 (2)速度愈快测定的Tg值愈高。 外力 作用时间短链段来不及发生运动呈现出玻璃态Tg↑ 6. 玻璃化转变的热力学理论基本观点是什么? 热力学研究表明相转变过程中自由能是连续的而与自由能的导数有关的性质发生不连续的变化。以温度和压力作为变量与自由能的一阶导数有关的性质如体积、熵及焓在晶体熔融和液体蒸发过程中发生突变这类相转变称为一级相转变。与自由能的二阶导数有关的性质如压缩系数、膨胀系数及比热容出现不连续变化的热力学转变称为二级相转变。 W.Kauzmann发现将简单的玻璃态物质的熵外推到低温当温度达到绝对零度之前

高分子物理第四章习题及解答

第四章 4.1 高聚物相对分子质量的统计意义 4.1.1 利用定义式计算相对分子质量 例4-1 假定A与B两聚合物试样中都含有三个组分,其相对分子质量分别为1万、10万和20万,相应的重量分数分别为:A是0.3、0.4和0.3,B是0.1、0.8 和0.1,计算此二试样的、和,并求其分布宽度指数、和多分散系数d。 解:(1)对于A (2)对于B 例4-2 假定某聚合物试样中含有三个组分,其相对分子质量分别为1万、2万和3万,今测得该试样的数均相对分子质量为2万、重均相对分子质量为2.3万,试计算此试样中各组分的摩尔分数和重量分数。 解:(1)

解得,, (2) 解得,, 例4-3 假定PMMA样品由相对分子质量100,000和400,000两个单分散级分以1:2的重量比组成,求它的,和,(假定a=0.5)并比较它们的大小. 解:

可见 例4-4 一个聚合物样品由相对分子质量为10000、30000和100000三个单分散组份组成, 计算下述混合物的和 (1)每个组份的分子数相等 (2)每个组份的重量相等 (3)只混合其中的10000和100000两个组份,混合的重量比分别为 0.145:0.855:0.5:0.5:0.855:0.145,评价值. 解:(1) (2) (3)当比例为0.145:0.855时 ,, 当比例为0.5:0.5时, ,, 当比例为0.855:0.145时, ,,

可见,组成接近时d值较大。故用d值衡量是合理的。 例4-5假定某一聚合物由单分散组分A和B组成,A和B的相对分子质量分别为100, 000和400,000。问分别以(1)A∶B=1∶2(重量比);(2)A∶B=2∶1混合样品, 混合物的和为多少?(3)A∶B=1∶2,a=0.72,计算, 并比较、、的大小。 解:(1)=1/100,000=1×10-5 =2/400,000=0.5×10-5 =2.0×10-5 (2)=2/100,000=2×10-5 =1/400,000=0.25×10-5 (3) 所以,<< *例4-6两种多分散样品等重量混合,样品A有=100,000,=200,000。

高分子物理课后答案,何曼君,第三版

高分子物理课后答案,何曼君,第三版 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高分子物理课后答案,何曼君,第三版 第三章 高分子的溶解过程与小分子相比有什么不同? 高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的高分子只停留在溶胀阶段,不会溶解。 第二维里系数A2的物理意义? 第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。它与溶剂化作用和高分子在溶液里的形态有密切关系。良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。 高分子的理想链和真实链有哪些区别? ①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。 ②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。 高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别? 三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同: ① 稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团之间的相互作用可以忽略。 ②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。 ② 亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整 个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。 第四章一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别? 由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。两种聚合物共混时,由于混合熵很小,

高分子物理第一章习题

第一章 1. 1 高分子链的近程结构 1.1.1 结构单元的化学组成 例1-1以下化合物,哪些是天然高分子化合物,哪些是合成高分子化合物 (1)蛋白质,(2)PVC,(3)酚醛树脂,(4)淀粉,(5)纤维素,(6)石墨,(7)尼龙66, (8)PVAc,(9)丝,(10)PS,(11)维尼纶,(12)天然橡胶,(13)聚氯丁二烯,(14)纸浆,(15)环氧树脂解:天然(1)(4)(5)(6)(9)(12)(14),合成(2)(3)(7)(8)(10)(11)(13)(15) 1.1.2 构型 例1-2试讨论线形聚异戊二烯可能有哪些不同的构型,假定不考虑键接结构(画出结构示意图)。 解:聚异戊二烯可能有6种有规立构体,它们是: 常见错误分析:本题常见的错误如下: (1)将1,2加成与3,4加成写反了。 按IUPAC有机命名法中的最小原则,聚异戊二烯应写成

而不是 即CH3在2位上,而不是在3位上。 (2)“顺1,4加成又分成全同和间同两种,反1,4加成也分成全同和间同两种。”顺1,4或 反1,4结构中没有不对称碳原子,没有旋光异构体。甲基与双键成120°角,同在一个平面上。 例1-3 环氧丙烷经开环聚合后,可得到不同立构的聚合物(无规、全同、间同), 试写出它们的立构上的不同,并大致预计它们对聚合物性能各带来怎样的影响? 解:聚环氧丙烷的结构式如下: 存在一个不对称碳原子(有星号的),因而有以下全同、间同和无规立构体。 性能的影响是:全同或间同立构易结晶,熔点高,材料有一定强度;其中全同立构的结晶度、 熔点、强度会比间同立构略高一点。无规立构不结晶或结晶度低,强度差。 常见错误分析:“只存在间同立构,不存在全同立构。” 以上写法省略了H,根据上述结构式,似乎只存在间同不存在全同。这是一种误解, 实际上碳的四个价键为四面体结构,三个价键不会在一个平面上。而在平面上表示的只是一个示意,全同与间同的真正区别在于CH3是全在纸平面之上(或之下),或间隔地在纸平面之上和之下。 例1-4 试述下列烯类高聚物的构型特点及其名称。式中D表示链节结构是D构型,L是L构型。 1.-D-D-D-D-D-D-D- 2.-L-L-L-L-L-L-L-

高分子物理第8章答案

第8章答案 1.答: 脆-韧转变点:同一聚合物材料表现为脆性或韧性同温度和应变速率有关,低应变速率(高温)下韧性的材料,高应变速率(低温)时会发生脆性断裂,断裂应力、屈服应力与应变速率(温度)关系曲线的交点即为脆韧转变点。 细颈:材料拉伸到达屈服点时,因发生强迫高弹形变,出现试样截面突然变细的现象,称为“纫颈” 剪切带:韧性高聚物拉伸至屈眼点时,因斜截面上的最大切应力首先达到材料的抗剪强度,因此试样上出现与拉仲方向成45(135)度角的剪切滑移变形带或互相交义的剪切滑移变形带(可用双折射或二色性实验观察) 银纹:在张应力作用下,聚合物材料某些薄弱部分出现应力集中而产生局部的塑性形变和取向,以致在材料表面或内部垂直应力方向上出现长度约100μm、宽度约10 μm、厚度约1 μm的微细凹槽,拉伸断裂前在弯曲范围内观察到应力发白现象,即产生了大量银纹 应力集中:如果材料存在缺陷(裂缝、宅隙、缺口、银纹和杂质等),受力时材料内部的应力平均分布状态将发生变化,使缺陷附近局部范围内的应力急剧增加,远远超过应力平均值.这种现象称为应力集中。疲劳:疲劳是材料或构件在低于屈服应力或断裂应力的周期应力作用下,因材料内部或其表面应力集中处引发裂纹并促使裂纹传播,从而导致最终的破坏断裂或失效的现象,是材科在实际使用中常见的破坏形式。强迫高弹形变 Tg以下拉伸时,过屈服点后,材料中少数链段在应力作用下运动,本质同高弹形变,但由于分子运动被冻结,故高弹形变被固定成永久形变,但若温度提高到Tg附近,此形变可恢复。高弹形变 Tg以上,施加外力时链段运动,发生大的形变,外力除去后形变可恢复的现象。 2答:(略,见讲义) 3.答:需画图说明 T1Tg ④ T 4 温度升高,材料变的软而韧,σB 下降, εB 增加,温度降低,则反之 (2)应变速率的影响 增加应变速率与降低温度的效应相似 速率降低,材料变的软而韧,σB 下降, εB增加,应变速 率升高,则反之 5.答: 聚合物抵抗外力破坏的能力称为强度,对于不同的破坏力有不同的强度,如拉伸强度、冲击强度和弯曲强度等。 由于材料在成型加工过程中材料内部存在缺陷((杂质、气泡、空穴、内应力、几何不连续、孔洞、浇口位臵不合理等)而引起应力集中导致破坏,使材料的实际强度大大低于理论强度。

高分子物理第三章习题及解答讲课稿

高分子物理第三章习 题及解答

第三章 3.1 高分子的溶解 3.1.1 溶解与溶胀 例3-1 简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢? 解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。整个过程往往需要较长的时间。 高聚物的聚集态又有非晶态和晶态之分。非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难,因此晶态高聚物的溶解要困难得多。非极性的晶态高聚物(如PE)在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。 例3-2.用热力学原理解释溶解和溶胀。 解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合: 上式表明溶解的可能性取决于两个因素:焓的因素()和熵的因素()。焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。但一般来说,高聚物的溶解过程都是增加的,即>0。显然,要使<0,则要求越小越好,最好为负值或较小的正值。极性高聚物溶于极性溶剂,常因溶剂化作用而放热。因此,总小于零,即<0,溶解过程自发进行。根据晶格理论得 =(3-1) 式中称为Huggins参数,它反映高分子与溶剂混合时相互作用能的变化。的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为)。而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即),其的计算可用Hildebrand的溶度公式: =(3-2) 式中是体积分数,是溶度参数,下标1和2分别表示溶剂和溶质,是溶液的总体积。从式中可知总是正的,当时,。一般要求与的差不超过1.7~2。综上所述,便知选择溶剂时要求越小或 和相差越小越好的道理。 注意: ①Hildebrand公式中仅适用于非晶态、非极性的聚合物,仅考虑结构单元之间的色散力,因此用相近原则选择溶剂时有例外。相近原则只是必要条件,充分条件还应有溶剂与溶质的极性和形成的氢键程度要大致相等,即当考虑结构单元间除有色散力外,还有偶极力和氢键作用时,则有

高分子物理作业(带答案)

第一章 1.试讨论线形聚异戊二烯可能有哪些不同的构型,假定不考虑键接结构(画出结构示意图)。 解:聚异戊二烯可能有6种有规立构体,它们是: 常见错误分析:本题常见的错误如下: (1)将1,2加成与3,4加成写反了。 按IUPAC 有机命名法中的最小原则,聚异戊二烯应写成 而不是 即CH 3在2位上,而不是在3位上。 (2)“顺1,4加成又分成全同和间同两种,反1,4加成也分成全同和间同两种。”顺1,4或反1,4结构中没有不对称碳原子,没有旋光异构体。甲基与双键成120°角,同在一个平面上。 2C C CH 2CH 2CH 3H C C C C C C R R R 33 CH 3H H H H H H (R =CH CH 2)C C C C C C R R R H H H H H H H H H (R =C(CH 3)CH 2)C C C C C C R R 3CH 3CH 3 H H H H H H (R =CH CH 2)C C C C C C R R R H H H H H H H H H (R =C(CH 3)CH 2) ② 反1,4加成 ④ 3,4加成全同立构 ③ 1,2加成全同立构 ⑤ 1,2加成间同立构 ⑥ 3,4加成间同立构 CH CH 3CH 2CH 2n 1234CH CH 3 CH 2CH 2n 1234

2.以聚丁二烯为例,说明一次结构(近程结构)对聚合物性能的影响? 解:单体丁二烯进行配位聚合,由于1,2加成与1,4加成的能量差不多,所以可得到两类聚合物。一类是聚1,2-丁二烯,通式是;另一类是聚1,4-丁二烯,通式是 。每一类都可能存在立体异构,如 由于一次结构不同,导致聚集态结构不同,因此性能不同。其中顺式聚1,4-丁二烯规整性差,不易结晶,常温下是无定形的弹性体,可作橡胶用。其余三种,由于结构规整易结晶,使聚合物弹性变差或失去弹性,不易作橡胶用,其性能之差详见表1-1。 表1-1聚丁二烯的物理性质 异构高分子熔点(℃)密度 (g/cm3) 溶解性(烃类溶 剂) 一般物性(常 温) 回弹性 20℃90℃ 全同聚1,2-丁二烯120~125 0.96 难硬,韧,结晶 性 45~55 90~92 间同聚1,2-丁二烯154~155 0.96 难硬,韧,结晶 性 顺式聚1,4-丁二烯4 1.01 易无定形 硬弹性 88~90 92~95 反式聚1,4-丁二烯135~148 1.02 难硬,韧,结晶 性 75~80 90~93

相关主题
文本预览
相关文档 最新文档